JPS6340901A - Reaction control device - Google Patents
Reaction control deviceInfo
- Publication number
- JPS6340901A JPS6340901A JP61184455A JP18445586A JPS6340901A JP S6340901 A JPS6340901 A JP S6340901A JP 61184455 A JP61184455 A JP 61184455A JP 18445586 A JP18445586 A JP 18445586A JP S6340901 A JPS6340901 A JP S6340901A
- Authority
- JP
- Japan
- Prior art keywords
- liquid fuel
- reaction
- control
- pressure
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 37
- 239000000446 fuel Substances 0.000 claims abstract description 46
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 239000002828 fuel tank Substances 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000010248 power generation Methods 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 210000005056 cell body Anatomy 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001062872 Cleyera japonica Species 0.000 description 1
- 101000892301 Phomopsis amygdali Geranylgeranyl diphosphate synthase Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Feedback Control In General (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は例えば燃料電池発電システム等における反応
装置の、化学反応を制御する反応制御装置に関するもの
である〇
〔従来の技術〕
第2図は、例、1i=j1刊行物(JIS z8204
−1968)ニ示された従来の反応制御装置の概念を示
す構成図であシ、図において(1)は検出器、(2)は
プロセス量を検出器(1)によって変換した電気信号、
(3)は電子式調節器、(4)は電子式調節器(3)か
らの操作出力である電気信号を電空変換器或は電空ポジ
ショナ(図には記載せず)により変換された空気圧力信
号、(5)は空気圧力信号(4)によりその開度が調節
できる制御弁である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reaction control device for controlling a chemical reaction of a reaction device in, for example, a fuel cell power generation system. [Prior Art] FIG. , e.g., 1i=j1 publications (JIS z8204
-1968) D is a block diagram showing the concept of the conventional reaction control device, in which (1) is a detector, (2) is an electrical signal converted from a process quantity by the detector (1),
(3) is an electronic regulator, and (4) is an electrical signal that is the operation output from the electronic regulator (3), which is converted by an electro-pneumatic converter or an electro-pneumatic positioner (not shown in the diagram). The air pressure signal (5) is a control valve whose opening degree can be adjusted by the air pressure signal (4).
第1図は、例えば刊行物「プロセヌ計測制御便覧」に示
された従来の反応制御装置における電空ポジショナのブ
ロック縞図であり、図において(6)は上記電子式調節
器(3)からの操作信号電流(通常4〜20rrLAD
C) 、(7)はコイルと磁石からなるトルクモータ、
(8)はトルクモータ(7)からの力、(9)はゼロば
ね、00はゼロばね(9)の変位、αυはゼロばね(9
)と復元ばね(17)に連結したノズルフラッパ、(2
)はパイロット弁、(至)は空気圧力、Q4は上記制御
弁(5)の駆動部、(至)は制御弁(5)のストローク
、αQはリンク機構、(ト)は計装空気である。FIG. 1 is a block diagram of an electro-pneumatic positioner in a conventional reaction control device, as shown in the publication ``Prosenu Measurement Control Handbook'', for example, and in the figure (6) is the block diagram of the electro-pneumatic positioner from the electronic regulator (3). Operation signal current (usually 4~20rrLAD
C), (7) is a torque motor consisting of a coil and a magnet,
(8) is the force from the torque motor (7), (9) is the zero spring, 00 is the displacement of the zero spring (9), αυ is the zero spring (9)
) and a nozzle flapper connected to a restoring spring (17), (2
) is the pilot valve, (to) is the air pressure, Q4 is the driving part of the control valve (5), (to) is the stroke of the control valve (5), αQ is the link mechanism, and (g) is the instrumentation air. .
第4図は、例えば米国刊行物(EP几工(Electr
icPower &5earch In5titute
)EM−3161)に示された従来の燃料電池発電シ
ステムを示すブロック構成図であシ、α1は計装空気を
供給するユーティリティ(計装空気供給設備)、勾はプ
ラント、(2)は燃料供給装置、(2)は水処理装置、
(至)は冷却装置、(財)は不活性ガフ供給装置、(至
)は反応用空気供給装置である。FIG. 4 shows, for example, a US publication (EP Electr.
icPower &5earch In5tituto
) is a block configuration diagram showing the conventional fuel cell power generation system shown in EM-3161), α1 is the utility (instrument air supply equipment) that supplies instrument air, α is the plant, and (2) is the fuel cell power generation system. supply device, (2) is a water treatment device,
(to) is a cooling device, (to) is an inert gaff supply device, and (to) is a reaction air supply device.
