JPS6342320Y2 - - Google Patents

Info

Publication number
JPS6342320Y2
JPS6342320Y2 JP1983083947U JP8394783U JPS6342320Y2 JP S6342320 Y2 JPS6342320 Y2 JP S6342320Y2 JP 1983083947 U JP1983083947 U JP 1983083947U JP 8394783 U JP8394783 U JP 8394783U JP S6342320 Y2 JPS6342320 Y2 JP S6342320Y2
Authority
JP
Japan
Prior art keywords
heat
reduced
pellets
heat recovery
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983083947U
Other languages
Japanese (ja)
Other versions
JPS59189099U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8394783U priority Critical patent/JPS59189099U/en
Publication of JPS59189099U publication Critical patent/JPS59189099U/en
Application granted granted Critical
Publication of JPS6342320Y2 publication Critical patent/JPS6342320Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は紛粒体の熱回収装置に係り、特に製
鉄所において生じる高温の鉄含有還元ペレツトの
熱回収を効果的に行う装置に関する。
[Detailed Description of the Invention] This invention relates to a heat recovery device for powder particles, and more particularly to a device for effectively recovering heat from high-temperature iron-containing reduced pellets produced in iron works.

製鉄所においては製鉄,製鋼の各階段において
ダストが年間数万トンも生じるが、このダストの
中には鉄(Fe)が30〜60%も含有されている。
これらのダストは集められ、炭素Cを還元剤とし
て直接還元法により還元鉄とし、鉄鋼の原料とし
て高炉に投入され省資源化が図られている。
In steel plants, tens of thousands of tons of dust are generated each year at each step of the iron and steel manufacturing processes, and this dust contains 30 to 60% iron (Fe).
These dusts are collected, converted into reduced iron by a direct reduction method using carbon C as a reducing agent, and then fed into a blast furnace as a raw material for steel, thereby saving resources.

第1図は直接還元法の概略を示す。図中、原料
1は投入口2を経てロータリキルン3に至り還元
雰囲気の中でバーナ4によつて1050℃程度に加熱
され還元される。この還元された粒子(以下「還
元ペレツト」と称する)は再酸化を防止するた
め、還元後きわめて短時間のうちに水槽5に投入
され常温近くまで冷却される。還元ペレツトの冷
却により水槽5からは大量の蒸気が発生するが、
この蒸気は大気中に放出されるため環境汚染の原
因となり、また還元ペレツトの有する熱が全く無
駄になつてしまう。このため還元ペレツト冷却用
の流動層を形成する方法も考えられるが、冷却気
体として酸化の虞れのない不活性ガスを使用せね
ばならず、かつ流動化のためこれら不活性ガスの
噴射速度も一定値以上に保持する必要があり動力
費もかかり全体として不経済となる。また、還元
ペレツトを流動化させることにより還元ペレツト
が崩壊して粉化し取り扱い上不便が生じることも
ある。さらに、不活性ガスを窒素とした場合には
窒化の問題もある。総じて流動層による冷却は技
術的、経済的に実現が困難であつて有効な方法、
装置の開発が望まれている。
FIG. 1 shows an outline of the direct reduction method. In the figure, a raw material 1 passes through an inlet 2 and reaches a rotary kiln 3, where it is heated to about 1050° C. by a burner 4 in a reducing atmosphere and reduced. In order to prevent re-oxidation, the reduced particles (hereinafter referred to as "reduced pellets") are put into a water tank 5 within a very short time after being reduced and cooled to near room temperature. A large amount of steam is generated from the water tank 5 by cooling the reduced pellets, but
This steam is released into the atmosphere, causing environmental pollution, and the heat contained in the reduced pellets is completely wasted. For this reason, a method of forming a fluidized bed for cooling the reduced pellets can be considered, but it is necessary to use an inert gas that has no risk of oxidation as the cooling gas, and the injection speed of these inert gases must be controlled to ensure fluidization. It is necessary to maintain it above a certain value, which increases the power cost, making it uneconomical overall. Further, by fluidizing the reduced pellets, the reduced pellets may collapse into powder, which may cause inconvenience in handling. Furthermore, when nitrogen is used as the inert gas, there is also the problem of nitridation. Generally speaking, fluidized bed cooling is technically and economically difficult to achieve, but is an effective method.
Development of a device is desired.

