JPS6341190B2 - - Google Patents

Info

Publication number
JPS6341190B2
JPS6341190B2 JP3666382A JP3666382A JPS6341190B2 JP S6341190 B2 JPS6341190 B2 JP S6341190B2 JP 3666382 A JP3666382 A JP 3666382A JP 3666382 A JP3666382 A JP 3666382A JP S6341190 B2 JPS6341190 B2 JP S6341190B2
Authority
JP
Japan
Prior art keywords
separator
cylindrical
battery
heat
inner bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3666382A
Other languages
Japanese (ja)
Other versions
JPS58154177A (en
Inventor
Kenichi Shinoda
Akihide Izumi
Norio Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3666382A priority Critical patent/JPS58154177A/en
Publication of JPS58154177A publication Critical patent/JPS58154177A/en
Publication of JPS6341190B2 publication Critical patent/JPS6341190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は筒状電池の製造方法に関し、とりわ
け、両端が開口した筒状のセパレータの下端開口
を熱溶融性物質で閉塞するようにした筒状電池の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cylindrical battery, and more particularly to a method for manufacturing a cylindrical battery in which the lower end opening of a cylindrical separator with open ends is closed with a heat-melting substance.

第1図は、従来の筒状電池の一例を示したもの
で、筒状の陽極缶1内に陰極合剤2、セパレータ
3および陽極合剤4が互いに同軸状に配置された
状態で装填されている。ところで、この種の電池
ではそのセパレータ3を両端が開口した筒状に形
成してある。これは、一枚のセパレータ素片を用
いて筒状に折込み形成する場合に、底部を有する
ものよりも両端が開口したものの方が、工程上き
わめて簡単であり、また形状および寸法的にも正
確かつ均一なものが得やすいからである。しか
し、セパレータ3の両端が開口しているので、そ
の下端すなわち陽極缶1の中央内底面1aに接す
る側の開口は何らかの手段によつて閉塞する必要
がある。このために従来にあつては第1図に示す
ように、閉塞部材5をセパレータ3の下端開口3
aに嵌込むということが一般に行なわれていた、
その閉塞部材5の嵌込みは第2図に示すように、
陽極缶1内にセパレータ3を挿入した後、予めそ
のセパレータ3の内径に適合すべく形成された閉
塞部材5を挿入することにより行なつていた。と
ころが、このような閉塞部材5でもつてセパレー
タ3の下端開口3aを電池の特性を損なわないよ
うに閉塞するためには、その閉塞部材5は第1図
に示したように、その厚みを十分に大きくする必
要があつた。さもないと、セパレータ3と閉塞部
材5とのすき間に内部短絡路あるいはリーク路を
形成するような析出物が生じたりする障害が発生
する。ところが、その閉塞部材5の厚みを大きく
とると、これによつて陰極合剤2の充填容積が減
少して放電容量の低下を来してしまうという別の
問題が生ずる。さらにまた、上記閉塞部材5はセ
パレータ3に対して単に嵌込みにより機械的に接
触してあるだけであるから、その安定性は必ずし
も良好なものとは言えず、機械的衝撃を受けると
特性が劣化しやすくなつてしまう。そこで、本出
願人によつて提案されていることではあるが、第
3図に示すように陽極合剤4の中央内腔部4aに
筒状のセパレータ3を挿入した後、このセパレー
タ3の下端開口3a縁部によつて環状に囲繞され
る陽極缶1の中央内底面1aに電気絶縁性の熱溶
融性物質6を注入し、そして、この熱溶融性物質
6で形成される層状部7によつて前記下端開口3
aを閉塞するようにした筒状電池の製造方法があ
る。従つて、この製造方法によれば複雑な工程を
必要とせずに、簡単に、しかも前記下端開口3a
を確実に閉塞して機械的衝撃に対して十分に強い
ものとなる。
FIG. 1 shows an example of a conventional cylindrical battery, in which a cathode mixture 2, a separator 3, and an anode mixture 4 are placed coaxially with each other and loaded into a cylindrical anode can 1. ing. Incidentally, in this type of battery, the separator 3 is formed into a cylindrical shape with both ends open. This is because when folding and forming a cylindrical piece using a single separator piece, it is much easier to process a separator with open ends than one with a bottom, and it is also more accurate in shape and dimension. This is because it is easy to obtain a uniform product. However, since both ends of the separator 3 are open, the lower end, that is, the opening on the side that contacts the central inner bottom surface 1a of the anode can 1, needs to be closed by some means. For this purpose, in the past, as shown in FIG.
It was common practice to fit into a.
The fitting of the closing member 5 is as shown in FIG.
This was done by inserting the separator 3 into the anode can 1 and then inserting the closing member 5, which was previously formed to match the inner diameter of the separator 3. However, in order to use such a closing member 5 to close the lower end opening 3a of the separator 3 without impairing the characteristics of the battery, the closing member 5 must have a sufficient thickness as shown in FIG. I needed to make it bigger. Otherwise, problems may occur such as the formation of precipitates that form internal short circuits or leak paths in the gap between the separator 3 and the closing member 5. However, if the thickness of the closing member 5 is increased, another problem arises in that the filling volume of the cathode mixture 2 decreases, resulting in a decrease in discharge capacity. Furthermore, since the closing member 5 is in mechanical contact with the separator 3 by simply being fitted into it, its stability cannot necessarily be said to be good, and its characteristics may deteriorate when subjected to mechanical impact. It becomes more susceptible to deterioration. Therefore, as proposed by the applicant, after inserting a cylindrical separator 3 into the central lumen 4a of the anode mixture 4, as shown in FIG. An electrically insulating heat-fusible substance 6 is injected into the central inner bottom surface 1a of the anode can 1, which is annularly surrounded by the edge of the opening 3a, and a layered portion 7 formed of the heat-fusible substance 6 is injected. Therefore, the lower end opening 3
There is a method for manufacturing a cylindrical battery in which a is closed. Therefore, according to this manufacturing method, the lower end opening 3a can be easily formed without requiring complicated steps.
This ensures that it is completely closed and is sufficiently strong against mechanical shock.

