JPS6342629B2 - - Google Patents

Info

Publication number
JPS6342629B2
JPS6342629B2 JP14397181A JP14397181A JPS6342629B2 JP S6342629 B2 JPS6342629 B2 JP S6342629B2 JP 14397181 A JP14397181 A JP 14397181A JP 14397181 A JP14397181 A JP 14397181A JP S6342629 B2 JPS6342629 B2 JP S6342629B2
Authority
JP
Japan
Prior art keywords
formula
phosphite
reaction
represented
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14397181A
Other languages
Japanese (ja)
Other versions
JPS5846096A (en
Inventor
Shukichi Nabekawa
Itaru Ootsubo
Michinori Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP14397181A priority Critical patent/JPS5846096A/en
Publication of JPS5846096A publication Critical patent/JPS5846096A/en
Publication of JPS6342629B2 publication Critical patent/JPS6342629B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は三塩化リンと亜リン酸トリエステルを
反応させることにより式(): (Rはアルキル基、置換アルキル基、フエニル
基、置換フエニル基を、R′はROまたは塩素原子
を示す。)で表わされる塩化ホスフアイトを製造
する方法に関するものである。 塩化ホスフアイトは有機リン系農薬の原料とし
て有用なものである。 従来、塩化ホスフアイトの製造方法はトリアル
キルホスフアイトと三塩化リンを無触媒で反応さ
せていたが、この方法では70〜80時間の長時間反
応させた場合でも得られた塩化ホスフアイト、例
えばジエチルクロルホスフアイトの収率は理論値
の20〜40%と低く、又その反応生成物は三塩化リ
ンとエチルジクロルホスフアイトの混合物とな
り、工業的な製造方法には適さないものであつ
た。従つて、この改良方法として触媒を用いるこ
とにより反応を有利に促進する製造方法が提案さ
れている。特開昭52−42822号は触媒として酸ア
ミド、例えばヘキサメチルリン酸トリアミドを添
加して製造する方法であるが、該ヘキサメチルリ
ン酸トリアミドは近年、発ガン性物質の疑いが有
り農薬原料の使用に適さず日本では製造中止にな
つている。また特開昭52−42823号ではホスホニ
ウム塩を、特開昭53−23930号ではホスフイン、
ホスフインオキサイド等を触媒として使用する方
法が開示されているが、これ等のホスホニウム
塩、ホスフイン、ホスフインオキサイド等は高価
であり工業的製造方法には不適当である。 本発明はこのような従来技術の問題点を克服す
るために鋭意研究を行つた結果、塩化ホスフアイ
トの製造において三塩化リンと亜リン酸トリエス
テルを反応させる際に触媒としてラクタムを存在
下させることにより短時間の反応で高純度の製品
を高収率で得られ、かつクロスホスフアイト又は
ジクロルホスフアイトを選択的に製造することが
出来る方法を知見し本発明の完成に至つたもので
ある。 即ち、本発明は三塩化リンと式(): (RO)3P ……() (式中Rはアルキル基、置換アルキル基、フエ
ニル基、置換フエニル基を示す。)で表わされる
亜リン酸トリエステルとを反応させて、式
():
The present invention produces the formula () by reacting phosphorus trichloride and phosphorous triester: (R represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group, and R' represents RO or a chlorine atom.) Phosphite chloride is useful as a raw material for organophosphorus pesticides. Conventionally, the method for producing chlorinated phosphite was to react trialkyl phosphite and phosphorus trichloride without a catalyst, but in this method, even if the reaction was carried out for a long time of 70 to 80 hours, the resulting chlorinated phosphite, such as diethyl chloride, The yield of phosphite was as low as 20 to 40% of the theoretical value, and the reaction product was a mixture of phosphorus trichloride and ethyl dichlorophosphite, which was not suitable for industrial production. Therefore, as an improved method, a production method has been proposed in which the reaction is advantageously accelerated by using a catalyst. JP-A No. 52-42822 discloses a method for producing by adding an acid amide such as hexamethyl phosphoric triamide as a catalyst, but in recent years hexamethyl phosphoric triamide has been suspected of being a carcinogen and has been used as a raw material for agricultural chemicals. It is not suitable for use and has been discontinued in Japan. Furthermore, JP-A No. 52-42823 uses phosphonium salts, and JP-A No. 53-23930 uses phosphine,
Although a method using phosphine oxide or the like as a catalyst has been disclosed, these phosphonium salts, phosphine, phosphine oxide, etc. are expensive and unsuitable for industrial production methods. The present invention has been made as a result of intensive research to overcome the problems of the conventional technology.The present invention has been developed by using a lactam as a catalyst when reacting phosphorus trichloride and phosphite triester in the production of chlorinated phosphite. The present invention has been completed by discovering a method that can obtain high-purity products in high yields in a short reaction time and selectively produce crossphosphite or dichlorophosphite. . That is, the present invention relates to phosphorous trichloride and phosphorous acid represented by the formula (): (RO) 3 P ... () (wherein R represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group). By reacting with triester, formula ():

