JPS6341278A - Actuating device for plural fluid apparatuses - Google Patents

Actuating device for plural fluid apparatuses

Info

Publication number
JPS6341278A
JPS6341278A JP61184730A JP18473086A JPS6341278A JP S6341278 A JPS6341278 A JP S6341278A JP 61184730 A JP61184730 A JP 61184730A JP 18473086 A JP18473086 A JP 18473086A JP S6341278 A JPS6341278 A JP S6341278A
Authority
JP
Japan
Prior art keywords
flow rate
pump
fluid
flow
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61184730A
Other languages
Japanese (ja)
Other versions
JPH0811537B2 (en
Inventor
Kyoichi Nakamura
中村 京市
Yoshiharu Inaguma
義治 稲熊
Toshiya Katou
豪哉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP61184730A priority Critical patent/JPH0811537B2/en
Publication of JPS6341278A publication Critical patent/JPS6341278A/en
Publication of JPH0811537B2 publication Critical patent/JPH0811537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Power Steering Mechanism (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To enable increase and decrease of the flow rate of the one apparatus without changing a flow rate to the other apparatus, by a method wherein a single pump is commonly used, flow dividers are respectively located to a delivery flow rate control means on the pump side and in a branch passage running to a fluid apparatus. CONSTITUTION:A suction port 11a of a pump 11 is connected to a reservoir 17, and a delivery port 11b is connected to a flow rate control valve 20 with an electromagnetic valve. A variable throttle 21a is built in an electromagnetic valve 21 in a control valve 20, and a spool valve 23, adapted to regulate the opening of a bypass port 22 so that pressures before and after the variable throttle 21a are kept at a specified value, and a spring 24 through the force of which to press in a direction in which the bypass port 22 is closed, are provided. The control valve 20 with an electromagnetic valve, paired with a constant delivery pump 11, has function of keeping a flow rate at a specified value irrespective of a change in the number of revolutions of a pump and serves as a flow rate control means which regulates a delivery flow rate to an arbitray value by changing the opening of the variable valve 21a.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は自動車エンジンにて駆動される油圧ポンプの吐
出流体を動力舵取装置を含む複数の流体機器に導いてこ
れを作動させる装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a device for guiding fluid discharged from a hydraulic pump driven by an automobile engine to a plurality of fluid devices including a power steering device to operate the fluid devices. It is.

〈従来の技術〉 従来のこの種の流体制御装置としては、特公昭47−1
1289号公報に記載されているように、動力舵取装置
用ポンプの作動流体の一部を動力制動装置その他に導き
これを作動させるようにしたものがある。これにおいて
1つの定吐出ポンプからの吐出流体を複数の流体機器に
導くために流量制御弁にて一定流量に制御した後、これ
をフローデバイダにて分流するようになっている。した
がってフローデバイダの供給流量も一定であり、分配さ
れる各分配口の流量も常時一定となり、分流口に接続さ
れた各流体機器は供給流量が共に一定のもとで作動する
作動装置となっており、他方の流体機器への供給流量を
積極的に変化させて作動させるものには適用できない。
<Prior art> As a conventional fluid control device of this type,
As described in Japanese Patent No. 1289, there is a system in which a part of the working fluid of a pump for a power steering device is guided to a power braking device or the like to operate the same. In this case, in order to guide the fluid discharged from one constant discharge pump to a plurality of fluid devices, the flow rate is controlled to a constant flow rate by a flow rate control valve, and then the flow is divided by a flow divider. Therefore, the supply flow rate of the flow divider is constant, the flow rate of each distribution port is always constant, and each fluid device connected to the distribution port becomes an actuating device that operates with the supply flow rate constant. Therefore, it cannot be applied to devices that operate by actively changing the supply flow rate to the other fluid device.

例えば一方の流体機器が動力舵取装置であれば、一定流
量が要求され、しかも最高設定作動圧は高圧に設定され
ている。他方の流体機器が冷却ファン駆動用油圧モータ
であれば、回転停止の状態から回転数をある回転範囲内
で可変的に制御する必要があり、しかも流量は大流量で
作動圧は比較的低い状態で使用される。このような作動
特性の異なる複数の流体機器を作動させるためには、そ
れぞれ独立したポンプを設け、作動回路は別系統にしな
ければ対応できなかった。
For example, if one of the fluid devices is a power steering device, a constant flow rate is required, and the maximum operating pressure is set at a high pressure. If the other fluid device is a hydraulic motor for driving a cooling fan, it is necessary to variably control the rotation speed within a certain rotation range from a stopped state, and the flow rate is large and the operating pressure is relatively low. used in In order to operate a plurality of fluid devices having different operating characteristics, it was necessary to provide independent pumps and separate operating circuits.