この考案の目的は前記した問題点を除去し、還
元ペレツトの保有熱を、粒体の性状を変化させる
ことなく効果的に回収し得る装置を提供すること
にある。
The purpose of this invention is to eliminate the above-mentioned problems and provide an apparatus that can effectively recover the heat retained in reduced pellets without changing the properties of the particles.

要するにこの考案は還元ペレツトの移動層を形
成し、この移動層中にヒートパイプを配置した装
置である。
In short, this device is a device in which a moving layer of reduced pellets is formed and a heat pipe is placed in this moving layer.

以下この考案の実施例について説明する。 Examples of this invention will be described below.

第2図において、還元ペレツト製造装置たるロ
ータリキルン3の排出口に対しては内部に還元ペ
レツトから成る移動層7を形成する移動層形成形
用ケーシング12(以下単にケーシング12と称
す)が配置してあり、同ケーシング12の下部に
はシエーキングコンベヤ又はロータリフイーダ等
の定量フイーダ10が配置してある。水槽5はこ
の定量フイーダ10を介してケーシング12と接
続している。
In FIG. 2, a moving layer forming casing 12 (hereinafter simply referred to as casing 12), which forms a moving layer 7 made of reduced pellets inside, is disposed at the outlet of a rotary kiln 3, which is a reduced pellet manufacturing device. A quantitative feeder 10 such as a shaking conveyor or a rotary feeder is arranged at the bottom of the casing 12. The water tank 5 is connected to the casing 12 via this quantitative feeder 10.

ケーシング12内には移動層を形成した高温の
還元ペレツトの熱を回収するため熱回収素子8が
配置してある。この熱回収素子は還元ペレツトの
熱を回収し外部に伝達する機能を有するものであ
るから、例えばボイラの水管であつてもよい。し
かし、ボイラ水管の場合には万一水管が破損した
場合に移動層中に大量のボイラ給水が流出するの
で、熱回収素子としてはヒートパイプが最適であ
る。
A heat recovery element 8 is disposed within the casing 12 to recover heat from the high temperature reduced pellets forming the moving layer. Since this heat recovery element has the function of recovering heat from the reduced pellets and transmitting it to the outside, it may be, for example, a water pipe of a boiler. However, in the case of a boiler water pipe, if the water pipe were to break, a large amount of boiler feed water would flow into the moving bed, so a heat pipe is most suitable as the heat recovery element.

第3図ないし第5図はヒートパイプとして、蒸
発部と凝縮部とを分離した分離型ヒートパイプを
用いた場合のケーシング用の構造を示す。13は
分離型ヒートパイプの蒸発部を構成する管体であ
り、複数本平行に配置した管体の両端をヘツダ1
4および15で接続することによりパネルを形成
し、このパネルをケーシング12内に複数段配置
する。この場合、封入した作動媒体の蒸気が上昇
し、かつ凝縮部から戻つて来た凝縮液が下降し易
いよう、各パネルは所定の角度をもつて水平面に
対して斜めに配置しておく。17a,17b,1
7cは各パネル群のマニホルドであり、各パネル
群は連絡管18を介して各々のマニホルドに接続
している。19a,19b,19cは各マニホル
ドと図示しない凝縮部(放熱部)とを接続する連
絡本管である。なお、凝縮部は例えば第2図の如
く熱回収部に位置し例えばボイラドラム9内に配
置し、ドラム内給水を直接加熱するようにしても
よい。
FIGS. 3 to 5 show a structure for a casing when a separate type heat pipe in which an evaporating section and a condensing section are separated is used as a heat pipe. Reference numeral 13 denotes a tube constituting the evaporation section of the separate heat pipe, and both ends of the plurality of tubes arranged in parallel are connected to the header 1.
4 and 15 to form a panel, which is arranged in multiple stages within the casing 12. In this case, each panel is arranged diagonally with respect to the horizontal plane at a predetermined angle so that the vapor of the enclosed working medium rises and the condensate returned from the condensing section easily descends. 17a, 17b, 1
7c is a manifold for each panel group, and each panel group is connected to each manifold via a communication pipe 18. 19a, 19b, and 19c are communication main pipes that connect each manifold to a condensing section (heat dissipation section) not shown. The condensing section may be located in the heat recovery section, for example, in the boiler drum 9, as shown in FIG. 2, and may directly heat the water supplied within the drum.