しかしながら、この製造方法にあつては、前記
陽極缶1の中央内底面1aに熱溶融性物質6を単
に注入するのみでは、層状部7の厚さが前記閉塞
部材5よりは薄くなるのであるが、それでも前記
物質6の拡がりが悪く比較的多量の熱溶融性物質
6が必要となつてしまう。従つて、前記層状部7
の厚さが比較的厚くなつて前述したような陰極合
剤2の充填容積が減少してしまうという不具合点
があつた。
However, in this manufacturing method, simply injecting the heat-fusible substance 6 into the central inner bottom surface 1a of the anode can 1 results in the layered portion 7 being thinner than the closing member 5. Even so, the substance 6 does not spread well and a relatively large amount of the heat-fusible substance 6 is required. Therefore, the layered portion 7
There was a problem in that the thickness of the cathode mixture 2 became relatively thick, resulting in a decrease in the filling volume of the cathode mixture 2 as described above.

本発明はかかる従来の不具合点に鑑みて、注入
された熱溶融性物質が流動可能状態にある間にこ
の熱溶融性物質を電池缶(陽極缶)の中央内底面
に向けて加圧展開して筒状セパレータの下端開口
を閉塞する加圧展開工程を行なうことによつて、
該下端開口を確実に閉塞すると共に、熱溶融性物
質の注入量を減少し、もつて、筒状セパレータ内
への合剤充填量を増加して放電容量の増大を図る
ことができる筒状電池の製造方法を提供するもの
である。
In view of such conventional problems, the present invention develops the injected thermofusible material under pressure toward the inner bottom surface of the center of the battery can (anode can) while the injected thermofusible material is in a flowable state. By performing a pressurized expansion process to close the lower end opening of the cylindrical separator,
A cylindrical battery that can reliably close the lower end opening, reduce the amount of heat-melting material injected, and increase the amount of mixture filled into the cylindrical separator to increase discharge capacity. The present invention provides a method for manufacturing.

以下、本発明の一実施例を図に基づいて詳細に
説明する。尚、この実施例を説明するにあたつて
従来例に示した構成と同一相当部分には同一符号
を付して述べる。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings. Incidentally, in explaining this embodiment, the same reference numerals are attached to the same or corresponding parts as those in the conventional example.