【式】で表わされる塩化ホスフアイ トを製造する方法において、式(): (式中R″は水素原子または炭素数1〜5のア
ルキル基、nは1〜5の正の整数を示す。)で表
わされるラクタムの一種又は二種以上の存在下で
反応させることを特徴とする塩化ホスフアイトの
製造方法である。 本発明は三塩化リンと式()で表わされる亜
リン酸トリエステルを特定の触媒の存在下で反応
させて、式()で表わされる塩化ホスフアイト
を製造する方法であり、その反応は下記の反応式
に基づいて行われる。 2(RO)3P+PCl3触媒 ――→ 3(RO)2PCl ……(A) (RO)3P+2PCl3触媒 ――→ 3ROPCl2 ……(B) 上記の(A)及び(B)の反応式から明らかな様に、本
発明は原系の三塩化リンと式()で表わされる
亜リン酸トリエステルの量を一定の割合に特定す
ることにより、選択的にクロルホスフアイト、或
はジクロルホスフアイトを製造することが出来
る。即ち、両者の割合をモル比で示すと、(A)反応
では三塩化リン1モル当り、式()で表わされ
る亜リン酸トリエステルを通常1.8〜2.2モル用い
るが、好ましくは1.95〜2.05モルであり、原系を
この特定の割合で反応させることにより選択的に
クロルホスフアイトを製造することが出来る。ま
た(B)反応では三塩化リン1モル当り、式()で
表わされる亜リン酸トリエステルを通常0.45〜
0.55モル用いるが、好ましくは0.48〜0.52モルで
あり、この反応により選択的にジクロルホスフア
イトを生成することができる。 本発明の原料として使用される亜リン酸トリエ
ステルは式():(RO)3Pで表わされ、式()
中のRはアルキル基、置換アルキル基、フエニル
基、置換フエニル基を示すが、その具体例を示す
と、Rがアルキル基のものとしてはメチル、エチ
ル、プロピル、ブチル、アミル、ヘキシル、シク
ロヘキシル、オクチル、デシル、ドデシル、テト
ラデシル、およびこれらの異性体、置換アルキル
基のものとしてはクロルエチル、クロルn―プロ
ピル、クロルメチル、クロルi―プロピル、シア
ノエチル、エトキシエチル、クロルn―ブチル、
クロルi―ブチル等、フエニル基、および置換フ
エニル基のものとしてはメチルフエニル、ニトロ
フエニル、クロルフエニル、ブロモフエニル等が
挙げられる。これ等の式()で表わされる亜リ
ン酸トリエステルの中でRが炭素数1〜13のアル
キル基、置換アルキル基、フエニル基、置換フエ
ニル基のものが好ましい。 次に本発明の触媒は式()で表わされるラク
タムの一種又は二種以上のものが用いられ、該ラ
クタムの具体例を示すと、β―プロピオラクタ
ム、γ―ブチロラクタム(2―ピロリドン)、γ
―バレロラクタム、δ―バレロラクタム(2―ピ
ペリドン)、ε―カプロラクタム、ペプトラクタ
ム、5―エチル2―ピロリドン、5―エチル2―
ピペリドン、5―n―プロピル2―ピロリドン、
5―i―ブチル2―ピペリドン等が挙げられる。 又、本発明の触媒の使用量は式()で表わさ
れるラクタムの一種又は二種以上の混合物を式
()で表わされる亜リン酸トリエステルに対し
て0.5〜15重量%、好ましくは1〜7重量%であ
る。触媒添加量が0.5重量%未満の少量であると
効果が低下し、又15重量%以上の多量に使用して
も品質の低下はないが、反応が終了して式()
で表わされる塩化ホスフアイトを蒸留して分離し
た時、過剰触媒により釜残が増加する傾向があり
経済的でない。 反応条件として、反応温度は使用する原料によ
り異なるが通常―30〜80℃の温度範囲で行われ、
圧力は通常、常圧で行うが、加圧下でも良い。 反応時間は原料の種類、反応温度により異なる
が、反応温度が低い場合には長時間を要し、高温
度の場合には短時間で行われ、通常は0.5〜80時
間であり、好ましくは〜10時間であるが、原料の
種類によつて長時間反応を行つても良い。 上記反応において、原料又は触媒の種類により
溶剤を使用しても良いし、また使用しなくても良
い。溶剤を使用する場合には原料及び生成物と反
応しない不活性溶剤を用いるのが望ましく、具体
的に例示するとベンゼン、クロルベンゼン、トル
エン、キシレン等の芳香族炭化水素、ヘキサン、
ペンタン、ヘプタン、オクタン、ノナン等の飽和
炭化水素、ジクロメタン、ジクロルエタン、四塩
化炭素等のハロゲン化炭化水素、ケロシン、リグ
ロイル等の1種又は2種以上の混合物が用いられ
る。 本発明は式()で表わされる亜リン酸トリエ
ステルに触媒である式()で表わされるラクタ
ムの1種又は2種以上を溶解又はスラリー状に分
散し、次に三塩化リンを滴下して添加した後、所
定温度で所定時間反応を行う。この場合式()
で表わされる亜リン酸トリエステルと三塩化リン
は順序を変えて反応を行つても良い。 次に本発明の効果を列挙すると下記の通りであ
る。 1 従来の方法である無触媒で反応を行つた場合
には70〜80時間反応を行つても、低収率、低純
度の塩化ホスフアイトが得られるのみであつた
が、本発明により特に低級アルキル基の塩化ホ
スフアイトを得る場合には、10時間以内の短時
間で反応が終了し、純度の高い製品を得ること
が出来る。 2 本発明の触媒であるラクタムは安価であり容
易に入手できる。特にラクタムの中でも広く用
いられているε―カプロラクタムは6―ナイロ
ンの原料でも有り特に有利である。 3 ラクタムはヘキサメチルリン酸トリアミドの
様に発ガン性の疑いのある物質でなく安心して
使用できる。 次に実施例及び比較例を示して本発明をさらに
詳しく説明する。 実施例 1 撹拌機、温度計、冷却器、滴下ロートの付いた
四ツ口フラスコにトリエチルホスフアイト33.23
gを加え、ε―カプロラクタム2.0gを溶解する。
(完全に溶解しない場合は、スラリー状でもかま
わない。)10〜15℃に冷却後、三塩化リン13.8g
を約10分間で滴下する。滴下終了後25〜30℃に昇
温し、5時間反応する。反応終了後、減圧で蒸留
して反応混合物より生成したジエチルクロルホス
フアイトを単離した。沸点は52〜55℃/22mmHg
でジエチルクロルホスフアイト38.51gを得た。
(トリエチルホスフアイトに対し収率は82%であ
る)生成したジエチルクロルホスフアイトは、赤
外線スペクトル、ガスクロマトグラフおよびマス
スペクトルにより確認をした。また、トリエチル
ホスフアイトと三塩化リンの滴下順序を変えても
結果はほぼ同じであつた。 実施例 2〜8 実施例1と同様の方法で、触媒として第1表に
示す各種のラクタムを用いてトリエチルホスフア
イトを三塩化リンと反応させジエチルクロルホス
フアイトを得た。この反応条件及び実験結果を第
1表に示した。
In the method for producing chlorinated phosphite represented by the formula (): (In the formula, R'' is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is a positive integer of 1 to 5.) The reaction is carried out in the presence of one or more lactams represented by The present invention is a method for producing a chlorinated phosphite represented by the formula () by reacting phosphorus trichloride and a phosphite triester represented by the formula () in the presence of a specific catalyst. The reaction is carried out based on the following reaction formula: 2 (RO) 3 P + PCl 3 catalyst --→ 3 (RO) 2 PCl ...