〈発明が解決しようとする問題点〉 このように油圧回路を別系統にするとポンプが複数必要
でありコストアップを招く。従来例のようにポンプ系統
を1つにすると作動特性の異なる流体機器は使用できな
いことになる。
<Problems to be Solved by the Invention> If the hydraulic circuits are separated into separate systems as described above, a plurality of pumps will be required, leading to an increase in cost. If a single pump system is used as in the conventional example, fluid devices having different operating characteristics cannot be used.

〈問題点を解決するための手段〉 そこで本発明は作動特性の異なる複数の流体機器であっ
てもポンプ系統を1つにするために、ポンプから吐出さ
れる流体を制御し絞り開度調整可能な電磁弁を備えて送
出流量を任意に調整できる流量制御手段を設け、流体機
器供給路の分岐点に絞り開度調整可能な電磁弁付フロー
デバーターを設けて各分流ポートを第1流体機器と第2
流体機器の供給口に接続し、一方の流体機器の供給流量
増減時に前記両電磁弁を関連的に制御せしめる電磁弁制
御装置を設けたものである。
<Means for Solving the Problems> Therefore, the present invention makes it possible to control the fluid discharged from the pump and adjust the throttle opening in order to unify the pump system even for multiple fluid devices with different operating characteristics. A flow rate control means is provided with a solenoid valve that can arbitrarily adjust the delivery flow rate, and a flow diverter with a solenoid valve that can adjust the throttle opening is installed at the branch point of the fluid equipment supply path to connect each branch port to the first fluid equipment. Second
A solenoid valve control device is provided which is connected to the supply port of the fluid device and controls both of the solenoid valves in relation to each other when the supply flow rate of one fluid device is increased or decreased.

く作用〉 一方の流体機器の流量を変えずに他方の流体機器の流量
を増大するには、ポンプ側の流量制御手段によって送出
流量を増大させ、フローデバイダの一方の分流量を増大
させることにより】成す・ことができる。又、送出流量
を変えずに、ン1.゛デバイダの分流量を変化させれば
、2つの分流口それぞれの分流量を変化させることがで
きる。
In order to increase the flow rate of one fluid device without changing the flow rate of the other fluid device, increase the delivery flow rate using the flow rate control means on the pump side and increase the divided flow rate of one side of the flow divider. ] Can be done. Also, without changing the delivery flow rate, n1. By changing the divided flow rate of the divider, it is possible to change the divided flow rate of each of the two divided flow ports.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図において、10は自動車用エンジン、11は定吐
出ポンプ、ポンプ回転軸12に設けられたプーリ13は
ベルト14、プーリ15を介してエンジン出力軸16と
連結されている。ポンプ11の吸入口11aはリザーバ
17と接続され、吐出口11bは電磁弁付流量制御弁2
0に接続されている。電磁弁21には可変絞り21aが
組込まれており、この可変絞り21aの前後の圧力差を
一定にするべくバイパス口22の開度を調整するスプー
ル弁23及びこのバイパス口22を閉止する方向に押圧
するスプリング24が流量制御弁20には組込まれてい
る。バイパス口22はポンプ吸入口11aに接続されて
いる。25は圧力レリーフ弁で、供給ライン26と低圧
ライン27の接続ライン28に挿入されている。
In FIG. 1, 10 is an automobile engine, 11 is a constant discharge pump, and a pulley 13 provided on a pump rotating shaft 12 is connected to an engine output shaft 16 via a belt 14 and a pulley 15. The suction port 11a of the pump 11 is connected to the reservoir 17, and the discharge port 11b is connected to the flow control valve 2 with a solenoid valve.
Connected to 0. A variable throttle 21a is built into the solenoid valve 21, and a spool valve 23 adjusts the opening degree of the bypass port 22 in order to keep the pressure difference before and after the variable throttle 21a constant, and a spool valve 23 adjusts the opening degree of the bypass port 22 in the direction of closing the bypass port 22. A pressing spring 24 is incorporated into the flow control valve 20. Bypass port 22 is connected to pump suction port 11a. A pressure relief valve 25 is inserted into a connecting line 28 between the supply line 26 and the low pressure line 27.