即ち、第4図A,B,C,Dは本発明の筒状電
池の製造方法を示す一実施例で、同図に示す筒状
電池は電池缶としての陽極缶1(この実施例では
アルカリマンガン電池について述べるため電池缶
が陽極缶となつている。)を有し、この陽極缶1
の内側に中央内腔部4aを形成した陽極合剤4が
密接して装填され、さらに前記中央内腔部4a内
に両端が開口した筒状のセパレータ3が挿入され
ている。前記陽極合剤4は、たとえば二酸化マン
ガンを主剤とし、予め前記中央内腔部4aを形成
することによつて環状成型されている。また、前
記セパレータ3にはアルカリ電解液が含浸される
ようになつている。そしてまた、このセパレータ
3内には後述する熱溶融性物質6によつて下端開
口3aを閉塞した後、図示は省略したがたとえば
亜鉛を主剤とする陰極合剤が充填されるようにな
つている。ここで、本発明は前記陽極合剤4の中
央内腔部4a内に筒状のセパレータ3を挿入した
段階で、このセパレータ3の内側から陽極缶1の
中央内底面1aに電気絶縁性の熱溶融性物質6を
流動状態で注入する(A図)。このとき、熱溶融
性物質6は、セパレータ3内に差し込まれる注入
管10の先端から注入することによつて容易に行
なわれる。ところで、前記熱溶融性物質6として
は、合成樹脂特に低分子ポリエチレンと低分子ポ
リプロピレンの混合物が望ましく、実際の製造に
あたつてはこの混合物を約200℃に加熱し、0.8g
〜1.0g程度を注入する。そして、前記注入管1
0をセパレータ3内から抜き出すと前記注入され
た熱溶融性物質6は陽極缶1の中央内底面1a上
に盛り上がつた状態で残ることになる(B図)。
この状態では前記熱溶融性物質6はセパレータ3
の下端開口3aの全周縁には接触していない。次
に、該熱溶融性物質6が流動可能状態にある間に
この熱溶融性物質6を陽極缶1の中央内底面1a
に向けて加圧展開して前記セパレータ3の下端開
口3aを閉塞する加圧展開工程を行う(C図)。
この加圧展開工程は、本実施例にあつては前記中
央内底面1aに向けて噴射される気体の圧力によ
つて行なうようにしてある。即ち、セパレータ3
の上端開口3bからノズル11を挿入し、このノ
ズル11から空気を勢い良く下方に噴射して、こ
のときの噴射空気の圧力で中央内底面1a上の熱
溶融性物質6を引き延ばすことにより、該熱溶融
性物質6をセパレータ3の下端開口3a部内周に
接触させると共に、薄い層状部7aを形成する。
尚、このとき、前記ノズル11とセパレータ3内
側との間には少くとも噴射された空気が排出され
るだけの隙間を設けておく必要がある。そして、
前記層状部7aとなつた熱溶融性物質6を冷却し
て凝固させることにより、セパレータ3の下端開
口3aを確実に閉塞する(D図)。
That is, FIGS. 4A, B, C, and D show an example of the method for manufacturing a cylindrical battery according to the present invention. To describe a manganese battery, the battery can is an anode can.), and this anode can 1
The anode mixture 4 with a central lumen 4a formed therein is closely loaded, and a cylindrical separator 3 with both ends open is inserted into the central lumen 4a. The anode mixture 4 has manganese dioxide as its main ingredient, for example, and is molded into an annular shape by previously forming the central lumen 4a. Further, the separator 3 is impregnated with an alkaline electrolyte. Further, inside this separator 3, after closing the lower end opening 3a with a heat-fusible substance 6, which will be described later, a cathode mixture containing, for example, zinc as a main ingredient is filled, although not shown. . Here, in the present invention, when the cylindrical separator 3 is inserted into the central lumen 4a of the anode mixture 4, electrically insulating heat is applied from the inside of the separator 3 to the central inner bottom surface 1a of the anode can 1. The meltable substance 6 is injected in a fluid state (Figure A). At this time, the heat-fusible substance 6 is easily injected from the tip of the injection tube 10 inserted into the separator 3. By the way, the heat-melting substance 6 is preferably a synthetic resin, particularly a mixture of low-molecular-weight polyethylene and low-molecular-weight polypropylene, and in actual production, this mixture is heated to about 200°C and 0.8 g
Inject about 1.0g. Then, the injection pipe 1
When 0 is extracted from the separator 3, the injected heat-fusible substance 6 remains in a raised state on the central inner bottom surface 1a of the anode can 1 (Figure B).
In this state, the heat-fusible substance 6 is transferred to the separator 3.
It does not contact the entire periphery of the lower end opening 3a. Next, while the heat-fusible substance 6 is in a flowable state, the heat-fusible substance 6 is poured onto the central inner bottom surface 1a of the anode can 1.
A pressurizing and expanding step is performed in which the separator 3 is pressurized and expanded toward the end to close the lower end opening 3a of the separator 3 (Figure C).
In this embodiment, this pressurization and expansion step is performed by the pressure of gas injected toward the central inner bottom surface 1a. That is, separator 3
The nozzle 11 is inserted through the upper end opening 3b, air is jetted downward from the nozzle 11, and the heat-fusible substance 6 on the central inner bottom surface 1a is stretched by the pressure of the jetted air at this time. The heat-fusible substance 6 is brought into contact with the inner periphery of the lower end opening 3a of the separator 3, and a thin layered portion 7a is formed.
In addition, at this time, it is necessary to provide a gap between the nozzle 11 and the inside of the separator 3 at least enough to allow the injected air to be discharged. and,
By cooling and solidifying the heat-fusible substance 6 that has become the layered portion 7a, the lower end opening 3a of the separator 3 is reliably closed (Fig. D).