(A) (RO) 3 P + 2 PCl 3 catalyst ---→ 3ROPCl 2 ...(B) As is clear from the reaction formulas (A) and (B) above, the present invention is based on the method of controlling the amount of phosphorus trichloride in the original system and the phosphite triester represented by the formula () to be constant. Chlorphosphite or dichlorophosphite can be selectively produced by specifying the ratio of chlorophosphite or dichlorophosphite.That is, if the ratio of both is expressed as a molar ratio, in reaction (A), 1 mole of phosphorus trichloride Usually, 1.8 to 2.2 moles of phosphite triester represented by the formula () are used, preferably 1.95 to 2.05 moles, and by reacting the original system at this specific ratio, chlorophosphite can be selectively produced. In reaction (B), the amount of phosphite triester represented by formula () is usually 0.45 to 1 mole of phosphorus trichloride.
0.55 mol is used, preferably 0.48 to 0.52 mol, and dichlorophosphite can be selectively produced by this reaction. The phosphite triester used as a raw material in the present invention is represented by the formula (): (RO) 3 P, and is represented by the formula ()
R represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group. Specific examples of R being an alkyl group include methyl, ethyl, propyl, butyl, amyl, hexyl, cyclohexyl, Octyl, decyl, dodecyl, tetradecyl, and their isomers, substituted alkyl groups include chloroethyl, chlor n-propyl, chloromethyl, chlor i-propyl, cyanoethyl, ethoxyethyl, chlor n-butyl,
Examples of phenyl groups such as chloro i-butyl, and substituted phenyl groups include methylphenyl, nitrophenyl, chlorphenyl, bromophenyl, and the like. Among these phosphorous acid triesters represented by the formula (), those in which R is an alkyl group having 1 to 13 carbon atoms, a substituted alkyl group, a phenyl group, or a substituted phenyl group are preferred. Next, the catalyst of the present invention uses one or more lactams represented by the formula (), and specific examples of the lactams include β-propiolactam, γ-butyrolactam (2-pyrrolidone), γ
- Valerolactam, δ-valerolactam (2-piperidone), ε-caprolactam, peptolactam, 5-ethyl 2-pyrrolidone, 5-ethyl 2-
piperidone, 5-n-propyl 2-pyrrolidone,
Examples include 5-i-butyl 2-piperidone. Further, the amount of the catalyst of the present invention used is 0.5 to 15% by weight, preferably 1 to 15% by weight of one or a mixture of two or more lactams represented by the formula () relative to the phosphorous triester represented by the formula (). It is 7% by weight. If the amount of catalyst added is small (less than 0.5% by weight), the effect will decrease, and even if it is used in a large amount of 15% by weight or more, there will be no deterioration in quality, but the reaction will be completed and the formula ()
When the chlorinated phosphite represented by is separated by distillation, the amount of residue in the pot tends to increase due to excess catalyst, which is not economical. As for the reaction conditions, the reaction temperature varies depending on the raw materials used, but it is usually carried out in the temperature range of -30 to 80℃.
