JPS6341282A - Actual steering angle control device for vehicle - Google Patents

Actual steering angle control device for vehicle

Info

Publication number
JPS6341282A
JPS6341282A JP18282386A JP18282386A JPS6341282A JP S6341282 A JPS6341282 A JP S6341282A JP 18282386 A JP18282386 A JP 18282386A JP 18282386 A JP18282386 A JP 18282386A JP S6341282 A JPS6341282 A JP S6341282A
Authority
JP
Japan
Prior art keywords
steering angle
vehicle speed
steering
rear wheel
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18282386A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18282386A priority Critical patent/JPS6341282A/en
Publication of JPS6341282A publication Critical patent/JPS6341282A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To prevent vibration of yo rate characteristics in a high speed area, by a method wherein a rear wheel steering angle is controlled by means of given transmission characteristics based on the steering angle of a steering handle, and the constant of transmission characteristics is variably set depending upon a car speed. CONSTITUTION:An arithmetic processing unit 1 is formed with a microcomputer, and a steering angle thetas of a steering handle 8, detected by a handle steering angle sensor 2, is provided as a steering command input. A car speed V detected by a car speed sensor 3 is inputted to the arithmetic processing unit 1, computation processing is effected based on the car speed V and the steering angle thetas to output a command value deltaR of a control amount of the steering angle of each of rear wheels 11 and 12. A rear wheel steering device 5 actuates a hydraulic cylinder 7 in response to the rear wheel steering angle command value deltaR inputted from the arithmetic processing device 1, and is actuated so that the actual steering angle of each of the rear wheels is coincided with the rear wheel steering angle command value deltaR.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、前輪の操舵に伴って後輪を転舵し、操向性
の向上を図るための車両用実舵角制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vehicle actual steering angle control device for steering rear wheels as the front wheels are steered to improve steering performance.

(従来の技術) 従来、特開昭60−248481号公報に、ステアリン
グハンドルの操舵角θ、の検出器と、後輪を転舵するア
クチュエータを設けて、後輪を、前輪の操舵に伴って操
向させる装置が開示されている。
(Prior Art) Conventionally, in Japanese Patent Application Laid-open No. 60-248481, a detector for the steering angle θ of a steering wheel and an actuator for steering the rear wheels are provided, and the rear wheels are controlled in accordance with the steering of the front wheels. A steering device is disclosed.

この装置は、制御回路によって、後輪の舵角δ。This device uses a control circuit to adjust the steering angle δ of the rear wheels.

が、ステアリングハンドルの操舵角θ、に対して、なる
関係を持つように制御する。
is controlled so that it has the following relationship with respect to the steering angle θ of the steering wheel.

但し、KdとKeは、O<Kd<Keの関係を有する定
数、Tは時定数、Sは微分オペレータである。
However, Kd and Ke are constants having a relationship of O<Kd<Ke, T is a time constant, and S is a differential operator.

このような後輪実舵角の制御によって、この装置は、速
い操舵に対しては、後輪を前輪とは逆相に切り、回頭性
を向上させ、また、遅い操舵及び定常状態においては、
後輪を前輪と同相に切ることで、後輪の等価コーナリン
グパワーを高めて安定性を向上させることができる。
By controlling the actual rear wheel steering angle in this way, this device turns the rear wheels in the opposite phase to the front wheels for fast steering, improving turning performance, and for slow steering and steady state.
By turning the rear wheels in phase with the front wheels, it is possible to increase the equivalent cornering power of the rear wheels and improve stability.

(発明が解決しようとする問題点) しかしながら、上記従来装置にあっては、後輪の実舵角
の制御を、単に、ステアリングハンドルの操舵量と操舵
速度に基づいて行っているため、次のような不都合を生
ずる。
(Problems to be Solved by the Invention) However, in the conventional device described above, the actual steering angle of the rear wheels is simply controlled based on the steering amount and steering speed of the steering wheel. This will cause such inconvenience.

すなわち、車両の動特性は、車速の変化に伴って大幅に
変化するため、上記のように、ステアリングハンドルの
操作に対応して後輪を転舵するのみでは、操安性や回頭
性の適正な状態を全車速域で実現することは困難である
In other words, the dynamic characteristics of a vehicle change significantly as the vehicle speed changes, so simply turning the rear wheels in response to steering wheel operations as described above will not result in proper steering and turning performance. It is difficult to achieve this condition in all vehicle speed ranges.