以上述べた製造方法によれば、加圧展開工程を
行うことによつて薄い層状部7aを形成すること
ができ、もつて、陰極合剤2の充填容積を増加
し、放電容量の増大を図ることができる。しか
も、セパレータ3の下端開口3aは前記層状部7
aによつて確実に閉塞される。
According to the manufacturing method described above, the thin layered portion 7a can be formed by performing the pressurized development step, thereby increasing the filling volume of the cathode mixture 2 and increasing the discharge capacity. be able to. Moreover, the lower end opening 3a of the separator 3 is located at the layered portion 7.
It is reliably closed by a.

第5図は他の実施例を示し、加圧展開工程をセ
パレータ3の上方から挿入し陽極缶1の中央内底
面1aに向けて押圧する加圧ロツド12によつて
行なうようにしたものである。即ち、この加圧ロ
ツド12はセパレータ3の内径と略同一径に形成
し、かつ、その下端面12aを軸方向に直角な平
坦面に形成してあり、この加圧ロツド12をセパ
レータ3の上端開口3bから挿入し、陽極缶1の
中央内底面1a上に盛り上がつた熱溶融性物質6
を前記下端面12aで押圧する。
FIG. 5 shows another embodiment in which the pressurizing and expanding process is carried out by a pressurizing rod 12 that is inserted from above the separator 3 and presses it toward the central inner bottom surface 1a of the anode can 1. . That is, the pressure rod 12 is formed to have approximately the same diameter as the inner diameter of the separator 3, and its lower end surface 12a is formed into a flat surface perpendicular to the axial direction. The heat-fusible substance 6 is inserted through the opening 3b and bulges on the central inner bottom surface 1a of the anode can 1.
is pressed with the lower end surface 12a.

このように加圧ロツド12を用いて加圧展開工
程を行なつても第4図に示した実施例と同様に、
薄い層状部7aを形成して下端開口3aを閉塞す
ることができる。尚、前記加圧ロツド12の下端
面12aは熱溶融性物質6に対して容易に剥離で
きるようにしてあることはいうまでもない。
Even if the pressure development process is performed using the pressure rod 12 in this way, the same effect as in the embodiment shown in FIG.
The lower end opening 3a can be closed by forming the thin layered portion 7a. It goes without saying that the lower end surface 12a of the pressure rod 12 is designed so that it can be easily peeled off from the heat-fusible substance 6.