Pressure is usually carried out at normal pressure, but pressurization may also be used. The reaction time varies depending on the type of raw materials and the reaction temperature, but if the reaction temperature is low, it will take a long time, and if the reaction temperature is high, it will take a short time, usually 0.5 to 80 hours, preferably ~ Although the reaction time is 10 hours, the reaction may be carried out for a longer time depending on the type of raw materials. In the above reaction, a solvent may or may not be used depending on the type of raw material or catalyst. When using a solvent, it is preferable to use an inert solvent that does not react with the raw materials and products. Specific examples include aromatic hydrocarbons such as benzene, chlorobenzene, toluene, and xylene, hexane,
One or a mixture of two or more of saturated hydrocarbons such as pentane, heptane, octane, and nonane, halogenated hydrocarbons such as dichloromethane, dichloroethane, and carbon tetrachloride, kerosene, and ligroyl are used. In the present invention, one or more lactams represented by the formula () as a catalyst are dissolved or dispersed in a slurry form in a phosphite triester represented by the formula (), and then phosphorus trichloride is added dropwise. After the addition, a reaction is carried out at a predetermined temperature for a predetermined time. In this case the expression ()
The phosphorous triester and phosphorus trichloride represented by may be reacted in a different order. Next, the effects of the present invention are listed below. 1. When the reaction was carried out without a catalyst, which is the conventional method, even if the reaction was carried out for 70 to 80 hours, only a low yield and low purity of chlorinated phosphite was obtained, but with the present invention, especially lower alkyl When obtaining a basic chlorinated phosphite, the reaction is completed within a short time of 10 hours, and a highly pure product can be obtained. 2. The lactam that is the catalyst of the present invention is inexpensive and easily available. In particular, ε-caprolactam, which is widely used among lactams, is particularly advantageous since it is also a raw material for 6-nylon. 3. Lactam is not a suspected carcinogen like hexamethylphosphoric triamide and can be used with confidence. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 Triethyl phosphite 33.23 in a four-necked flask equipped with a stirrer, thermometer, condenser, and dropping funnel.
g and dissolve 2.0 g of ε-caprolactam.
(If it does not dissolve completely, a slurry may be used.) After cooling to 10-15℃, 13.8g of phosphorus trichloride.
Drip in about 10 minutes. After the dropwise addition is completed, the temperature is raised to 25-30°C and reacted for 5 hours. After the reaction was completed, diethyl chlorophosphite produced from the reaction mixture was isolated by distillation under reduced pressure. Boiling point is 52-55℃/22mmHg
38.51 g of diethyl chlorophosphite was obtained.
(The yield was 82% based on triethyl phosphite.) The produced diethyl chlorophosphite was confirmed by infrared spectroscopy, gas chromatography, and mass spectrometry. Furthermore, even if the order of dropping triethyl phosphite and phosphorus trichloride was changed, the results were almost the same. Examples 2 to 8 In the same manner as in Example 1, triethyl phosphite was reacted with phosphorus trichloride using various lactams shown in Table 1 as catalysts to obtain diethyl chlorophosphite. The reaction conditions and experimental results are shown in Table 1.