かかる定吐出ポンプ11と対をなす電磁弁付流量制御弁
20は、ポンプ回転数の変化に拘らず流量を一定に保っ
た作用と可変絞り21aの開度を変えることにより送出
流量を任意に調整せしめる流量制御手段を構成している
The flow control valve 20 with an electromagnetic valve, which is paired with the constant discharge pump 11, maintains the flow rate constant regardless of changes in the pump rotation speed and adjusts the delivery flow rate arbitrarily by changing the opening degree of the variable throttle 21a. This constitutes a flow control means for controlling the flow rate.

この流量制御手段の変形例として、ポンプを可変吐出ポ
ンプにした場合について説明する。第2図において、1
11は偏心リングを移動させて吐出量を変化させる可変
吐出ポンプ、ポンプ回転軸112にはプーリ113が設
けられ、前記と同様ベルトを介してエンジン10にて回
転駆動される。
As a modification of this flow rate control means, a case where the pump is a variable discharge pump will be described. In Figure 2, 1
Reference numeral 11 denotes a variable discharge pump that changes the discharge amount by moving an eccentric ring, and a pulley 113 is provided on a pump rotating shaft 112, which is rotationally driven by the engine 10 via a belt as described above.

ポンプ吐出口111bは可変絞り121aの前後の圧力
差を一定にするべく偏心リングの偏心量を調整するシリ
ンダ120が設けられている。シリンダ120の前後室
は可変絞り121a前後の圧力が導入され、圧力差が大
きくなればピストン123を前進させて偏心リングの偏
心量を小さく吐出量を低減させ、圧力差が小さくなれば
ピストン123は後退して偏心リングの偏心量を大きく
し吐出量を増大させるように作動する。これによって可
変絞り121a前後の圧力差は一定に保たれることにな
り、ポンプ回転数の変化に拘らず送出流量を一定に保つ
。又電磁弁121に信号を与え可変絞り121aの開度
を変化させればこれに応じて流量を増減することができ
る。かかる電磁弁121及びシリンダ120は可変容量
ポンプに対する流量制御手段を構成するものである。尚
125は圧力レリーフ弁である。30は電磁弁付フロー
デバイダで、弁ハウジング30a内には制御スプール3
0b、スプリング30Cが組込まれ、一方の分流口31
は動力舵取装置35に接続され、他方の分流口32は冷
却ファン駆動用油圧モータ36に接続されている。供給
ライン26と制御スプール後室30d間には可変絞り3
4を組込んだ電磁弁33が設けられており、この可変絞
り34の開度を変化させることにより、分流口32への
分流流量が制御される。即ち制御スプール30bの両端
面には可変絞り34前後の圧力が導入されており、可変
絞り34前後の圧力差を一定に保つべくオリフィス31
a、32aを制御し、可変絞り34の開度に対応した一
定流量が分配口32に流れ、他は分配口31に流れる。
The pump discharge port 111b is provided with a cylinder 120 that adjusts the amount of eccentricity of the eccentric ring in order to keep the pressure difference before and after the variable throttle 121a constant. The pressure before and after the variable throttle 121a is introduced into the front and rear chambers of the cylinder 120, and when the pressure difference becomes large, the piston 123 is moved forward to reduce the eccentricity of the eccentric ring and the discharge amount. It operates to move backward and increase the amount of eccentricity of the eccentric ring, thereby increasing the discharge amount. As a result, the pressure difference before and after the variable throttle 121a is kept constant, and the delivery flow rate is kept constant regardless of changes in the pump rotation speed. Further, by applying a signal to the electromagnetic valve 121 and changing the opening degree of the variable throttle 121a, the flow rate can be increased or decreased accordingly. The solenoid valve 121 and cylinder 120 constitute a flow rate control means for the variable displacement pump. Note that 125 is a pressure relief valve. 30 is a flow divider with a solenoid valve, and a control spool 3 is installed in the valve housing 30a.
0b, a spring 30C is incorporated, and one branch port 31
is connected to a power steering device 35, and the other branch port 32 is connected to a hydraulic motor 36 for driving a cooling fan. A variable throttle 3 is provided between the supply line 26 and the control spool rear chamber 30d.
A solenoid valve 33 incorporating a valve 4 is provided, and by changing the opening degree of this variable throttle 34, the divided flow rate to the diverting port 32 is controlled. That is, the pressure before and after the variable throttle 34 is introduced into both end faces of the control spool 30b, and the orifice 31 is introduced to keep the pressure difference before and after the variable throttle 34 constant.
a, 32a, a constant flow rate corresponding to the opening degree of the variable throttle 34 flows to the distribution port 32, and the rest flows to the distribution port 31.