このことを具体的に説明する。第7図(bl中の実線で
示される特性は、前輪に同図(a)のような操舵角変化
が、車速50km/hのときに与えられ、且つ該操舵角
変化に伴い後輪が同図fb)の実線のように転舵された
場合の、ヨーレート変化であり、同図(e)中の実線は
、車速1100k/hのときに前輪に同図(d)のよう
な操舵角変化が与えられ、且つ該操舵角変化に伴ない後
輪が同図(f)の実線のように転舵されたときのヨーレ
ート変化、同図fhl中の実線は、車速200km/h
のときに前輪に同図(g)のような操舵角変化が与えら
れ、且つ該操舵角変化に伴ない後輪が同図(1)の実線
のように転舵されたときのヨーレート変化である。
This will be explained specifically. The characteristic shown by the solid line in Fig. 7 (bl) is that the front wheels are given a steering angle change as shown in Fig. 7 (a) at a vehicle speed of 50 km/h, and the rear wheels are given the same change as the steering angle changes. The solid line in Figure fb) shows the change in yaw rate when the vehicle is steered, and the solid line in Figure fb) shows the change in the steering angle of the front wheels as shown in Figure (d) when the vehicle speed is 1100 km/h. is given, and the rear wheels are steered as shown by the solid line in FIG.
The change in yaw rate when the front wheels are given a change in steering angle as shown in (g) in the same figure, and the rear wheels are steered as shown by the solid line in (1) in the same figure as a result of the change in steering angle. be.

これらの特性から判るように、高速になるほど、ヨーレ
ートの応答特性は振動的となり、また、定常ヨーレート
ゲインは、車速依存性を有する。
As can be seen from these characteristics, the response characteristics of the yaw rate become more oscillatory as the speed increases, and the steady-state yaw rate gain is dependent on the vehicle speed.

これに対し、理想的なヨーレート特性は、同図(bl、
 (eL fhl中の破線で示すような、非振動的で、
定常ヨーレートゲインが、中低速域(30〜70km/
h)では従来束より大で、より旋回性の向上を得られ、
高速域(80km/h以上)では、ヨーレートゲインを
低下させて安定性の向上を得られるような特性であるこ
とを要する。
On the other hand, the ideal yaw rate characteristic is shown in the same figure (bl,
(Non-oscillatory, as shown by the dashed line in eL fhl,
Steady yaw rate gain is low to medium speed range (30-70km/
In h), the bundle is larger than the conventional bundle and can improve turning performance.
In a high speed range (80 km/h or higher), the characteristics need to be such that the yaw rate gain can be reduced to improve stability.

このような理想的なヨーレート特性を得るためには、同
図(c) 、 (f) 、 (1)の破線に示すように
、同様の操舵角変化に対しても、車速によって異なる後
輪舵角の変化を与えなければならない。
In order to obtain such ideal yaw rate characteristics, as shown by the broken lines in (c), (f), and (1) of the same figure, even for the same steering angle change, the rear wheel steering must be adjusted differently depending on the vehicle speed. A change in angle must be given.

ところが、上記従来例では、前述した様に、車速110
0k/hのときに、第7図(C1,(f)、 (11の
実線のような後輪舵角変化が得られるように設定しても
、車速50に+w/h (低速側)では、ヨーレートゲ
インが低下し、旋回性が悪化するし、車速200km/
h (高速側)では、振動的振舞いが十分に抑えられな
いばかりか、操舵初期のオーバーシュートが大きくなる
ことも有り得る。
However, in the conventional example, as mentioned above, the vehicle speed is 110
Even if the setting is made so that the rear wheel steering angle changes as shown by the solid lines in Figure 7 (C1, (f) and (11) at 0 km/h, the change in rear wheel steering angle is as shown by the solid lines in Figure 7 (C1, (f), (11)), at a vehicle speed of 50 +w/h (low speed side) , the yaw rate gain decreases, the turning performance deteriorates, and the vehicle speed is 200 km/h.
h (high speed side), not only is the vibrational behavior not sufficiently suppressed, but the overshoot at the initial stage of steering may become large.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、第1図に示す
手段を備える。
(Means for Solving the Problems) In order to solve the above problems, the present invention includes means shown in FIG.

後輪転舵機構100は、与えられる制御信号Sdに応答
して後輪102を転舵する。
The rear wheel steering mechanism 100 steers the rear wheels 102 in response to the applied control signal Sd.