以上説明したように本発明は、筒状の電池缶内
に陰極合剤、陽極合剤およびこれら両極合剤を隔
成し両端が開口した筒状のセパレータを互いに同
軸状に配列して装填し、前記筒状セパレータの下
端開口を絶縁性物質で閉塞するようにした筒状電
池の製造方法であつて、前記筒状セパレータをこ
のセパレータの外側に配置される合剤の中央部に
形成した内腔部に挿入した後、該セパレータの内
側から電池缶の中央内底面に電気絶縁性の熱溶融
性物質を流動状態で注入し、爾後、該熱溶融性物
質が流動可能状態にある間にこの熱溶融性物質の
中央内底面に向けて加圧展開して前記筒状セパレ
ータの下端開口を閉塞する加圧展開工程を行なう
ようにしたので、熱溶融性物質は薄い層状となつ
て前記下端開口を閉塞する。従つて、前記セパレ
ータ内への合剤充填量を増加して放電容量の増大
を図ることができるという優れた効果を奏する。
As explained above, in the present invention, a cathode mixture, an anode mixture, and a cylindrical separator which separates these electrode mixtures and is open at both ends are arranged coaxially with each other and loaded into a cylindrical battery can. , a method for manufacturing a cylindrical battery in which a lower end opening of the cylindrical separator is closed with an insulating material, the cylindrical separator having an inner part formed in the center of a mixture disposed outside the separator; After inserting it into the cavity, an electrically insulating heat-fusible substance is injected in a fluid state from inside the separator to the inner bottom surface of the center of the battery can, and then, while the heat-fusible substance is in a flowable state, this Since the pressurized development process is performed in which the heat-fusible material is spread under pressure toward the central inner bottom surface of the cylindrical separator to close the bottom opening of the cylindrical separator, the heat-fusible material forms a thin layer and forms the bottom opening of the cylindrical separator. occlude. Therefore, an excellent effect is achieved in that the amount of mixture filled into the separator can be increased and the discharge capacity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の筒状電池の一例を示す断面図、
第2図はその組立工程の一部を示す断面図、第3
図は従来の筒状電池の他例の組立工程の一部を示
す断面図、第4図A,B,C,Dは本発明の筒状
電池の要部の製造方法の一実施例を示す断面図、
第5図は本発明の他の実施例を示し第4図Cに対
応する断面図である。 1……陽極缶(電池缶)、1a……中央内底面、
2……陰極合剤、3……セパレータ、3a……下
端開口、4……陽極合剤、4a……中央内腔部、
6……熱溶融性物質、10……注入管、11……
ノズル、12……加圧ロツド。
FIG. 1 is a sectional view showing an example of a conventional cylindrical battery.
Figure 2 is a sectional view showing part of the assembly process, Figure 3 is a sectional view showing a part of the assembly process.
The figure is a sectional view showing a part of the assembly process of another example of a conventional cylindrical battery, and FIGS. 4A, B, C, and D show an embodiment of the method for manufacturing the main parts of the cylindrical battery of the present invention. cross section,
FIG. 5 shows another embodiment of the present invention and is a sectional view corresponding to FIG. 4C. 1...Anode can (battery can), 1a...Central inner bottom surface,
2...Cathode mixture, 3...Separator, 3a...Lower end opening, 4...Anode mixture, 4a...Central lumen part,
6...Thermofusible substance, 10...Injection pipe, 11...
Nozzle, 12...pressure rod.

Claims (1)