【表】 実施例 9〜15 実施例1と同様の方法で、第2表に示す各種の
亜リン酸トリエステルをε―カプロラクタムを用
いて三塩化リンと反応させて各種の塩化ホスフア
イトを得た。その反応条件及び実験結果を第2表
に示した。
[Table] Examples 9 to 15 In the same manner as in Example 1, various phosphorous triesters shown in Table 2 were reacted with phosphorus trichloride using ε-caprolactam to obtain various chlorinated phosphites. . The reaction conditions and experimental results are shown in Table 2.

【表】【table】

【表】 実施例 16〜21 実施例1と同様の方法で触媒として第3表に示
す各種のラクタムを用いてトリエチルホスフアイ
トを三塩化リンと反応させエチルジクロルホスフ
アイトを得た。その反応条件及び実験結果を第3
表に示した。
[Table] Examples 16 to 21 Ethyl dichlorophosphite was obtained by reacting triethyl phosphite with phosphorus trichloride in the same manner as in Example 1 using various lactams shown in Table 3 as catalysts. The reaction conditions and experimental results are explained in the third section.
Shown in the table.

【表】 実施例 22〜27 実施例1と同様の方法で、第4表に示す各種の
亜リン酸トリエステルをε―カプロラクタムを用
いて三塩化リンと反応させて各種の塩化ホスフア
イトを得た。その反応条件及び実験結果を第4表
に示した。
[Table] Examples 22 to 27 In the same manner as in Example 1, various phosphite triesters shown in Table 4 were reacted with phosphorus trichloride using ε-caprolactam to obtain various chlorinated phosphites. . The reaction conditions and experimental results are shown in Table 4.

【表】 比較例 トリエチルホスフアイト33.23gへ10〜15℃に
冷却しながら、三塩化リン13.8gを約10分間で滴
下し滴下終了後25〜30℃で5時間反応した。この
反応液をガスクロマトグラフで分析すると、トリ
エチルホスフアイト29%、クロルホスフアイト44
%、ジクロルホスフアイト27%であつた。
[Table] Comparative Example 13.8 g of phosphorus trichloride was added dropwise over about 10 minutes to 33.23 g of triethyl phosphite while cooling the mixture to 10 to 15°C, and after completion of the dropwise addition, the mixture was reacted at 25 to 30°C for 5 hours. When this reaction solution was analyzed by gas chromatography, it was found that 29% of triethylphosphite and 44% of chlorphosphite were found.
% and dichlorophosphite 27%.

