JPS6341991B2 - - Google Patents

Info

Publication number
JPS6341991B2
JPS6341991B2 JP56082541A JP8254181A JPS6341991B2 JP S6341991 B2 JPS6341991 B2 JP S6341991B2 JP 56082541 A JP56082541 A JP 56082541A JP 8254181 A JP8254181 A JP 8254181A JP S6341991 B2 JPS6341991 B2 JP S6341991B2
Authority
JP
Japan
Prior art keywords
anode
electrode
electrolysis
electronically conductive
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56082541A
Other languages
Japanese (ja)
Other versions
JPS57198279A (en
Inventor
Yoshio Oda
Takashi Otoma
Eiji Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56082541A priority Critical patent/JPS57198279A/en
Priority to EP82104652A priority patent/EP0067975B1/en
Priority to DE8282104652T priority patent/DE3277022D1/en
Priority to US06/382,771 priority patent/US4470893A/en
Publication of JPS57198279A publication Critical patent/JPS57198279A/en
Publication of JPS6341991B2 publication Critical patent/JPS6341991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は水の電解法、特に低酸素過電圧で、耐
久性の大きな陽極を用いる水の電解方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolyzing water, and in particular to a method for electrolyzing water using a low oxygen overvoltage and a highly durable anode.

水素は、最近のエネルギー事情を反映し石油に
代る新しいエネルギー源として多方面から注目さ
れている。そして、水素の工業的製造方法として
は大別して水電解法とコークスや石油のガス化法
が挙げられる。前者の方法は、原料として入手し
易い水が用いられる反面、多数の電解設備が必要
なこと、電流の過不足に対する適応性が不充分で
あること、電解液の炭酸化による劣化や床面積、
設備費などに多くの問題が残されている。他方、
後者の方法は一般に操作が煩雑であると共に設備
もかなり大型なものが要求され、設備費が大であ
るなどの問題がある。
Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil. Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses readily available water as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and suffers from deterioration due to carbonation of the electrolyte and floor space.
Many issues remain, including equipment costs. On the other hand,
The latter method is generally complicated to operate, requires fairly large equipment, and has problems such as high equipment costs.

上記の問題を解決する手段として、陽イオン交
換膜を用い電解槽で水を電解し、水素を製造する
方法が最近提案されている。
As a means to solve the above problems, a method has recently been proposed in which water is electrolyzed in an electrolytic cell using a cation exchange membrane to produce hydrogen.

水電解装置は種々のものが考えられるが、通常
は液透過性あるいは液不透過性の隔膜をはさんで
その両側に陽極及び陰極を含む陽極室及び陰極室
が配置されているものが用いられる。水電解の場
合、苛性アルカリ水溶液が陽極室に供給され、陰
極室には水あるいは稀薄苛性アルカリ水溶液が供
給され、電解の結果陰極で水素が、陽極で酸素が
発生する。このようなガス発生用陽極においては
陽極液である苛性アルカリ水溶液中に溶存してい
る、カルシウム、マグネシウム、珪素、マンガン
等を含むイオン、S:O3 -2などは陽極上に、酸
化物や水酸化物として陽極上に付着することが知
られている。ガス発生用陽極においてはガス発生
による電解液の撹拌効果によつて還元や電析の速
度が高められることが考えられる。
Various types of water electrolysis devices are possible, but the one usually used is one in which an anode chamber and a cathode chamber containing an anode and a cathode are arranged on both sides of a liquid-permeable or liquid-impermeable diaphragm. . In the case of water electrolysis, a caustic alkaline aqueous solution is supplied to the anode chamber, water or a dilute caustic alkaline aqueous solution is supplied to the cathode chamber, and as a result of electrolysis, hydrogen is generated at the cathode and oxygen is generated at the anode. In such an anode for gas generation, ions containing calcium, magnesium, silicon, manganese, etc., S:O 3 -2 , etc. dissolved in the caustic alkali aqueous solution that is the anolyte are deposited on the anode, such as oxides and It is known to deposit on the anode as a hydroxide. In the anode for gas generation, it is thought that the speed of reduction and electrodeposition is increased by the stirring effect of the electrolytic solution due to gas generation.

上記のような電解方法に好適に使用しうる陽極
はまだ見出されていない。
An anode suitable for use in the above electrolytic method has not yet been found.

本発明は上記現象を効果的に防ぎ、かつ発生酸
素ガス気泡を大きな気泡にせしめ、電極面からの
離脱を容易にし、結果として槽電圧を低下せしめ
る陽極を用いて水を電解する方法を提供するもの
であつて、液体不透過性の基本表面上に多孔性の
表面層が設けられてなるガス発生用陽極体であつ
て、電極表面の全体にわたつて非電子電導性物質
が微細に一様かつ不連續に付着されてなる電極体
を陽極として水を電解することを特徴とする水の
電解法である。
The present invention provides a method for electrolyzing water using an anode that effectively prevents the above-mentioned phenomenon and makes the generated oxygen gas bubbles large enough to easily separate from the electrode surface, resulting in a decrease in cell voltage. An anode body for gas generation consisting of a porous surface layer provided on a liquid-impermeable basic surface, in which a non-electronically conductive substance is finely and uniformly distributed over the entire electrode surface. This water electrolysis method is characterized in that water is electrolyzed using an electrode body which is discontinuously attached as an anode.

本発明に用いる陽極体は特開昭54―112785号に
開示されるように鉄等の液体不透過性電極基体を
展開された、または未展開のラネーニツケル粒子
等の金属粒子を分散させたニツケルメツキ浴中に
浸漬して電気メツキすることにより得られるもの
でもよいし、また特公昭54―19229号、特開昭54
―115626号で開示されるような電極基体表面をエ
ツチングしたものあるいはサンドプラストしたも
のでもよい。
The anode body used in the present invention is a nickel plating bath in which metal particles such as Raney nickel particles, which are developed or undeveloped, are dispersed in a liquid-impermeable electrode substrate such as iron, as disclosed in JP-A-54-112785. It may be obtained by immersing it in a liquid and electroplating it.
The electrode base surface may be etched or sandblasted as disclosed in Japanese Patent No. 115626.