後輪102の転舵δえは、ステアリングハンドル101
の操舵角θ、に対して、 S G (s) = Kd −−Ke 1+TS (但し、KdとKgは定数、Tは時定数、Sはラプラス
演算子である)で表わされる伝達特性を有するように制
御される。
The steering δ of the rear wheels 102 is controlled by the steering handle 101.
With respect to the steering angle θ, controlled by.

定数設定手段103は、上記伝達特性中の定数Kd。The constant setting means 103 sets the constant Kd in the transfer characteristic.

Ke、 Tのうち少なくとも1つを、車速に依存して可
変設定する。
At least one of Ke and T is variably set depending on the vehicle speed.

(作 用) 本発明1よ、上記伝達特性に従って、後輪102の舵角
を制御することで、前記従来例のように、操向性や回頭
性を向上させることができる。
(Function) According to the first aspect of the invention, by controlling the steering angle of the rear wheels 102 according to the above-mentioned transmission characteristics, the steering performance and turning performance can be improved as in the conventional example.

また、本発明は、上記定数設定手段103を設けたこと
で、後輪102の舵角制御を、車速の変化に応じて補正
することができ、全車速域で、常に、良好な操向性及び
回頭性の向上効果を得ることができる。
Furthermore, by providing the constant setting means 103, the steering angle control of the rear wheels 102 can be corrected according to changes in vehicle speed, and good steering performance is always achieved in all vehicle speed ranges. And the effect of improving turning ability can be obtained.

(実施例) 本発明の一実施例の構成を第2図に示す。(Example) The configuration of one embodiment of the present invention is shown in FIG.

演算処理装置1は、マイクロコンピュータあるいは他の
電気回路を用いて構成されており、操舵指令入力として
、ハンドル操舵角センサ2で検出されるステアリングハ
ンドル8の操舵角θ、が与えられている。
The arithmetic processing device 1 is configured using a microcomputer or other electric circuit, and receives a steering angle θ of a steering wheel 8 detected by a steering wheel steering angle sensor 2 as a steering command input.

また、演算処理装置1には、車速センサ3で検出される
車速■が入力されており、この車速■と前記操舵角θ、
に基づいて所定の演算処理が実行されて、後輪11.1
2の舵角の操作量の指令値(以下「後輪舵角指令値」と
言う)δえが出力される。
Furthermore, the vehicle speed ■ detected by the vehicle speed sensor 3 is input to the arithmetic processing device 1, and this vehicle speed ■ and the steering angle θ,
A predetermined calculation process is executed based on the rear wheel 11.1.
A command value (hereinafter referred to as "rear wheel steering angle command value") δ of the steering angle operation amount of No. 2 is output.

後輪11.12は、油圧式ステアリング装置7によって
転舵される構成になっている。この油圧式ステアリング
装置7は、後輪転舵装置5によって制御される。
The rear wheels 11, 12 are configured to be steered by a hydraulic steering device 7. This hydraulic steering device 7 is controlled by the rear wheel steering device 5.

後輪転舵装置5は、演算処理装置1から入力される後輪
舵角指令値δ真に対応して油圧式ステアリング装置7へ
与える油圧を変化させ、後輪11゜12の実舵角が後輪
舵角指令値δえに一致するように作動する(詳細は、特
願昭59−188153号に記載されている)。
The rear wheel steering device 5 changes the hydraulic pressure applied to the hydraulic steering device 7 in accordance with the rear wheel steering angle command value δ inputted from the arithmetic processing device 1, so that the actual steering angle of the rear wheels 11° and 12 changes. It operates to match the wheel steering angle command value δ (details are described in Japanese Patent Application No. 59-188153).

前輪9,10は、従来の機械リンク式ステアリング装置
6により、ステアリングハンドル8により操舵される。
The front wheels 9 , 10 are steered by a steering handle 8 by means of a conventional mechanically linked steering device 6 .

上記演算処理装置1は、 S (但し、KdとKeは車速に応じて決定される定数、T
は車速に応じて決定される時定数、Sはラプラス演算子
である)なる伝達特性を有するフィルタとして働(。
The arithmetic processing device 1 has the following functions: S (where Kd and Ke are constants determined according to the vehicle speed, and T
S is a time constant determined according to the vehicle speed, and S is a Laplace operator).

この演算処理装置1を、演算回路で構成する場合には、
例えば、第3図に示すように、関数発生器20.21.
22と、乗算器23.24.25と、積分器26、およ
び減算器27.28を用いて構成することができる。
When this arithmetic processing device 1 is constituted by an arithmetic circuit,
For example, as shown in FIG. 3, function generators 20.21.
22, multipliers 23, 24, 25, integrators 26, and subtracters 27, 28.