次に動作について説明する。第2図に示した従来の制御
系では、検出器(1)でブロセヌ量を電気信号(2)に
変換し、電子式調節器(3)の入力とする。前記調節器
(3)ではPID等の制御側によυ操作電気信号(6)
を出力するが、この信号ではアクチュエータを直接駆動
するだけのパワーが無いため、電空はジショナ(第2図
には記載せず)によυ空気圧力信号(4)K変換し、制
御弁(5)のアクチュエータを駆動して制御弁(5)の
開度を調節する。Next, the operation will be explained. In the conventional control system shown in FIG. 2, a detector (1) converts the Brosenu amount into an electrical signal (2), which is input to an electronic regulator (3). The controller (3) receives a υ operation electric signal (6) from the control side such as PID.
However, since this signal does not have enough power to directly drive the actuator, the electro-pneumatic signal is converted to υ pneumatic pressure signal (4)K by a positioner (not shown in Figure 2), and the control valve ( The actuator 5) is driven to adjust the opening degree of the control valve (5).
次に従来の電空ポジショナの動作について説明する。電
子式調節器(3)からの操作電気信号(6)(通常DC
4〜2QmA)はトルクモータ(7)に入力され、電磁
力(3)が電空ポジショナ系への設定出力となる。Next, the operation of the conventional electro-pneumatic positioner will be explained. Operating electrical signal (6) from electronic regulator (3) (usually DC
4 to 2 QmA) is input to the torque motor (7), and the electromagnetic force (3) becomes the setting output to the electro-pneumatic positioner system.
前記設定出力(8)に対し、制御弁(5)の開度に相当
するストロークQl19をリンク機構αQを介し復元ば
ね亜を経由してフィードバックされた力と比較し、その
偏差をゼロばね(9)の入力とする。ゼロばね(9)の
出力である変位GOは、ノズルフラッパ(ロ)の位置を
決定し、これとパイロット弁(ロ)から構成される装空
気(財)の圧力(通常1.4 Icg・(m Q )に
対し、駆動部α◆へ出力される空気圧力信号(通常0.
2〜1、Okg・cm G )が確定する・
次に従来の反応装置の例として、燃料電池発電システム
が第4図に示されているが、前述の制御動作を実現する
ために燃料電池発電プラント(ホ)には、計装空気供給
設備(1’J (具体的にはコンプレッサ)を設置し、
所要の計装空気(ト)を供給するようになっている。With respect to the set output (8), the stroke Ql19 corresponding to the opening degree of the control valve (5) is compared with the force fed back via the link mechanism αQ and the restoring spring A, and the deviation is calculated as the zero spring (9 ) as input. The displacement GO, which is the output of the zero spring (9), determines the position of the nozzle flapper (B), and the pressure of the air supply (goods) consisting of this and the pilot valve (B) (usually 1.4 Icg・(m Q ), the air pressure signal output to the drive unit α◆ (usually 0.
2~1, Okg・cm G) is determined.Next, as an example of a conventional reaction device, a fuel cell power generation system is shown in FIG. The plant (e) is equipped with instrumented air supply equipment (1'J (specifically a compressor),
It is designed to supply the required instrument air.
従来の反応制御装置は以上のように構成されているので
、プラントに対し必ずユーティリティとして計装空気設
備を設置しなければならず、特に小規模、移動用への適
用については標準品を使用すればプラントと同規模のユ
ーティリティとなり、コンパクト性および経済性に問題
があった。Conventional reaction control equipment is configured as described above, so instrumentation air equipment must be installed as a utility in the plant, and standard equipment must be used especially for small-scale and mobile applications. However, it would be a utility of the same size as a plant, and there were problems with compactness and economic efficiency.
この発明は上記のような問題点を解消するためになされ
たもので、ユーティリティとしての計装空気供給設備を
廃止することでコンパクト性を向上できるとともに、補
機損を減少させ運転効率を向上できる反応制御装置を得
ることを目的とする。This invention was made to solve the above problems, and by eliminating the utility instrument air supply equipment, it is possible to improve compactness, reduce loss of auxiliary equipment, and improve operational efficiency. The purpose is to obtain a reaction control device.
この発明に係る反応制御装置は、昇圧された液体燃料を
使用して化学反応により反応生成物を製造する反応装置
の上記化学反応を制御する制御手段を駆動する駆動媒体
に1上記昇圧された液体燃料を使用するものである。The reaction control device according to the present invention uses the pressurized liquid fuel as a driving medium for driving the control means for controlling the chemical reaction of the reaction device that uses the pressurized liquid fuel to produce a reaction product through a chemical reaction. It uses fuel.