本発明に用いられる陽極体は液体不透過性の基
体表面に多孔性の表面層が設けられてなるガス発
生用陽極体の表面全体にわたつて非電子電導性物
質を微細に一様かつ不連續に付着させたものであ
る。ここで微細に、一様かつ不連續というのは、
該非電子電導性物質が比較的小さな付着物とし
て、この付着物が全体としてつながつていない島
状ないし、数個〜数十個の島がつながつた帯状の
形態で電極面に一様に分布して付着している状態
をいうものである。一般に電解時に付着する前述
の珪素、カルシウム、マグネシウム、マンガンの
比較的凸部に付着しやすいものと考えられ、従つ
て、該非電子電導性物質は電極面の凸部を覆うよ
うに島状ないし帯状に付着させるのが好ましいと
考えられるが、必ずしもこの考え方によることも
なく種々な考え方が可能である。
The anode body used in the present invention has a porous surface layer provided on the surface of a liquid-impermeable base body for gas generation. It is attached to. Here, finely uniform and discontinuous means:
The non-electronically conductive substance is a relatively small deposit, and the deposit is uniformly distributed on the electrode surface in the form of an unconnected island or a band of several to dozens of islands connected. This refers to the state in which the material is attached to the surface. In general, it is thought that the aforementioned silicon, calcium, magnesium, and manganese that adhere during electrolysis are relatively likely to adhere to convex parts, and therefore, the non-electronically conductive substances are formed in the form of islands or bands so as to cover the convex parts of the electrode surface. Although it is thought that it is preferable to attach it to the substrate, this is not necessarily the case, and various other ideas are possible.

また、発生微細酸素気泡は、付着された非電導
性層の効果で容易に会合して大気泡になると考え
られる。
Further, it is thought that the generated fine oxygen bubbles easily combine to form large bubbles due to the effect of the attached non-conductive layer.

本発明においては、電極の表面層に付着させる
物質として非電子電導性のものを使用することが
重要である。電子電導性物質を付着させる場合に
はこれが電極として作用する為、前記の化合物等
のような阻害物質の沈着防止が達成されず不都合
である。
In the present invention, it is important to use a non-electronically conductive substance as the substance to be attached to the surface layer of the electrode. When an electronically conductive substance is deposited, it acts as an electrode, which is disadvantageous because prevention of the deposition of inhibitory substances such as the above-mentioned compounds cannot be achieved.

かかる非電子電導性物質としては、電気絶縁性
あるいはイオン電導性の無機質および有機質の各
種物質、例えばガラス、ホウロウ、セラミクス、
高分子物質等が使用可能である。耐久性の面から
非水溶性であり電極体の作動条件下において固体
のものが好ましく、さらに電極表面層への強固な
付着力の達成および付着量の制御が容易であるな
どの面から、有機高分子物質が好ましく採用可能
である。
Such non-electronically conductive materials include various electrically insulating or ionically conductive inorganic and organic materials such as glass, enamel, ceramics,
Polymeric substances etc. can be used. From the viewpoint of durability, it is preferable to use a non-water-soluble material that is solid under the operating conditions of the electrode body.Furthermore, from the viewpoint of achieving strong adhesion to the electrode surface layer and easily controlling the amount of adhesion, organic Polymeric substances can be preferably employed.

本発明において好適に採用可能な有機高分子物
質には、合成あるいは天然の各種の樹脂あるいは
弾性体が包含され、具体的には、合成高分子物質
としては、テトラフルオロエチレン、クロロトリ
フルオロエチレン、フツ化ビニリデン、フツ化ビ
ニル、ヘキサフルオロプロピレンのごとき含フツ
素オレフイン類;塩化ビニル、塩化ビニリデンの
ごとき含塩素オレフイン類;エチレン、プロピレ
ン、ブテン―1、イソブチレンのごときオレフイ
ン類;スチレンのごとき芳香族不飽和化合物;ブ
タジエン、クロロプレン、イソプレンのごときジ
エン類;アクリロニトリル、メタクリロニトリ
ル、アクリル酸メチル、メタクリル酸メチル等の
ニトリル、ニトリル誘導体類;などの単独重合体
ならびに共重合体、さらには、ポリウレタン、ポ
リウレタンウレア、ポリウレア、ポリアミドイミ
ド、ポリアミド、ポリイミド、ポリシロキサン、
ポリケタール、ポリアリーレンエーテルのごとき
重縮合体ないしは重付加重合体等、さらにこれら
の高分子は―COOH、―COONa、―SO3H、―
SO3Na、―CH2N(CH33Cl、―CH2N
(CH33OH、―CH2、―CH2N(CH33(C2H4OH)
Cl、―CH2N(CH22(C2H4OH)OH、―CH2N
(CH32、―CH2NH(CH2)―のようなイオン交
換性基を有しイオン電導性を示すものも含むもの
が、また天然高分子物質としては天然ゴム、セル
ロース、ポリペプチド等が例示される。
Organic polymeric substances that can be suitably employed in the present invention include various synthetic or natural resins or elastic bodies. Specifically, the synthetic polymeric substances include tetrafluoroethylene, chlorotrifluoroethylene, Fluorine-containing olefins such as vinylidene fluoride, vinyl fluoride, and hexafluoropropylene; chlorine-containing olefins such as vinyl chloride and vinylidene chloride; olefins such as ethylene, propylene, butene-1, and isobutylene; aromatic compounds such as styrene Unsaturated compounds; dienes such as butadiene, chloroprene, and isoprene; nitriles and nitrile derivatives such as acrylonitrile, methacrylonitrile, methyl acrylate, and methyl methacrylate; homopolymers and copolymers such as polyurethanes, Polyurethane urea, polyurea, polyamideimide, polyamide, polyimide, polysiloxane,
Polyketals, polycondensates or polyaddition polymers such as polyarylene ether, and these polymers also include -COOH, -COONa, -SO 3 H, -
SO 3 Na, ―CH 2 N (CH 3 ) 3 Cl, ―CH 2 N
(CH 3 ) 3 OH, -CH 2 , -CH 2 N (CH 3 ) 3 (C 2 H 4 OH)
Cl, -CH2N ( CH2 ) 2 ( C2H4OH ) OH , -CH2N
(CH 3 ) 2 , -CH 2 NH (CH 2 ) -, which have ion-exchange groups and exhibit ion conductivity, as well as natural polymers such as natural rubber, cellulose, and polypeptides. etc. are exemplified.