また、演算処理装置1を、マイクロコンピュータを用い
て構成する場合には、第4図に示すような処理を実行す
るように構成する。
Furthermore, when the arithmetic processing device 1 is configured using a microcomputer, it is configured to execute processing as shown in FIG.

すなわち、ステップ31で、ステアリングハンドル8の
操舵角θ、と車速■を読込み、ステップ32で、先ず、
予めメモリに格納しであるデータテーブルから、車速■
に対応する定数Kd、 Ke、 Tを求める。
That is, in step 31, the steering angle θ of the steering wheel 8 and the vehicle speed ■ are read, and in step 32, first,
Vehicle speed is determined from a data table stored in memory in advance.
Find the constants Kd, Ke, and T corresponding to .

これらの定数Kd、 Ke、 Tは、第7図(cl、 
(f)、 (1)に破線で示した、理想的なヨーレート
特性を得るのに必要な後輪舵角を出力するように、予め
、各車速毎に設定されて、データテーブルに格納されで
いる。これらの定数Kd、 Ke、 Tの車速との関係
は、例えば、第5図(a)〜(C)のように設定する。
These constants Kd, Ke, and T are shown in Figure 7 (cl,
(f), The rear wheel steering angle required to obtain the ideal yaw rate characteristics shown by the broken line in (1) is set in advance for each vehicle speed and stored in the data table. There is. The relationship between these constants Kd, Ke, and T with the vehicle speed is set, for example, as shown in FIGS. 5(a) to 5(C).

そして、ステップ33では、上記車速Vに対応して設定
された定数Kd、 Ke、 Tで決まる伝達特性G(S
)に従って、操舵角θ、から後輪の舵角を求め、これを
後輪舵角指令値δ7とする。
Then, in step 33, the transfer characteristic G (S
), the rear wheel steering angle is determined from the steering angle θ, and this is set as the rear wheel steering angle command value δ7.

このステップ33で実行される具体的演算は、以下の如
くである。
The specific calculation executed in step 33 is as follows.

x = f xdt            −(3)
女=−−x+Ke−θ、       ・・・(4)δ
、=Kd−θ、−;c            −(5
)こうして求められた後輪舵角指令値δ3は、ステップ
34で、後輪転舵装置5へ出力され、後輪11゜12の
実舵角が、後輪舵角指令値δえに等しくなるように制御
される。
x = f xdt - (3)
Woman = −−x+Ke−θ, ...(4) δ
,=Kd-θ,-;c-(5
) The rear wheel steering angle command value δ3 obtained in this way is outputted to the rear wheel steering device 5 in step 34, so that the actual steering angle of the rear wheels 11° 12 becomes equal to the rear wheel steering angle command value δ. controlled by.

このような制御により、本実施例は、第6図(al〜f
c)に示すように、中低速域から高速域において、第7
図(C1,(f)、 (11に破線で示したような、理
想的ヨーレート特性を得るための後輪舵角変化に極めて
近い特性で後輪舵角を制御できる。
Through such control, this embodiment can achieve the results shown in FIG. 6 (al to f
As shown in c), in the middle to low speed range to high speed range, the seventh
The rear wheel steering angle can be controlled with a characteristic that is extremely close to the change in the rear wheel steering angle to obtain the ideal yaw rate characteristic, as shown by the broken line in Figures (C1, (f) and (11)).

従って、本実施例装置を搭載した車両は、第7図(bl
、 tel、 fhl中の破線で示した理想的ヨーレー
ト特性を有することになり、高速域での振動的振舞いを
低減し、旋回性、安定性の大幅な向上を図ることができ
る。
Therefore, the vehicle equipped with the device of this embodiment is shown in FIG.
It has the ideal yaw rate characteristics shown by the broken lines in , tel, and fhl, and it is possible to reduce vibrational behavior at high speeds and significantly improve turning performance and stability.

なお、上記伝達特性G (s)は、 と書き直すことができ、マイクロコンピュータを用いて
フィルタを構成する場合には、各車速毎に、Z変換(Z
−esT、双−次変換等)を施し、各定数Kd、 Ke
、 Tが車速Vの関数として与えられるプツシタルフィ
ルタとして構成することもできる。
Note that the above transfer characteristic G (s) can be rewritten as
-esT, bi-dimensional transformation, etc.), and each constant Kd, Ke
, T can also be configured as a pushal filter in which T is given as a function of the vehicle speed V.