【特許請求の範囲】 1 筒状の電池缶内に陰極合剤、陽極合剤および
これら両極合剤を隔成し両端が開口した筒状のセ
パレータを互いに同軸状に配列して装填し、前記
筒状セパレータの下端開口を絶縁性物質で閉塞す
るようにした筒状電池の製造方法であつて、前記
筒状セパレータをこのセパレータの外側に配置さ
れる合剤の中央部に形成した内腔部に挿入した
後、該セパレータの内側から電池缶の中央内底面
に電気絶縁性の熱溶融性物質を流動状態で注入
し、爾後、該熱溶融性物質が流動可能状態にある
間にこの熱溶融性物質を電池缶の中央内底面に向
けて加圧展開して前記筒状セパレータの下端開口
を閉塞する加圧展開工程を行なうことを特徴とす
る筒状電池の製造方法。 2 加圧展開工程は電池缶の中央内底面に向けて
噴射される気体の圧力によつて行なうことを特徴
とする特許請求の範囲第1項に記載の筒状電池の
製造方法。 3 加圧展開工程はセパレータの上方から挿入し
電池缶の中央内底面に向けて押圧する加圧ロツド
によつて行なうことを特徴とする特許請求の範囲
第1項に記載の筒状電池の製造方法。
[Scope of Claims] 1 A cathode mixture, an anode mixture, and a cylindrical separator which separates these electrode mixtures and are open at both ends are arranged coaxially with each other and loaded into a cylindrical battery can, A method for manufacturing a cylindrical battery in which a lower end opening of a cylindrical separator is closed with an insulating material, the cylindrical separator having a lumen formed in the center of a mixture disposed outside the separator. Then, an electrically insulating heat-melting substance is injected in a fluid state from the inside of the separator into the central inner bottom surface of the battery can, and then, while the heat-melting substance is in a flowable state, this heat-melting substance is injected into the battery case. 1. A method for manufacturing a cylindrical battery, comprising: performing a pressurizing and expanding step in which a substance is pressurized and expanded toward the central inner bottom surface of a battery can to close a lower end opening of the cylindrical separator. 2. The method for manufacturing a cylindrical battery according to claim 1, wherein the pressurized expansion step is performed using the pressure of gas injected toward the central inner bottom surface of the battery can. 3. Manufacture of the cylindrical battery according to claim 1, characterized in that the pressurizing and expanding step is carried out using a pressurizing rod that is inserted from above the separator and presses it toward the central inner bottom surface of the battery can. Method.
JP3666382A 1982-03-10 1982-03-10 Manufacture of cylindrical battery Granted JPS58154177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3666382A JPS58154177A (en) 1982-03-10 1982-03-10 Manufacture of cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3666382A JPS58154177A (en) 1982-03-10 1982-03-10 Manufacture of cylindrical battery

Publications (2)

Publication Number Publication Date
JPS58154177A JPS58154177A (en) 1983-09-13
JPS6341190B2 true JPS6341190B2 (en) 1988-08-16

Family

ID=12476093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3666382A Granted JPS58154177A (en) 1982-03-10 1982-03-10 Manufacture of cylindrical battery

Country Status (1)

Country Link
JP (1) JPS58154177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208631A (en) * 1989-02-08 1990-08-20 Copal Co Ltd Surface light emission body device for lighting liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208631A (en) * 1989-02-08 1990-08-20 Copal Co Ltd Surface light emission body device for lighting liquid crystal display element

Also Published As

Publication number Publication date
JPS58154177A (en) 1983-09-13

Similar Documents

Publication Publication Date Title
JPS6341190B2 (en)
US3420714A (en) Round cells and batteries made therefrom
US2363086A (en) Method of making ball cores
US2630936A (en) Welded container and cap
US3040117A (en) Process for manufacturing primary dry cells
JP3157756B2 (en) Molding method of polymer insulator
US3124727A (en) murray
US2342603A (en) Ball core
JPH08207147A (en) Production of synthetic resin conical body
JP2001283665A (en) Compression molding method for polymer insulator
US799863A (en) Cheese.
JPH0726072Y2 (en) Powder molding equipment
JP2609620B2 (en) Manufacturing method of cylindrical alkaline battery
JP3049111B2 (en) Container manufacturing method
JPH06251765A (en) Positive electrode mix filling method in cylindrical manganese dry battery and positive electrode mix inserting sleeve used in the same
JPS6023469B2 (en) Manufacturing method for thin batteries
JPH0227769B2 (en) SHOKOCHUUBUNOSEIZOHO
JPH11183070A (en) Method for production of flat heat pipe
JPS5812986B2 (en) Storage battery manufacturing method
JP2001351595A (en) Manufacturing method for battery separator
JPH0261890B2 (en)
JPH0240440B2 (en) SEISUIATSUPURESUYOGOMUGATA
JPS6398520A (en) Preparation of electrode part of electromagnetic flowmeter
JPH0611090A (en) Manufacture of electric fusion joint
JPH0437546B2 (en)