本発明において非電子電導性物質の選定にあた
つては、陽極体の使用条件即ち雰囲気、電解液、
発生ガスの種類、温度、ガス発生量等の点から所
要の耐薬品性、耐熱性、機械的強度等を設定し、
さらに電極表面層への付着力、付着作業における
操作性等を勘案することが望ましい。即ち、水電
解の場合の陽極に適用する場合には、耐アルカリ
性および耐熱性等に優れたフルオロオレフイン類
の単独重合体あるいは共重合体例えば、ポリテト
ラフルオロエチレン(PTFE)、テトラフルオロ
エチレン―ヘキサフルオロプロピレン共重合体、
テトラフルオロエチレン―パーフルオロ―5―オ
キサ―6―ヘプデン酸エステル共重合体のごとき
パーフルオロ重合体等が好適なものとして選定さ
れる。
In the present invention, when selecting a non-electronically conductive substance, the use conditions of the anode body, such as atmosphere, electrolyte,
The required chemical resistance, heat resistance, mechanical strength, etc. are set based on the type of gas generated, temperature, amount of gas generated, etc.
Furthermore, it is desirable to consider the adhesion force to the electrode surface layer, the operability in the adhesion work, etc. That is, when applied to the anode in water electrolysis, homopolymers or copolymers of fluoroolefins with excellent alkali resistance and heat resistance, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexane, etc. fluoropropylene copolymer,
Perfluoropolymers such as tetrafluoroethylene-perfluoro-5-oxa-6-hebdate copolymer are preferably selected.

上記した非電子電導性物質を陽極に付着せしめ
る手段は特に限定されず、種々の方法が採用可能
であるが、付着量の制御の面から該物質の溶液あ
るいは分散液を用いる浸漬法、噴霧法、あるい
は、電気泳動法等が好適な方法として例示可能で
ある。そして上記例示の方法によれば、非電子電
導性物質が陽極面に微細に、均一かつ不連續に付
着されうる。
The method for depositing the non-electronically conductive substance described above on the anode is not particularly limited, and various methods can be adopted, but from the viewpoint of controlling the amount of deposit, dipping methods and spraying methods using a solution or dispersion of the substance are preferred. Alternatively, suitable methods include electrophoresis and the like. According to the method exemplified above, the non-electronically conductive material can be deposited finely, uniformly and discontinuously on the anode surface.

そして、このようにして非電子電導性物質を溶
媒又は分散媒と共に多孔性層に保持せしめられた
電極は乾燥され、又は乾燥後焼成されて陽極表面
に強固に付着される。これらの浸漬法、電気泳動
法、噴霧法のいずれであつても該溶液又は該分散
液は充分に撹拌され均一な濃度になされているこ
とが望ましく、さもなければ非電子電導性物質は
陽極上に一様に付着されない。
Then, the electrode in which the non-electronically conductive substance is held in the porous layer together with the solvent or dispersion medium is dried, or is dried and then fired to be firmly attached to the surface of the anode. Regardless of the dipping method, electrophoresis method, or spraying method, it is desirable that the solution or dispersion be sufficiently stirred to have a uniform concentration, otherwise the non-electronically conductive substance will not be present on the anode. It does not adhere uniformly to the surface.

非電子電導性物質の付着量は見かけ電極表面積
1m2当り0.3〜10c.c.であることが望ましい。この
付着量は非電子電導性物質の見かけ電極表面積1
m2当りの付着重量(g)をその物質の密度で割つ
た値で表示するものである。付着量を上記のよう
に限定する理由は、付着量が0.3c.c./m2以下だと
電解液中の金属又は不溶性塩の電極表面への堆積
を有効に防ぎえないことにより、また付着量が10
c.c./m2以上であると電極の有効表面が減少しすぎ
ることによる。
The amount of the non-electronically conductive substance deposited is preferably 0.3 to 10 c.c. per m 2 of apparent electrode surface area. This amount of adhesion is the apparent electrode surface area of the non-electronically conductive material 1
It is expressed as the value of the deposited weight (g) per m 2 divided by the density of the material. The reason for limiting the amount of adhesion as described above is that if the amount of adhesion is less than 0.3cc/ m2 , it is not possible to effectively prevent metals or insoluble salts in the electrolyte from depositing on the electrode surface. Ten
If it is more than cc/m 2 , the effective surface of the electrode will be reduced too much.

非電子電導性物質を上記範囲内に制御するため
には、浸漬法による場合には溶液又は分散液の濃
度あるいは粘度を適正範囲に制御してピツクアツ
プ量を規制するか、回数を増減すること、また、
噴霧法の場合には塗着量ないし噴霧の回数を増減
すること、電気泳動法の場合には電流密度ないし
通電時間を制御して通電量を規制することなどに
より適宜制御可能である。本発明者等の検討によ
ると、浸漬法による場合には溶液又は分散液の濃
度は0.1〜5重量%、好ましくは0.5〜5重量%と
するのが操作上の見地からも望ましい。また、分
散液の場合非電子電導性物質の粒径は陰極表面の
多孔性(凹凸の分布及び凹凸の深さ、広さ)によ
つても変るが、0.05〜2μ、好ましくは0.1〜1μと
するのがよい。
In order to control the non-electronically conductive substance within the above range, when using the dipping method, the concentration or viscosity of the solution or dispersion must be controlled within an appropriate range to regulate the amount of pick-up or increase or decrease the number of pick-ups; Also,
In the case of a spraying method, it can be appropriately controlled by increasing or decreasing the amount of coating or the number of times of spraying, and in the case of an electrophoresis method, by regulating the amount of current applied by controlling the current density or the current application time. According to studies by the present inventors, when using the dipping method, it is desirable from an operational standpoint that the concentration of the solution or dispersion is 0.1 to 5% by weight, preferably 0.5 to 5% by weight. In addition, in the case of a dispersion, the particle size of the non-electronically conductive substance varies depending on the porosity of the cathode surface (distribution of unevenness and depth and width of unevenness), but is 0.05 to 2μ, preferably 0.1 to 1μ. It is better to do so.