Claims (1)

【特許請求の範囲】 1 三塩化リンと式(RO)3P(式中Rはアルキル
基、置換アルキル基、フエニル基、置換フエニル
基を示す。)で表わされる亜リン酸トリエステル
とを反応させて式【式】(式中Rは上記 意義を、R′はROまたは塩素原子を示す。)で表
わされる塩化ホスフアイトを製造する方法におい
て、 式【式】(式中R″は水素原 子または炭素数1〜5のアルキル基、nは1〜5
の正の整数を示す。)で表わされるラクタムの一
種又は二種以上の存在下で反応させることを特徴
とする塩化ホスフアイトの製造方法。 2 ラクタムの一種又は二種以上を亜リン酸トリ
エステルに対して0.5〜15重量%の割合で存在さ
せる特許請求の範囲第1項記載の塩化ホスフアイ
トの製造方法。 3 反応温度−30℃〜80℃及び反応時間0.5〜80
時間で反応させる特許請求の範囲第1項又は第2
項記載の塩化ホスフアイトの製造方法。
[Claims] 1. Reacting phosphorus trichloride with a phosphite triester represented by the formula (RO) 3 P (wherein R represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group). In the method for producing chlorinated phosphite represented by the formula [formula] (wherein R has the above meaning and R′ represents RO or a chlorine atom), the formula [formula] (wherein R″ represents a hydrogen atom or Alkyl group having 1 to 5 carbon atoms, n is 1 to 5
indicates a positive integer. ) A method for producing chlorinated phosphite, which comprises reacting in the presence of one or more lactams represented by: 2. The method for producing chlorinated phosphite according to claim 1, wherein one or more lactams are present in a proportion of 0.5 to 15% by weight based on the phosphite triester. 3 Reaction temperature -30℃~80℃ and reaction time 0.5~80℃
Claim 1 or 2, where the reaction takes place over time.
A method for producing a chlorinated phosphite as described in .
JP14397181A 1981-09-14 1981-09-14 Preparation of chlorophosphite Granted JPS5846096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14397181A JPS5846096A (en) 1981-09-14 1981-09-14 Preparation of chlorophosphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14397181A JPS5846096A (en) 1981-09-14 1981-09-14 Preparation of chlorophosphite

Publications (2)

Publication Number Publication Date
JPS5846096A JPS5846096A (en) 1983-03-17
JPS6342629B2 true JPS6342629B2 (en) 1988-08-24

Family

ID=15351313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14397181A Granted JPS5846096A (en) 1981-09-14 1981-09-14 Preparation of chlorophosphite

Country Status (1)

Country Link
JP (1) JPS5846096A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461194B2 (en) * 2007-12-06 2014-04-02 日本化学工業株式会社 Method for producing high purity chlorinated phosphite

Also Published As

Publication number Publication date
JPS5846096A (en) 1983-03-17

Similar Documents

Publication Publication Date Title
JP2804089B2 (en) Method for selectively producing diorganodialkoxysilane
US6653494B2 (en) Processes for producing triaryl phosphite
US4427599A (en) Method for preparation of N-phosphonomethylglycine
JPS6342629B2 (en)
US4032602A (en) Process for the production of phosphite chlorides
JP4272814B2 (en) Improved process for producing spirobisphosphite
JPS603317B2 (en) Method for producing chlorinated phosphite
US5648549A (en) Process for the preparation of secondary arylphosphines
JPH06172373A (en) Production of 6-chloro-(6h)-dibenz(c,e9))1,2)- oxaphosphorin
EP0267406B1 (en) Process for the preparation of alkoxy silanes
WO2000040587A1 (en) Process for the preparation of phosphonite compounds
US4096182A (en) Process for the simultaneous preparation of 2,5-dioxo-1,2-oxa-phospholanes and β-halogenpropionic acid halide
JPS5949233B2 (en) Method for producing O,O-dialkylthionophosphoric acid chloride
EP2435448B1 (en) Method for the manufacture of dialkylphosphites
JPH0225915B2 (en)
US4708824A (en) Process for the preparation of chloro(phenyl)phospines
US4632995A (en) Process for the preparation of phenyl- and thienyl-chlorophosphane derivatives
HU194257B (en) Process for preparing n-(phosphonomethyl)-glycine
JP4542265B2 (en) Production of spirobisphosphite using finely ground pentaerythritol
US2654780A (en) Tetraalkyldiamidophosphoryl phosphoric dichlorides
SU415267A1 (en) METHOD OF OBTAINING SILICON ORGANIC COMPOUNDS CONTAINING NITROGEN AND PHOSPHORUS
US4751028A (en) Process for the preparation of thiophosphinic chlorides
CA1265812A (en) Method for producing partial- and ortho-esters of titanium, zirconium or hafnium
JPH0544474B2 (en)
JP3430929B2 (en) Organoxyphosphine derivatives