この発明における反応制御装置は化学反応で使用される
昇圧された液体燃料の一部をバイパスし、制御系を駆動
する駆動媒体として用いるので、別個に駆動媒体を送る
設備がいらず、また、液体を用いるため、従来用いられ
ていた気体(空気)に比らべ圧力が上げやすいのでパワ
ーも少なくてすむO
〔実施例〕
以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による反応制御装置を燃料電池
発電シヌテムに用いた時の系統図であ)、図において、
翰は液体燃料タンク、(2)はプンプ、(至)はgi体
正圧力動作する制御弁、翰は圧力調整器、句は制御信号
を液体圧力に変換する信号変換器、@υはブロワ、(2
)は液体燃料改質器、(ト)は改質器に)に組込まれた
バーナ、弼は燃料電池本体、(至)は負荷、国は制御弁
(ト)の駆動媒体である液体燃料の供給系統、口ηは戻
シ系統である。(ハ)は各調節器(3)を調節制御する
設定演算機、鰻は出力電力信号、(ト)は指令信号、I
41Iは燃料の流量信号である。The reaction control device of this invention bypasses a part of the pressurized liquid fuel used in the chemical reaction and uses it as a driving medium to drive the control system, so there is no need for separate equipment for feeding the driving medium. Since the pressure is increased more easily than with conventionally used gas (air), less power is required. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a system diagram when a reaction control device according to an embodiment of the present invention is used in a fuel cell power generation system).
The handle is the liquid fuel tank, (2) is the pump, (to) is the control valve that operates at the positive pressure of the GI body, the handle is the pressure regulator, the phrase is the signal converter that converts the control signal to liquid pressure, @υ is the blower, (2
) is the liquid fuel reformer, (g) is the burner built into the reformer), 弼 is the fuel cell body, (to) is the load, and country is the liquid fuel that is the driving medium of the control valve (g). The supply system and the outlet η are the return system. (c) is a setting computer that adjusts and controls each regulator (3), eel is an output power signal, (g) is a command signal, I
41I is a fuel flow rate signal.
次に動作について説明する。Next, the operation will be explained.
燃料電池発電システム内の液体燃料タンク(至)に貯蔵
されたメタノール等のアルコール系燃料は、はンプ勿で
昇圧後、液体燃料改質器(至)に制御仲働を経由して供
給され、反応後水素濃度の高いガスとして燃料電池本体
(至)のアノードに供給される。Alcohol-based fuel such as methanol stored in the liquid fuel tank in the fuel cell power generation system is pressurized in a pump and then supplied to the liquid fuel reformer via a control intermediary. After the reaction, it is supplied to the anode of the fuel cell body as a gas with a high hydrogen concentration.
一方、プロワt3υにより制御弁(至)を経由して燃料
電池本体■のカソードに空気が供給される。燃料電池本
体■は上記水素と空気中の酸素から直流電気出力を発生
し負荷(至)に供給する。さらにアノード排ガス中の未
反応可燃成分はブロワ俤υから分岐し制御弁(ハ)で流
量を調節された空気とともに、改質器(至)に組込まれ
たバーナc13で燃焼し、改質反応の吸熱量を補償する
ために使用される。上記構成における制御実施例では8
系統の流量制御系を必要とするが、それらの駆動媒体に
上記液体燃料の一部を使用する。すなわちピング(財)
の吐出側に分岐を設け、圧力調整器(ロ)により駆動媒
体圧力を一定にする。次に駆動媒体は供給系統(8b)
により各々変換器(7)に供給され、設定演算機關の指
令信号榊により調節制御された各調節器(3)の操作電
気信号に応じて駆動媒体圧力を変化させ制御弁(至)の
駆動部が動作する。これにより制御弁(至)の開度が変
化し所要の制御動作が実現する。さらに変換器曽で消費
された駆動媒体である液体燃料は戻り系統口ηにより液
体燃料タンク(至)にリサクルされる。On the other hand, air is supplied to the cathode of the fuel cell main body (2) by the blower t3υ via the control valve (to). The fuel cell main body (■) generates DC electrical output from the hydrogen and oxygen in the air and supplies it to the load. Furthermore, the unreacted combustible components in the anode exhaust gas are combusted in the burner C13 built into the reformer (to), together with the air whose flow rate is regulated by the control valve (c), which is branched from the blower, and starts the reforming reaction. Used to compensate for heat absorption. In the control example with the above configuration, 8
Although a system flow control system is required, a portion of the above-mentioned liquid fuel is used as the driving medium. i.e. ping (goods)
A branch is provided on the discharge side of the pump, and a pressure regulator (b) is used to keep the pressure of the driving medium constant. Next, the driving medium is the supply system (8b)
The drive section of the control valve (to) changes the driving medium pressure in accordance with the operation electric signal of each regulator (3) which is supplied to each converter (7) by the controller and controlled by the command signal Sakaki of the setting calculation machine. works. This changes the opening degree of the control valve (to) and realizes the desired control operation. Furthermore, the liquid fuel that is the driving medium consumed in the converter is recycled to the liquid fuel tank (to) through the return system port η.