次に、本発明に用いる陽極体の好ましい製法の
1例を説明する。このような陽極としては、特開
昭54―112785号で開示されるようなラネー合金を
共電着したものが好ましく、メツキ浴中に分散せ
しめた分散液中に陽極基本を浸漬し、これを陰極
として電気メツキ法により、該基体上に該粒子を
共電着した陽極体が得られる。
Next, one example of a preferred method for manufacturing the anode body used in the present invention will be described. As such an anode, it is preferable to use a co-electrodeposited Raney alloy as disclosed in JP-A No. 54-112785. An anode body is obtained in which the particles are co-electrodeposited on the substrate by electroplating as a cathode.

次に、この陽極体を非電子電導性物質、例えば
PTFE粒子を分散せしめた分散液中に浸漬し、陽
極体に分散液を含浸保持させた後乾燥焼成して陽
極上に非電子電導性物質であるPTFE粒子を固着
させる。
This anode body is then replaced with a non-electronically conductive material, e.g.
The anode body is immersed in a dispersion liquid in which PTFE particles are dispersed, the anode body is impregnated with the dispersion liquid, and then dried and fired to fix the PTFE particles, which is a non-electronically conductive substance, on the anode body.

上記方法をとる場合、陽極活性を有する粒子と
して、第1の金属と第2の金属との合金の場合と
この合金から第2の金属の少くとも1部を除去し
たものといずれも好ましく用いられうるが、以下
に記すような理由から前者の方がより好ましい。
When using the above method, it is preferable to use either an alloy of the first metal and the second metal or an alloy obtained by removing at least a part of the second metal as the particles having anode activity. However, the former is more preferable for the reasons described below.

前者の方法は、合金の状態で粒子が共電着さ
れ、その上に非電子電導性物質が付着されて後第
2の金属の少くとも1部が除去されることにな
る。こうすることが好ましい理由は未だ充分に解
明されたわけではないが、第2の金属が除去され
る過程で付着された非電子電導性物質の1部が同
時に除去されることにより、例えば陽極表面凹凸
部の深部にまで付着された非電子電導性物質が除
去されることによると思われる。
In the former method, particles are co-electrodeposited in the form of an alloy, a non-electronically conductive material is deposited thereon, and then at least a portion of the second metal is removed. The reason why this is preferable has not yet been fully elucidated, but in the process of removing the second metal, part of the attached non-electronically conductive material is removed at the same time, resulting in unevenness on the anode surface, for example. This seems to be due to the removal of non-electronically conductive substances that have adhered to the deep part of the body.

かくして得られる陽極体はガス発生用陽極体と
して広く使用することが可能であるが、水の電解
用陽極に特に好適である。
The anode body thus obtained can be widely used as an anode body for gas generation, but is particularly suitable as an anode for water electrolysis.

次に、かようにして得られた陽極体を使用して
水を電解する方法について説明する。
Next, a method for electrolyzing water using the anode body thus obtained will be described.

陽イオン交換膜法水電解方法としては上記した
如き陽極を用いることに本発明は特徴を有するも
ので、本発明方法に用いる陰極及び陽イオン交換
膜としては公知のものが用いられる。即ち、本発
明に使用される陰極は特に限定されることは必要
でなく、従来の食塩電解の際に用いられた陰極例
えば、鉄、ステンレス等をエツチング処理した陰
極等も使用可能である。勿論、本発明で用いる陽
極を陰極として用いることも可能である。
Cation Exchange Membrane Method The present invention is characterized by using the above-mentioned anode as a water electrolysis method, and known ones can be used as the cathode and cation exchange membrane used in the method of the present invention. That is, the cathode used in the present invention is not particularly limited, and cathodes used in conventional salt electrolysis, such as cathodes etched with iron, stainless steel, etc., can also be used. Of course, it is also possible to use the anode used in the present invention as a cathode.

陽イオン交換膜としては、公知の含フツ素系陽
イオン交換膜が使用されうるがなかでもイオン交
換基としてカルボン酸基を有するパーフルオロフ
ツ化カーボン膜(例えば特開昭51―140899号、特
開昭52―48598号に開示されたもの)が耐久性、
低電解電圧の観点から特に好ましい。
As the cation exchange membrane, known fluorine-containing cation exchange membranes can be used, but among them, perfluorinated carbon membranes having carboxylic acid groups as ion exchange groups (for example, JP-A-51-140899, (disclosed in Kaisho 52-48598) is durable,
Particularly preferred from the viewpoint of low electrolysis voltage.

かくして、本発明方法は上記したような陽極、
陰極を陽イオン交換膜を介して配置し、陽極側に
苛性アルカリ水溶液を、陰極側に水又は稀薄苛性
アルカリ水溶液を供給して電解することにより頭
記したような優れた効果をもつて水素及び酸素を
製造しうる水の電解法を供給するものである。
Thus, the method of the present invention comprises an anode as described above;
By arranging a cathode through a cation exchange membrane and supplying a caustic aqueous solution to the anode side and water or a dilute caustic alkali aqueous solution to the cathode side for electrolysis, hydrogen and It provides a water electrolysis method that can produce oxygen.

以下実施例により本発明を更に詳しく説明す
る。
The present invention will be explained in more detail with reference to Examples below.