以上の構成において、ケーシング12には還元
雰囲気にある高温の還元ペレツト20による移動
層7が形成される。還元ペレツトの熱は蒸発管1
3において内部の作動媒体は蒸発し、発生した蒸
気Sはヘツダ14,連絡管18を介して潜熱とし
て外部に搬送され、各マニホルド、連絡本管を介
して凝縮部に至り凝縮し放熱する。凝縮液Lは主
に管体内壁面に沿つて下降し蒸発管に戻る。この
様に作動媒体が循環流動することにより熱回収を
行う。この場合各管体13のいづれかに万一損傷
が生じてもあらかじめ封入されている作動媒体の
量はその一本丈でありさして多くないので還元ペ
レツトに対しては大きな影響は生じない。またケ
ーシング12の下部には不活性ガス及び又は還元
性のガスを供給する複数のノズル21を設けケー
シング内を還元性雰囲気としペレツトが酸化する
ことのないようにする。
In the above structure, a moving layer 7 is formed in the casing 12 by the high-temperature reducing pellets 20 in a reducing atmosphere. The heat of the reduced pellets is transferred to the evaporation tube 1.
At step 3, the internal working medium evaporates, and the generated steam S is transferred to the outside as latent heat via the header 14 and the connecting pipe 18, and reaches the condensing section via each manifold and the connecting main pipe, where it condenses and radiates heat. The condensed liquid L mainly descends along the inner wall surface of the tube and returns to the evaporation tube. Heat is recovered by circulating and flowing the working medium in this manner. In this case, even if any of the tubes 13 were to be damaged, the amount of working medium pre-filled in the tube is the length of one tube and is not very large, so it will not have a major effect on the reduced pellets. Further, a plurality of nozzles 21 for supplying inert gas and/or reducing gas are provided in the lower part of the casing 12 to create a reducing atmosphere inside the casing to prevent the pellets from being oxidized.

この考案を実施することにより還元ペレツトを
酸化雰囲気に晒すことなく熱回収を効果的に行う
ことができる。
By implementing this idea, heat can be effectively recovered without exposing the reduced pellets to an oxidizing atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式による還元ペレツトの冷却装
置を含むプラントの概略説明図、第2図はこの考
案にかかる一実施例を示すロータリキルンの排出
口に熱回収装置を設けた場合の配置を示す縦断面
図、第3図は分離型ヒートパイプの蒸発部を還元
ペレツトの移動層内に設けた場合の第2図の部分
拡大図、第4図は第3図のA−A断面視図、第5
図は第3図のB−B断面視図である。 3……ロータリキルン、7……移動層、12…
…移動層形成形ケーシング、13……蒸発部、2
0……還元ペレツト、21……ノズル。
Fig. 1 is a schematic explanatory diagram of a plant including a cooling device for reduced pellets according to the conventional method, and Fig. 2 shows an arrangement in which a heat recovery device is installed at the outlet of a rotary kiln showing one embodiment of this invention. 3 is a partially enlarged view of FIG. 2 when the evaporation part of the separated heat pipe is provided in the moving layer of reduced pellets; FIG. 4 is a cross-sectional view taken along line AA in FIG. 3; Fifth
The figure is a sectional view taken along line BB in FIG. 3. 3...Rotary kiln, 7...Moving layer, 12...
...Moving bed forming casing, 13...Evaporation section, 2
0... Reduction pellet, 21... Nozzle.