このような構成とすれば、一般に、前記式(3)〜(5
)で示した演算に比して、Z変換を施した方が、より連
続系のフィルタ特性に近い処理が可能なので、高速域で
の応答性を向上できる等の利点がある。
With such a configuration, generally the above formulas (3) to (5
) Compared to the calculation shown in ), Z-transformation allows processing closer to continuous filter characteristics, and has the advantage of improving responsiveness in a high-speed range.

(発明の効果) 本発明は、ステアリングハンドルの操舵角に対して、所
定の伝達特性で後輪舵角を制御するとともに、前記伝達
特性の定数を車速に依存して可変設定するようにしたこ
とで、高速域でヨーレート特性が振動することを防止し
、かつ、全車速域で、理想的なヨーレートゲインを得る
ことができ、口頭性や安定性の大幅な向上を図ることが
できる。
(Effects of the Invention) The present invention controls the rear wheel steering angle using a predetermined transfer characteristic with respect to the steering angle of the steering wheel, and also sets the constant of the transfer characteristic variably depending on the vehicle speed. This prevents the yaw rate characteristics from oscillating in the high speed range, and allows ideal yaw rate gain to be obtained in the entire vehicle speed range, greatly improving maneuverability and stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、 第2図は本発明の一実施例の構成図、 第3図は第2図中の演算処理装置を演算回路で構成した
例を示すブロック線図、 第4図は同演算処理装置をマイクロコンピュータを用い
て構成した場合に実行される処理を示すフローチャート
、 第5図は同実施例において設定される定数の車速に対す
る関係を示す特性図、 第6図は同実施例において制御される後輪舵角の異なる
車速での変化を示す特性図、 第7図は従来例における異なる車速での操舵角変化と、
この操舵角変化時のヨーレート変化および理想的ヨーレ
ート変化と、従来の操舵角変化に伴なう後輪舵角変化お
よび前記理想的ヨーレート変化を得るための後輪舵角変
化を示す特性図である。 100・・・後輪転舵機構 101・・・ステアリングハンドル 102・・・後輪      103・・・定数設定装
置θ、・・・操舵角     δ。・・・後輪舵角G 
(s)・・・伝達特性 1・・・演算処理装置 2・・・ハンドル操舵角センサ 3・・・車速センサ    5・・・後輪転舵装置7・
・・油圧式ステアリング装置 8・・・ステアリングハンドル 11、 12・・・後、輪 特許出願人 日産自動車株式会社 代理人弁理士 杉  村  暁  秀 同    弁理士   杉    村    興   
作第1図 ・;” 4、−”( −・− 第2図
FIG. 1 is a block diagram of the present invention; FIG. 2 is a block diagram of an embodiment of the present invention; FIG. 3 is a block diagram showing an example in which the arithmetic processing device in FIG. 2 is configured with an arithmetic circuit; Fig. 4 is a flowchart showing the processing executed when the arithmetic processing unit is configured using a microcomputer, Fig. 5 is a characteristic diagram showing the relationship between constants set in the same embodiment and vehicle speed, and Fig. 6 is A characteristic diagram showing changes in the rear wheel steering angle controlled in the same embodiment at different vehicle speeds, FIG. 7 shows changes in the steering angle at different vehicle speeds in the conventional example,
FIG. 7 is a characteristic diagram showing a yaw rate change and an ideal yaw rate change when the steering angle changes, a rear wheel steering angle change accompanying a conventional steering angle change, and a rear wheel steering angle change to obtain the ideal yaw rate change. . 100... Rear wheel steering mechanism 101... Steering handle 102... Rear wheel 103... Constant setting device θ,... Steering angle δ. ...Rear wheel steering angle G
(s)...Transmission characteristics 1...Arithmetic processing unit 2...Handle steering angle sensor 3...Vehicle speed sensor 5...Rear wheel steering device 7.
... Hydraulic steering device 8 ... Steering handles 11, 12 ... Rear, wheels Patent applicant: Nissan Motor Co., Ltd. Representative Patent Attorney Hidetoshi Sugimura Patent Attorney Oki Sugimura
Figure 1: "4, -" (-- Figure 2

Claims (1)