実施例 1 全塩化ニツケル浴(NiCl2―6H2O 300g/、
H3BO3 38g/)中に未展開ラネーニツケル合
金粉末(川研フアインカミカル社製Ni50%、
Al50%、200メツシユパス)を10g/の割合で
添加し、これをよく撹拌しながらあらかじめ厚さ
20μの下地ニツケルメツキを施したエキスパンド
状鉄基板(5×5cm)に分散メツキを行つた。メ
ツキ条件は陽極に純ニツケルを使用し、電流密度
を3A/dm2、PH=2.2、温度40℃で1時間メツ
キを行つた。複合メツキ層は約200μであり、メ
ツキ層中のNi―Al合金粒子含有量は約38%であ
つた。
Example 1 Total nickel chloride bath (NiCl 2 -6H 2 O 300g/,
Unexpanded Raney nickel alloy powder (Ni50% manufactured by Kawaken Fine Chemical Co. , Ltd.,
Add 10 g of aluminum (50% Al, 200 mesh passes) and mix well to form a thick layer in advance.
Dispersion plating was performed on an expanded iron substrate (5 x 5 cm) with a 20μ nickel plating base. The plating conditions were as follows: pure nickel was used for the anode, current density was 3 A/dm 2 , pH = 2.2, and plating was performed at a temperature of 40° C. for 1 hour. The composite plating layer had a thickness of about 200μ, and the content of Ni--Al alloy particles in the plating layer was about 38%.

表面の多孔性はラネーニツケル合金粒子で形成
される凸部が2.5×105ケ/cm2で電着層の厚さは約
200μであつた。
The surface porosity is 2.5×10 5 /cm 2 of convexities formed by Raney nickel alloy particles, and the thickness of the electrodeposited layer is approximately
It was 200μ.

この試料を純水で洗浄、乾燥ののちPTFEの水
性デイスパージヨン(三井フロロケミカル社製テ
フロン30J:固形分濃度60重量%、平均粒径0.3μ)
を純水で30倍に希釈した液中に約5分浸漬後引上
げ電極下端の垂下液滴を紙で吸い取つた後乾燥
器中で乾燥した。ついで窒素ガス雰囲気中で350
℃、約1時間加熱処理した。冷却後、20%の苛性
ソーダ水溶液中に浸漬して80℃で2時間処理し
て、アルミニウムを抽出した。
After washing this sample with pure water and drying it, a PTFE aqueous dispersion (Teflon 30J manufactured by Mitsui Fluorochemical Co., Ltd.: solid content concentration 60% by weight, average particle size 0.3μ) was applied.
After being immersed in a solution diluted 30 times with pure water for about 5 minutes, the droplets hanging down at the lower end of the electrode were absorbed with paper, and then dried in a dryer. Then, 350°C in a nitrogen gas atmosphere.
℃ for about 1 hour. After cooling, it was immersed in a 20% caustic soda aqueous solution and treated at 80°C for 2 hours to extract aluminum.

上記PTFE粒子の付着量は1.7c.c./m2であつた。 The amount of the PTFE particles deposited was 1.7 cc/m 2 .

次いで、この電極体について30%苛性カリ水溶
液中で温度90℃、電流密度20A/dm2で酸素過電
圧を測定したところ180mVであつた。次に本展
開済みラネーニツケル分散メツキ試料を陽極及び
陰極として配置し、両者をパーフルオロカルボン
酸型カチオン交換膜(旭硝子製「フレミオン」
膜)で仕切つた電解層で陽極室に30%KOH水溶
液を、陰極室に水を供給しつつ、陽陰極液中の
KOH濃度を20%に維持しつつ電解を行つた。こ
の時、陽極室にNa2SiO3をSiとして約100ppm常
時溶存させた。約30日間90℃、20A/dm2で電解
を行つた後も酸素過電圧は約180mVで運転開始
当時と変らなかつた。
Next, the oxygen overvoltage of this electrode body was measured in a 30% caustic potassium aqueous solution at a temperature of 90° C. and a current density of 20 A/dm 2 and found to be 180 mV. Next, the developed Raney nickel dispersed plating sample was placed as an anode and a cathode, and both were connected to a perfluorocarboxylic acid type cation exchange membrane (Asahi Glass's "Flemion").
While supplying 30% KOH aqueous solution to the anode chamber and water to the cathode chamber using an electrolyte layer separated by a
Electrolysis was performed while maintaining the KOH concentration at 20%. At this time, about 100 ppm of Na 2 SiO 3 as Si was constantly dissolved in the anode chamber. Even after electrolysis was carried out at 90°C and 20 A/dm 2 for about 30 days, the oxygen overvoltage was about 180 mV, which was the same as when the operation started.

実施例 2 実施例1と同様にしてNi―Al合金粉末約38%
含有の未展開ラネーニツケル電極を作製した。た
だちに20%苛性ソーダ水溶液を用いて80℃で2時
間展開処理した。ついで実施例1と同様にPTFE
デイスパージヨン付着処理を行つた。PTFE粒子
の付着量は1.9c.c./m2であつた。これを用いて実
施例1と同様にSiイオン存在下で電解を行つた。
酸素過電圧は電解初期値は180mVで、30日間の
電解後は約185mVであつた。
Example 2 Ni-Al alloy powder approximately 38% in the same manner as Example 1
An undeveloped Raney nickel electrode containing Immediately, it was developed using a 20% caustic soda aqueous solution at 80°C for 2 hours. Then, as in Example 1, PTFE
Dispersion adhesion treatment was performed. The amount of PTFE particles deposited was 1.9 cc/m 2 . Using this, electrolysis was carried out in the same manner as in Example 1 in the presence of Si ions.
The oxygen overvoltage was 180 mV at the initial stage of electrolysis, and approximately 185 mV after 30 days of electrolysis.

実施例 3 実施例1と同様にしてポリスチレンデイパージ
ヨン被覆展開済ラネーニツケル電極を得た。ポリ
スチレンデイスパージヨンとしては、ダウケミカ
ル社製ポリスチレンユニフオームラテツクス(固
形分濃度10%、平均粒径0.11μ)の5倍の希釈液
を使用した。また、90℃で乾燥しそれ以上の温度
での加熱は行わなかつた。ポリスチレンの付着量
は2c.c./m2であつた。
Example 3 A developed Raney nickel electrode coated with polystyrene dipartition was obtained in the same manner as in Example 1. As the polystyrene dispersion, a 5-fold dilution of polystyrene uniform latex (solid content concentration 10%, average particle size 0.11 μm) manufactured by Dow Chemical Company was used. Further, it was dried at 90°C and was not heated at a higher temperature. The amount of polystyrene deposited was 2 c.c./m 2 .