Claims (1)

【実用新案登録請求の範囲】 1 還元ペレツトの保有する熱を熱回収素子によ
り回収する還元ペレツト熱回収装置において、
還元ペレツト製造装置の排出部に対して還元ペ
レツトの移動層形成用ケーシングを配置し、こ
のケーシング内に不活性ガスまたは還元性のガ
スを供給する複数のガス供給手段を設け、かつ
このケーシング内にヒートパイプの蒸発部を配
置し、該ヒートパイプの凝縮部は熱回収部に配
置することにより還元ペレツトの熱を回収する
ことを特徴とする還元ペレツトの熱回収装置。 2 実用新案登録請求の範囲第1項記載の還元ペ
レツト熱回収装置において、前記ヒートパイプ
を分離型ヒートパイプとした還元ペレツト熱回
収装置。
[Scope of Claim for Utility Model Registration] 1. In a reduced pellet heat recovery device that recovers heat possessed by reduced pellets using a heat recovery element,
A casing for forming a moving layer of reduced pellets is disposed in the discharge section of the reduced pellet manufacturing device, and a plurality of gas supply means for supplying inert gas or reducing gas are provided in this casing, and 1. A heat recovery device for reduced pellets, characterized in that an evaporating section of a heat pipe is disposed, and a condensing section of the heat pipe is disposed in a heat recovery section to recover heat from the reduced pellets. 2 Utility Model Registration Scope of Claim 1. The reduced pellet heat recovery apparatus according to claim 1, wherein the heat pipe is a separate heat pipe.
JP8394783U 1983-06-03 1983-06-03 Reduced pellet heat recovery equipment Granted JPS59189099U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8394783U JPS59189099U (en) 1983-06-03 1983-06-03 Reduced pellet heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8394783U JPS59189099U (en) 1983-06-03 1983-06-03 Reduced pellet heat recovery equipment

Publications (2)

Publication Number Publication Date
JPS59189099U JPS59189099U (en) 1984-12-14
JPS6342320Y2 true JPS6342320Y2 (en) 1988-11-07

Family

ID=30213901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8394783U Granted JPS59189099U (en) 1983-06-03 1983-06-03 Reduced pellet heat recovery equipment

Country Status (1)

Country Link
JP (1) JPS59189099U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292149B2 (en) * 2015-03-11 2018-03-14 Jfeスチール株式会社 Gas seal device and gas seal method for rotary kiln

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432864A (en) * 1977-08-16 1979-03-10 Mitsui Eng & Shipbuild Co Ltd Method of recovering heat and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432864A (en) * 1977-08-16 1979-03-10 Mitsui Eng & Shipbuild Co Ltd Method of recovering heat and its device

Also Published As

Publication number Publication date
JPS59189099U (en) 1984-12-14

Similar Documents

Publication Publication Date Title
JPH0449164Y2 (en)
CN105441687B (en) Dust of Iron And Steel Works recycles technique and system
CN103836948B (en) A kind of fluidizing reactor of high-carbon molybdenum-nickel ore and system
CN107191941A (en) It is a kind of to reduce the technique for burning domestic garbage and system of incineration flue gas pollutant
CN106957541A (en) The carbon black energy-saving production method and device of a kind of outer pre-heating technique air of line
US5061467A (en) Economic recovery and utilization of boiler flue gas pollutants
US4874585A (en) Economic recovery and utilization of boiler flue gas pollutants
JPS6342320Y2 (en)
PL109031B1 (en) Method of producing cement clinker
CN201053005Y (en) Low-temperature pyrolysis combination producing device for furnace slag and coal powder
CN206160079U (en) Fine material suspension magnetizing roasting powder rapid cooling cooling technology exhaust -heat boiler
EP0038327B1 (en) Method and apparatus enabling thermal energy recovery in combustor operation
CN204848782U (en) Slag granulation coal gasifier
CN110186287B (en) High-temperature slag waste heat utilization method and system
JPH0318867Y2 (en)
JPS6327395B2 (en)
US4788917A (en) Shaft furnace bypass system
CN104846194A (en) Cooling method of chloridized roasted pellets
CN105953590B (en) A kind of pellet grate tail environmental improvement device
CN210154354U (en) Direct heat extraction method high temperature slag waste heat recycling system
CN106839792A (en) The flue gas processing device and method of a kind of rare earth stove
CN210268124U (en) Environment-friendly closed submerged arc furnace high-temperature furnace gas heat exchange kiln
JPS6040574Y2 (en) Dry dust collection and heat recovery equipment for converter exhaust gas
CN216049087U (en) Heat accumulating type tunnel kiln for flue gas backflow and high-temperature section smoke exhaust
CN210154355U (en) Indirect heat extraction method high temperature sediment waste heat recycle system