動力舵取装置35及び油圧モータ36の排出口37.3
8は戻しライン39を介してリザーバ17に接続されて
いる。40は油圧モータ36によって駆動される冷却フ
ァン、41はラジェータである。42は電磁弁21.3
3を制御する制御装置であり、水温セン+43、車速セ
ンサ44、操舵角センサ45の信号が入力されている。
Outlet 37.3 of power steering device 35 and hydraulic motor 36
8 is connected to the reservoir 17 via a return line 39. 40 is a cooling fan driven by the hydraulic motor 36, and 41 is a radiator. 42 is a solenoid valve 21.3
3, to which signals from a water temperature sensor +43, a vehicle speed sensor 44, and a steering angle sensor 45 are input.

この制御袋W42は油圧モータ36の供給流量を増大さ
せる場合には、電磁弁33の可変絞り34の開度を大き
くするとともに電磁弁21の可変絞り21aの開度も大
きくする。例えば動力舵取装置35の供給流量を61/
minとし、油圧モータ36の供給流量を01/min
とするためには、電磁弁21の可変絞り21aを61/
min (Q+)分流し得る開度とし、電磁弁33の可
変絞り34は閉止した状態にする。
When increasing the supply flow rate of the hydraulic motor 36, the control bag W42 increases the opening degree of the variable throttle 34 of the solenoid valve 33 and also increases the opening degree of the variable throttle 21a of the solenoid valve 21. For example, the supply flow rate of the power steering device 35 is set to 61/
min, and the supply flow rate of the hydraulic motor 36 is 01/min.
In order to do this, the variable throttle 21a of the solenoid valve 21 must be
The opening degree is set such that the flow can be divided by min (Q+), and the variable throttle 34 of the solenoid valve 33 is kept in a closed state.

この状態より油圧モータ36の供給流量をOIl/mi
nから101!/minに増大して冷却ファンを駆動す
る場合には、第3図に示すように電磁弁21を16 j
2/min  (Q+)の開度し、電磁弁33を101
/min  (Q3)の開度にすることにより、154
7m1nの流量はフローデバイダ3oにて61/m1n
(Q3)と10 A/min  (Q3)に分流され、
動力舵取装置35の作動と冷却ファンの駆動を達成する
。このように冷却ファンの停止、回転制御をしても動力
舵取装置35には一定量の流体供給が持続され1のポン
プシステムであっても作動に支障をきたすことはない。
From this state, the supply flow rate of the hydraulic motor 36 is reduced to OIl/mi.
101 from n! /min to drive the cooling fan, the solenoid valve 21 is set to 16 j as shown in FIG.
2/min (Q+) opening and solenoid valve 33 to 101
/min (Q3) by setting the opening to 154
The flow rate of 7 m1n is 61/m1n at flow divider 3o.
(Q3) and 10 A/min (Q3),
The operation of the power steering device 35 and the driving of the cooling fan are achieved. Even if the cooling fan is stopped and its rotation controlled in this manner, a constant amount of fluid is continuously supplied to the power steering device 35, and even if there is only one pump system, the operation will not be hindered.

ところで動力舵取装置35の供給流量は、非操舵時には
定常時より少い流量の方が動力消費の面から効率的であ
るため、非操舵時と操舵時においては、電磁弁33のみ
を制御して、非操舵時には可変絞り開度を大きくして第
4図に示すようにQ3を増大させる。又操舵時には絞り
開度を小さくすることにより第5図に示すようにQ3を
減少させることができる。
By the way, since it is more efficient in terms of power consumption that the flow rate supplied to the power steering device 35 is smaller during non-steering than during steady state, only the solenoid valve 33 is controlled during non-steering and steering. When the vehicle is not being steered, the variable throttle opening is increased to increase Q3 as shown in FIG. Furthermore, during steering, Q3 can be reduced as shown in FIG. 5 by reducing the aperture opening.