次に実施例1と同様にして本電極を用いて水電
解を行つた。ただし電解温度を70℃とした。約30
日間の電解後酸素過電圧は約180mVで試験開始
時点と変らなかつた。
Next, water electrolysis was performed using this electrode in the same manner as in Example 1. However, the electrolysis temperature was 70°C. about 30
The oxygen overvoltage after electrolysis for 1 day was about 180 mV, which was the same as at the beginning of the test.

実施例 4 実施例1と同様にしてNi―Al合金粉末含有電
極を作製した。別に調整したテトラフルオロエチ
レン―プロピレン―グリシジルエーテル共重合体
(旭硝子社製塗膜形成用アフラス:分子量約2.5
万)の酢酸ブチル溶液(濃度2%)に含浸した
後、特に硬化剤を用いずに150℃で1時間熱処理
した。この後実施例1と同様に、Al抽出処理を
行つた。上記共重合体の付着量は1.2c.c./m2であ
つた。次にこの陽極を用いて実施例1と同様にし
て酸素過電圧測定及び電解試験を行つた。約30日
間の電解後、酸素過電圧は180mVで試験開始時
点と同等であつた。
Example 4 An electrode containing Ni--Al alloy powder was produced in the same manner as in Example 1. Separately prepared tetrafluoroethylene-propylene-glycidyl ether copolymer (Aflas for coating film formation manufactured by Asahi Glass Co., Ltd.: molecular weight approximately 2.5
After being impregnated with a butyl acetate solution (concentration: 2%) of 10,000 yen), it was heat-treated at 150° C. for 1 hour without using any hardening agent. Thereafter, Al extraction treatment was performed in the same manner as in Example 1. The amount of the above copolymer deposited was 1.2 cc/m 2 . Next, using this anode, oxygen overvoltage measurements and electrolytic tests were performed in the same manner as in Example 1. After about 30 days of electrolysis, the oxygen overvoltage was 180 mV, which was the same as at the start of the test.

実施例 5 Ni―Fe合金製エキスパンドメタル(5×5cm、
Ni/Fe=15/85)を65%NaOH中で165℃、50時
間アルカリエツチング処理を行つた。本試料を実
施例1記載のPTFEデイスパージヨンを15倍に希
釈したデイスパージヨン中に浸漬し、ついで乾燥
(100℃)、焼成(350℃、1hr;N2ガス雰囲気中)
を行つた。つぎに再び65%NaOH、165℃の条件
下で20時間アルカリエツチング処理を行つた。
PTFE付着量は0.9c.c./m2であつた。
Example 5 Expanded metal made of Ni-Fe alloy (5 x 5 cm,
Ni/Fe=15/85) was subjected to alkaline etching treatment in 65% NaOH at 165°C for 50 hours. This sample was immersed in a dispersion prepared by diluting the PTFE dispersion described in Example 1 15 times, then dried (100°C), and fired (350°C, 1 hr; in a N 2 gas atmosphere).
I went there. Next, alkaline etching treatment was performed again under the conditions of 65% NaOH and 165°C for 20 hours.
The amount of PTFE deposited was 0.9cc/ m2 .

次に実施例1と同様の電解試験を行つた。約30
日運転を行つたが酸素過電圧は180mVで変化し
ていなかつた。
Next, an electrolytic test similar to that in Example 1 was conducted. about 30
The oxygen overvoltage was 180 mV and did not change during daily operation.

実施例 6 実施例1と同様にしてラネーニツケル合金粉末
含有電極を作製した。これを水洗後テトラフルオ
ロエチレン―ヘキサフルオロプロピレン共重合体
(FEP)の水性デイスパージヨン(三井フロロケ
ミカル社製テフロン120:固形分濃度56重量%)
の30倍希釈液中に10分間浸漬した後引き上げて、
電極下端の垂下液滴を紙で吸い取つた後乾燥
し、アルゴンガス雰囲気中で300℃、1時間焼成
した。この後実施例1と同様にAlの抽出を行つ
た電極体は上記FEPを1.9c.c./m2付着したもので
あつた。この後この電極体を用いて実施例1と同
様にして電解試験を行つた。約30日間の電解試験
後の酸素過電圧は180mVで試験開始時と同じで
あつた。
Example 6 An electrode containing Raney nickel alloy powder was produced in the same manner as in Example 1. After washing this with water, an aqueous dispersion of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) (Teflon 120 manufactured by Mitsui Fluorochemical Co., Ltd.: solid content concentration 56% by weight)
After soaking for 10 minutes in a 30-fold diluted solution of
After absorbing the hanging droplets at the lower end of the electrode with paper, the electrode was dried and fired at 300° C. for 1 hour in an argon gas atmosphere. Thereafter, Al was extracted in the same manner as in Example 1. The electrode body was coated with the above FEP at 1.9 cc/m 2 . Thereafter, an electrolytic test was conducted in the same manner as in Example 1 using this electrode body. The oxygen overvoltage after about 30 days of electrolytic testing was 180 mV, the same as at the start of the test.

比較例 1 実施例1と同様にしてNi―Al合金粒子含有電
極を作製した。ただちに20%NaOH水溶液中、
80℃でAlの抽出処理を行つて活性化した。これ
を実施例1と同様にSiイオン存在下での電解試験
を行つた。約20日後酸素過電圧は100mVから
200mVに上昇した。
Comparative Example 1 An electrode containing Ni--Al alloy particles was produced in the same manner as in Example 1. Immediately in 20% NaOH aqueous solution,
Activation was performed by extracting Al at 80°C. This was subjected to an electrolytic test in the presence of Si ions in the same manner as in Example 1. After about 20 days, the oxygen overvoltage will start at 100mV.
It rose to 200mV.