【特許請求の範囲】 1、与えられる制御信号に応答して後輪を転舵する後輪
転舵機構を備え、ステアリングハンドルの操舵角に対し
て後輪舵角が、 G(s)=Kd−(TS/1+TS)Ke (但し、KdとKeは定数、Tは時定数、Sはラプラス
演算子である)で表わされる伝達特性を有するように制
御される車両用実舵角制御装置において、前記伝達特性
中の定数Kd、Ke、Tのうち少なくとも1つを、車速
に依存して可変設定する定数設定手段を設けたことを特
徴とする車両用実舵角制御装置。 2、前記定数Kdは、車速の増大に伴って、後輪を前輪
と同相に転舵する方向へ、前記車速に対応して増加する
ことを特徴とする特許請求の範囲第1項に記載の車両用
実舵角制御装置。 3、前記定数Kdは、所定車速以下では、後輪を前輪と
は逆相に転舵する方向へ、前記車速に対応して設定され
ることを特徴とする特許請求の範囲第1項あるいは第2
項に記載の車両用実舵角制御装置。 4、前記時定数Tは、車速が高い場合は小さく、車速が
低い場合は大きく設定されることを特徴とする特許請求
の範囲第1項乃至第3項のいずれかに記載の車両用実舵
角制御装置。
[Claims] 1. A rear wheel steering mechanism is provided that steers the rear wheels in response to an applied control signal, and the rear wheel steering angle relative to the steering angle of the steering wheel is such that G(s)=Kd− (TS/1+TS)Ke (However, Kd and Ke are constants, T is a time constant, and S is a Laplace operator) in the actual steering angle control device for a vehicle that is controlled to have a transfer characteristic expressed as: An actual steering angle control device for a vehicle, comprising a constant setting means for variably setting at least one of the constants Kd, Ke, and T in the transmission characteristic depending on the vehicle speed. 2. The constant Kd increases in accordance with the vehicle speed in a direction in which the rear wheels are steered in the same phase as the front wheels as the vehicle speed increases. Actual steering angle control device for vehicles. 3. The constant Kd is set in accordance with the vehicle speed so that the rear wheels are steered in a direction opposite to the front wheels when the vehicle speed is below a predetermined vehicle speed. 2
The actual steering angle control device for a vehicle as described in 2. 4. The actual steering for a vehicle according to any one of claims 1 to 3, wherein the time constant T is set to be small when the vehicle speed is high and large when the vehicle speed is low. Angle control device.
JP18282386A 1986-08-05 1986-08-05 Actual steering angle control device for vehicle Pending JPS6341282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18282386A JPS6341282A (en) 1986-08-05 1986-08-05 Actual steering angle control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18282386A JPS6341282A (en) 1986-08-05 1986-08-05 Actual steering angle control device for vehicle

Publications (1)

Publication Number Publication Date
JPS6341282A true JPS6341282A (en) 1988-02-22

Family

ID=16125083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18282386A Pending JPS6341282A (en) 1986-08-05 1986-08-05 Actual steering angle control device for vehicle

Country Status (1)

Country Link
JP (1) JPS6341282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502639A (en) * 1990-08-10 1996-03-26 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502639A (en) * 1990-08-10 1996-03-26 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle

Similar Documents

Publication Publication Date Title
US5627754A (en) Method for controlling a front and rear wheel steering vehicle
JP5338491B2 (en) Vehicle steering apparatus and vehicle steering method
US6553293B1 (en) Rear steering control for vehicles with front and rear steering
JP7091995B2 (en) Steering system
JP2005343315A (en) Vehicular steering device
KR930005856B1 (en) Vehicle rear wheel steer angle control system
US7083025B2 (en) Method for implementing vehicle stability enhancement reference models for active steer systems
JP2768034B2 (en) Vehicle steering angle control device
JP2936675B2 (en) Front wheel steering angle control device
JP2827507B2 (en) Four-wheel steering system for vehicles
JPS6341282A (en) Actual steering angle control device for vehicle
JP2003170844A (en) Control device for electric power steering device
JPWO2020170602A1 (en) Vehicle steering device
JPS6341281A (en) Actual steering angle control device for vehicle
JP2871230B2 (en) Front and rear wheel steering control device
JP3102104B2 (en) Vehicle steering angle control device
JP3104435B2 (en) Power steering device
JPH06206569A (en) Abnormality detecting device for yaw rate sensor
JPH05229443A (en) Auxiliary steering device for vehicle
JP2770505B2 (en) Vehicle rear wheel steering angle control device
JP2861571B2 (en) Vehicle steering angle control device
JP2001239951A (en) Motor-driven power steering control device and control method therefor
JPH01285465A (en) Actual steering angle controller for vehicle
JP2940370B2 (en) Auxiliary steering angle control device for vehicles
JPH0479872B2 (en)