又、高速走行時には動力舵取装置35のパワーゲインを
低下させ、操舵抵抗を高めた方が操舵安定感が得られる
ので、第6図に示すように車速又はエンジン回転数の増
大に伴い電磁弁21の可変絞り開度を小さくし、Q!を
低減させる制御も可能である。
Furthermore, when driving at high speeds, a sense of steering stability can be obtained by lowering the power gain of the power steering device 35 and increasing the steering resistance, so as shown in FIG. 21 variable aperture opening is reduced, Q! It is also possible to control to reduce the

〈発明の効果〉 以上述べたように本発明によれば、ポンプを1つにする
とともにポンプ側の送出流量制御手段及び流体機器への
分岐路にフローデバイダを設け、各別に流量制御ができ
るようにしたため、一方の流体機器への流量を変えずに
他方の流体機器への流量を増減することができるばかり
でなく、又流体機器双方の分流割合を変えることもでき
、従来ではポンプを2つ設けなければならないシステム
においても1つのポンプで済ませることができ、経済的
である効果を有する。
<Effects of the Invention> As described above, according to the present invention, the number of pumps is reduced to one, and a flow divider is provided in the pump-side delivery flow rate control means and the branch path to the fluid equipment, so that the flow rate can be controlled separately for each. Because of this, it is not only possible to increase or decrease the flow rate to one fluid device without changing the flow rate to the other fluid device, but it is also possible to change the split flow ratio of both fluid devices, which conventionally required two pumps. Even in the system that must be installed, only one pump is required, which has an economical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は装置全体
の系統図、第2図は可変容量ポンプを使用した場合の部
分系統図、第3図は冷却ファン駆動時の流量特性を示す
図、第4図、第5図は水温変化と分流流量の関係を示す
もので、第4図は非操舵時の流量特性を、第5図は操舵
時の流量特性を示している。第6図は車速の変化と送出
流iQ1の関係を示す流量特性線図である。 11・・・ポンプ、20・・・流量制御弁、21・・・
電磁弁、21a・・・可変絞り、30・・・フローデバ
イダ、31.32・・・分流口、33・・・電磁弁、3
4・・・可変絞り、35・・・動力舵取装置、36・・
・浦モータ、42・・・制御装置、43・・・水温セン
サ。
The drawings show an embodiment of the present invention. Fig. 1 is a system diagram of the entire device, Fig. 2 is a partial system diagram when a variable displacement pump is used, and Fig. 3 is a flow rate characteristic when the cooling fan is driven. The figures shown in FIG. 4 and FIG. 5 show the relationship between the water temperature change and the branched flow rate, with FIG. 4 showing the flow rate characteristics when the vehicle is not being steered, and FIG. 5 showing the flow rate characteristics when the vehicle is being steered. FIG. 6 is a flow characteristic diagram showing the relationship between changes in vehicle speed and delivery flow iQ1. 11... Pump, 20... Flow rate control valve, 21...
Solenoid valve, 21a... Variable throttle, 30... Flow divider, 31.32... Diversion port, 33... Solenoid valve, 3
4...Variable aperture, 35...Power steering device, 36...
- Ura motor, 42...control device, 43...water temperature sensor.

Claims (3)