比較例 2 実施例5と同様にしてNi―Fe合金(Ni/Fe=
15/85)のアルカリエツチング処理電極を得た。
ただし、エツチング処理時間を130時間とした。
本試料を実施例1と同様に電解試験を行つた。約
30日後酸素過電圧は初期値180mVから340mVに
上昇した。
Comparative Example 2 Ni-Fe alloy (Ni/Fe=
An alkali etched electrode of 15/85) was obtained.
However, the etching treatment time was set to 130 hours.
This sample was subjected to an electrolytic test in the same manner as in Example 1. about
After 30 days, the oxygen overpotential increased from the initial value of 180 mV to 340 mV.

実施例 7 エキスパンド状鉄基板(5×5cm)をあらかじ
め約20μの厚さにニツケル下地メツキをほどこし
た後、これをNiCl2・6H2O 238g/、ZnCl2
136g/およびH3BO3 30g/からなるメツ
キ液中でPH=4.0に設定して電流密度1A/dm2
温度40℃で約120分間電気メツキを行つた。本陽
極を10%NaOH水溶液中で約15分、室温で展開
処理を行つた。この電極の表面の多孔性はエツチ
ング処理により凹凸部が形成され、該凹部の分布
は3×106ケ/cm2で、多孔性層の厚さは約50μであ
つた。またPTFEの付着量は0.6c.c./m2であつた。
洗浄乾燥の後実施例1と同一の希釈PTFEデイス
パージヨンに浸漬、乾燥、焼成処理を行つた。次
に20%NaOH水溶液中80℃で1時間展開処理を
行つた。本電極を用いて実施例1と同様の電解試
験を行つた。約20日間の運転後の酸素過電圧は約
185mVで運転開始時とほぼ同一であつた。
Example 7 An expanded iron substrate (5 x 5 cm) was coated with a nickel base plating to a thickness of about 20μ, and then coated with 238 g of NiCl 2 6H 2 O and ZnCl 2
In a plating solution consisting of 136g/H 3 BO 3 / 30g/ and a current density of 1A/dm 2 at a pH of 4.0,
Electroplating was performed at a temperature of 40°C for about 120 minutes. This anode was developed in a 10% NaOH aqueous solution for about 15 minutes at room temperature. The porosity of the surface of this electrode was such that uneven portions were formed by etching, the distribution of the recesses was 3×10 6 cells/cm 2 , and the thickness of the porous layer was approximately 50 μm. The amount of PTFE deposited was 0.6cc/ m2 .
After washing and drying, it was immersed in the same diluted PTFE dispersion as in Example 1, dried, and fired. Next, development was carried out in a 20% NaOH aqueous solution at 80°C for 1 hour. An electrolytic test similar to that in Example 1 was conducted using this electrode. The oxygen overvoltage after approximately 20 days of operation is approximately
The voltage was 185mV, which was almost the same as at the start of operation.

比較例 3 実施例7と同様にしてNi―Znメツキ電極を作
製し、ただちに20%NaOH水溶液中80℃で70分
展開処理を行つた。ついで比較例1と同様に電解
試験を行つた。20日間の運転で酸素過電圧は当初
の185mVから400mVに上昇した。
Comparative Example 3 A Ni--Zn plated electrode was prepared in the same manner as in Example 7, and immediately developed in a 20% NaOH aqueous solution at 80° C. for 70 minutes. Then, an electrolytic test was conducted in the same manner as in Comparative Example 1. After 20 days of operation, the oxygen overvoltage increased from the initial 185 mV to 400 mV.

実施例 8 全塩化ニツケル浴中(NiCl2・6H2O 300g/
、H3BO3 38g/)中に未展開ラネーニツケ
ル合金粉末(川研フアインケミカル社製Ni50%、
Al50%、200メツシユバス)を10g/の割合で
添加し、これをよく撹拌しなからあらかじめ厚さ
20μの下地ニツケルメツキを施したエキスパンド
状鉄基板(5×5cm)に分散メツキを行つた。メ
ツキ条件は陽極に純ニツケルを使用し、電流密度
を3A/dm2、PH=2.0、温度40℃で1時間メツキ
を行つた。複合メツキ層は約200μであり、メツ
キ層中のNi―Al合金粒子含有量は約38%であつ
た。
Example 8 In total nickel chloride bath (NiCl 2 6H 2 O 300g/
, H 3 BO 3 38 g/), unexpanded Raney nickel alloy powder (Ni50% manufactured by Kawaken Fine Chemical Co., Ltd.,
Add 10 g of Al (50% Al, 200 mesh bath) at a rate of 10 g/stir, stir well, and then thicken in advance.
Dispersion plating was performed on an expanded iron substrate (5 x 5 cm) with a 20μ nickel plating base. The plating conditions were as follows: pure nickel was used for the anode, current density was 3 A/dm 2 , pH = 2.0, and plating was performed at a temperature of 40° C. for 1 hour. The composite plating layer had a thickness of about 200μ, and the content of Ni--Al alloy particles in the plating layer was about 38%.

表面の多孔性はラネーニツケル合金粒子で形成
される凸部が2.5×105ケ/cm2で該多孔性層の厚さ
は約200μであつた。この試料を純水で洗浄、乾
燥の後テトラフルオロエチレン(83モル%)とメ
チルパーフルオロ―5―オキサ―6―ヘプテノエ
ート〔CF2=CFO(CF23COOCH3〕(17モル%)
の共重合体の水性デイスパージヨン(平均粒径
0.2μ、固形分濃度10重量%)に約5分浸漬し、液
より引き上げたのち電極下端の垂下液滴を紙で
吸い取つた。その後乾燥器中で乾燥した。ついで
窒素ガス雰囲気中で200℃、約1時間で熱処理し
た。冷却後、20%の苛性ソーダ水溶液中に浸漬し
て80℃で2時間処理して、アルミニウムを抽出し
た。またこれにより付着重合体中の―COOCH3
基のほぼ100%が加水分解されて―COONaとな
つた。
The surface porosity was 2.5×10 5 protrusions/cm 2 formed by Raney nickel alloy particles, and the thickness of the porous layer was about 200 μm. After washing this sample with pure water and drying, tetrafluoroethylene (83 mol%) and methyl perfluoro-5-oxa-6-heptenoate [CF 2 = CFO (CF 2 ) 3 COOCH 3 ] (17 mol %)
Aqueous dispersion of copolymer (average particle size
0.2μ, solid content concentration 10% by weight) for about 5 minutes, and after lifting it from the liquid, the hanging droplets at the bottom of the electrode were absorbed with paper. It was then dried in a dryer. Then, heat treatment was performed at 200° C. for about 1 hour in a nitrogen gas atmosphere. After cooling, it was immersed in a 20% caustic soda aqueous solution and treated at 80°C for 2 hours to extract aluminum. This also results in -COOCH 3 in the attached polymer.
Almost 100% of the group was hydrolyzed to -COONa.

上記共重合体粒子の付着量は8.5c.c./m2であつ
た。次いで30%苛性カリ水溶液中で温度90℃、電
流密度20A/dm2で本電極体の酸素過電圧を測定
した結果180mVであつた。
The amount of the copolymer particles deposited was 8.5 cc/m 2 . Next, the oxygen overvoltage of this electrode body was measured in a 30% caustic potassium aqueous solution at a temperature of 90° C. and a current density of 20 A/dm 2 and found to be 180 mV.

つぎに、本展開済みラネーニツケル分散メツキ
試料を陽極及び陰極として配置し、両者をパーフ
ルオロカルボン酸型カチオン交換膜(旭硝子社製
「フレミオン」膜)で仕切つた電解槽で実施例1
と同様にして水電解を行つた。約30間電解を行つ
たが酸素過電圧は約180mVで運転開始当時と変
らなかつた。
Next, Example 1 was carried out in an electrolytic cell in which the developed Raney nickel dispersed plating sample was placed as an anode and a cathode, and both were separated by a perfluorocarboxylic acid type cation exchange membrane ("Flemion" membrane manufactured by Asahi Glass Co., Ltd.).
Water electrolysis was carried out in the same manner. Electrolysis was carried out for about 30 hours, but the oxygen overvoltage was about 180 mV, the same as when the operation started.

Claims (1)

【特許請求の範囲】[Claims] 1 液体不透過性の基体表面上に多孔性の表面層
が設けられてなるガス発生用陽極体であつて、電
極表面の全体にわたつて非電子電導性物質が微細
に一様かつ不連續に付着されてなる電極体を陽極
として水を電解することを特徴とする水の電解
法。
1. An anode body for gas generation comprising a porous surface layer provided on the surface of a liquid-impermeable substrate, in which a non-electronically conductive substance is finely uniformly and discontinuously distributed over the entire electrode surface. A water electrolysis method characterized by electrolyzing water using an attached electrode body as an anode.
JP56082541A 1981-06-01 1981-06-01 Electrolytic process of water Granted JPS57198279A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56082541A JPS57198279A (en) 1981-06-01 1981-06-01 Electrolytic process of water
EP82104652A EP0067975B1 (en) 1981-06-01 1982-05-27 Method for water electrolysis
DE8282104652T DE3277022D1 (en) 1981-06-01 1982-05-27 Method for water electrolysis
US06/382,771 US4470893A (en) 1981-06-01 1982-05-27 Method for water electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56082541A JPS57198279A (en) 1981-06-01 1981-06-01 Electrolytic process of water

Publications (2)

Publication Number Publication Date
JPS57198279A JPS57198279A (en) 1982-12-04
JPS6341991B2 true JPS6341991B2 (en) 1988-08-19

Family

ID=13777359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56082541A Granted JPS57198279A (en) 1981-06-01 1981-06-01 Electrolytic process of water

Country Status (1)

Country Link
JP (1) JPS57198279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201690A (en) * 1989-12-28 1991-09-03 Toshiba Corp Video telephony equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327012A1 (en) * 1983-07-27 1985-02-07 Basf Ag, 6700 Ludwigshafen METHOD FOR ELECTROCHEMICALLY POLYMERIZING PYRROLS, ANODE FOR CARRYING OUT THIS METHOD AND PRODUCTS OBTAINED BY THIS METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201690A (en) * 1989-12-28 1991-09-03 Toshiba Corp Video telephony equipment

Also Published As

Publication number Publication date
JPS57198279A (en) 1982-12-04

Similar Documents

Publication Publication Date Title
US4302322A (en) Low hydrogen overvoltage electrode
KR910001140B1 (en) Electrode and method for preparing thereof
KR20060051970A (en) Hydrogen evolving cathode
EP0067975B1 (en) Method for water electrolysis
JP3612365B2 (en) Active cathode and method for producing the same
US4655886A (en) Ion exchange membrane cell and electrolysis with use thereof
KR950000713B1 (en) Method of producing alkali metal hydroxide
EP0139382B1 (en) Production of cathode for use in electrolytic cell
KR890000710B1 (en) Cathode
Vaze et al. Electrochemical oxidation of isobutanol to isobutyric acid at nickel oxide electrode: improvement of the anode stability
US5227030A (en) Electrocatalytic cathodes and methods of preparation
JPS6341991B2 (en)
US4450056A (en) Raney alloy coated cathode for chlor-alkali cells
US4401529A (en) Raney nickel hydrogen evolution cathode
GB2056495A (en) Process for the preparation of low hydrogen overvoltage cathodes
CA1165213A (en) Electrode and the method for producing the same
EP0039171A2 (en) A method for the electrolysis of an aqueous solution of an alkali metal chloride and an electrolytic cell therefor
US4871703A (en) Process for preparation of an electrocatalyst
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
Thangappan et al. Lead dioxide-graphite electrode
JPS6120634B2 (en)
EP0045147A2 (en) Process for producing a membrane for electrolysis
JPS636634B2 (en)
JP3712220B2 (en) Ion exchange membrane electrolysis method
JPS61223189A (en) Production of cathode