【特許請求の範囲】[Claims] (1)自動車用エンジンにて駆動される1つのポンプか
ら吐出される流体を作動圧力域及び消費流量域を異にす
る第1、第2の流体機器に供給して作動せしめる流体機
器作動装置において、前記ポンプは定吐出ポンプ又は可
変容量ポンプとなし、このポンプから吐出される流体を
制御して回転数変化に拘らず一定流量に保ちかつ絞り開
度調整可能な電磁弁を備え送出流量を任意に調整可能な
流量制御手段を設け、前記流体機器供給路の分岐点に絞
り開度調整可能な電磁弁付フローデバイダを設けて各分
流ポートを第1流体機器と第2流体機器の供給口に接続
し、前記流量制御手段及び電磁弁付フローデバイダの各
電磁弁を一方の流体機器の供給流量を増減させるために
関連的に制御せしめる電磁弁制御装置を設けたことを特
徴とする複数の流体機器作動装置。
(1) In a fluid device operating device that supplies fluid discharged from one pump driven by an automobile engine to first and second fluid devices having different operating pressure ranges and consumption flow ranges to operate them. , the pump is a constant discharge pump or a variable displacement pump, and the pump controls the fluid discharged from the pump to maintain a constant flow rate regardless of changes in rotational speed, and is equipped with an electromagnetic valve that can adjust the throttle opening to adjust the delivery flow rate as desired. A flow rate control means that can be adjusted is provided at the branch point of the fluid device supply path, and a flow divider with an electromagnetic valve that can adjust the throttle opening is provided at the branch point of the fluid device supply path, and each branch port is connected to the supply port of the first fluid device and the second fluid device. A plurality of fluids, characterized in that a solenoid valve control device is provided which connects the solenoid valves of the flow rate control means and the flow divider with solenoid valves in relation to each other in order to increase or decrease the supply flow rate of one fluid device. Equipment actuator.
(2)前記第1の流体機器は、冷却ファン駆動用の油圧
モータであり、前記第2の流体機器は、動力舵取装置で
ある特許請求の範囲第1項記載の装置。
(2) The device according to claim 1, wherein the first fluid device is a hydraulic motor for driving a cooling fan, and the second fluid device is a power steering device.
(3)前記電磁弁制御装置は、ラジエータの水温を検出
する温度センサーを有し、水温低温時には流量制御弁の
制御流量を動力舵取装置の供給流量に等しくし、フロー
デバーターによる冷却ファン駆動用の油圧モータへの供
給流量をほぼ零にし、水温が上昇すると流量制御弁、フ
ローデバーター共に流量を増大させる電磁弁の電流制御
手段を有する特許請求の範囲第2項記載の装置。
(3) The solenoid valve control device has a temperature sensor that detects the water temperature of the radiator, and when the water temperature is low, the control flow rate of the flow control valve is made equal to the supply flow rate of the power steering device, and the flow diverter is used to drive the cooling fan. 3. The apparatus according to claim 2, further comprising current control means for an electromagnetic valve that reduces the flow rate supplied to the hydraulic motor to almost zero and increases the flow rate of both the flow rate control valve and the flow diverter when the water temperature rises.
JP61184730A 1986-08-06 1986-08-06 Multiple fluid equipment actuators Expired - Lifetime JPH0811537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184730A JPH0811537B2 (en) 1986-08-06 1986-08-06 Multiple fluid equipment actuators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184730A JPH0811537B2 (en) 1986-08-06 1986-08-06 Multiple fluid equipment actuators

Publications (2)

Publication Number Publication Date
JPS6341278A true JPS6341278A (en) 1988-02-22
JPH0811537B2 JPH0811537B2 (en) 1996-02-07

Family

ID=16158360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184730A Expired - Lifetime JPH0811537B2 (en) 1986-08-06 1986-08-06 Multiple fluid equipment actuators

Country Status (1)

Country Link
JP (1) JPH0811537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098033A1 (en) * 2013-12-27 2015-07-02 日立建機株式会社 Hydraulic driving system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098033A1 (en) * 2013-12-27 2015-07-02 日立建機株式会社 Hydraulic driving system
JP2015127164A (en) * 2013-12-27 2015-07-09 株式会社Kcm Hydraulic drive system
CN105848989A (en) * 2013-12-27 2016-08-10 日立建机株式会社 Hydraulic driving system
US10202986B2 (en) 2013-12-27 2019-02-12 Kcm Corporation Hydraulic drive system

Also Published As

Publication number Publication date
JPH0811537B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US5108348A (en) Ratio control for a continuously variable transmission
US4293284A (en) Power limiting control apparatus for pressure-flow compensated variable displacement pump assemblies
EP0117696B1 (en) Hydraulic apparatus for a continuously variable transmission
US4759419A (en) Vehicle speed responsive power steering assembly
US5058626A (en) Hydraulic pressure control valve
JPS60259569A (en) Variable-capacity controller
US6296456B1 (en) Positive displacement pump systems with a variable control orifice
US3641879A (en) Central hydraulic system for a vehicle
US5222870A (en) Fluid system having dual output controls
US4566477A (en) Fluid flow control apparatus
US4923170A (en) Hydraulic pressure control valve
EP0338247A2 (en) Variable displacement hydraulic servomotor system
US4551119A (en) Hydraulic apparatus for a continuously variable transmission
US4167853A (en) Automatic control for a hydrostatic vehicle transmission
JPS6341278A (en) Actuating device for plural fluid apparatuses
US5184691A (en) Auxiliary power steering system
US5822988A (en) Flow control device of a power steering apparatus
US4566274A (en) Control device for a hydrostatic drive
EP0090129B1 (en) Fluid flow control apparatus
US5685146A (en) Power steering apparatus with a flow control unit
JPH0611036A (en) Static fluid pressure gearing
US3989414A (en) Pump for servo steering
JPH08270789A (en) Automobile type driving controller for hydraulic variable displacement type pump
JPS6361508B2 (en)
JPS6345342B2 (en)