以上のような構成とすることにより、燃料電池発電シヌ
テムに用いられる、液体燃料を昇圧、輸送するポンプと
、制御用の駆動源として使用する液体燃料を昇圧、輸送
するポンプとを1つのポンプ(財)で併用することがで
き、装置がコンパクトになる。また、従来は駆動源は気
体であったが、この発明では液体を用いるので昇圧しや
すくパワーが少なくてすみ、運転効率がよい。With the above configuration, the pump that boosts and transports the liquid fuel used in the fuel cell power generation system and the pump that boosts and transports the liquid fuel used as a drive source for control can be integrated into one pump ( The device can be used in combination with other products (goods), making the device more compact. Further, conventionally, the driving source was gas, but in the present invention, a liquid is used, so it is easy to increase the pressure, and less power is required, resulting in good operational efficiency.
なお、上記実施例では、反応装置として燃料電池発電シ
ヌテムへ適用した場合を示したが、液体燃料を使用し、
さらに液床圧力変化で駆動できるアクチュエータを備え
、プロセス制御系を必要とする反応装置ならいずれの場
合も上記実施例と同様の効果を奏する。In addition, in the above example, the case where it was applied to a fuel cell power generation system as a reaction device was shown, but if liquid fuel is used,
Furthermore, any reaction device that is equipped with an actuator that can be driven by changes in liquid bed pressure and that requires a process control system will produce the same effects as the above embodiment.
また、液体燃料はアルコール系燃料に限らず、水等でも
上記実施例と同様の効果を奏する。Further, the liquid fuel is not limited to alcohol-based fuel, and water or the like can also produce the same effects as in the above embodiment.
以上のようにこの発明によれば昇圧された液体燃料を使
用して化学反応により反応生成物を製造する反応装置の
上記化学反応を制御する制御手段を駆動する駆動媒体に
、上記昇圧された液体燃料を使用したので、装置がコン
パクトにでき、また気体に比較して液体は昇圧しやすい
ため補機損を低減し、運転効率を向上する効果がある。As described above, according to the present invention, the pressurized liquid is used as a driving medium for driving the control means for controlling the chemical reaction of the reaction device that uses the pressurized liquid fuel to produce a reaction product through a chemical reaction. Since fuel is used, the device can be made compact, and since liquids are easier to pressurize than gases, losses to auxiliary equipment are reduced and operational efficiency is improved.
第1図はこの発明の一実施例に係る燃料電池発電システ
ムを示す系統図、第2図は従来の反応制御装置を示す構
成図、第3図は従来の電空ポジショナを示すブロック線
図、及び第4図は従来の燃料電池発電シヌテムを示すブ
ロック構成図である。
(3)・・・電子式調節器 (至)・・・液体燃料タン
ク (支)・・・ポンプ (至)・・・制御弁 四・・
・圧力調整器 (7)・・・変換器 (至)・・・液体
燃料改質器 (ロ)・・・燃料電池本体なお、図中、同
一符号は同−又は相当部分を示す。FIG. 1 is a system diagram showing a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing a conventional reaction control device, and FIG. 3 is a block diagram showing a conventional electropneumatic positioner. FIG. 4 is a block diagram showing a conventional fuel cell power generation system. (3)...Electronic regulator (To)...Liquid fuel tank (Support)...Pump (To)...Control valve 4...
・Pressure regulator (7)...Converter (to)...Liquid fuel reformer (b)...Fuel cell main body Note that in the drawings, the same reference numerals indicate the same or equivalent parts.
Claims (4)
応生成物を製造する反応装置の上記化学反応を制御する
制御手段を駆動する駆動媒体に、上記昇圧された液体燃
料を使用した反応制御装置。(1) Reaction control using the pressurized liquid fuel as a driving medium that drives the control means for controlling the chemical reaction of a reaction device that uses the pressurized liquid fuel to produce a reaction product through a chemical reaction. Device.
構と、化学反応を制御する制御信号に応じて、上記液体
燃料圧力を変化させる信号変換機構と、上記液体燃料圧
力の変化に応じて開度を変化させる弁とを備えた特許請
求の範囲第1項記載の反応制御装置。(2) The control means includes a pressure adjustment mechanism that keeps the liquid fuel pressure constant, a signal conversion mechanism that changes the liquid fuel pressure according to a control signal that controls a chemical reaction, and a signal conversion mechanism that changes the liquid fuel pressure according to a change in the liquid fuel pressure. The reaction control device according to claim 1, further comprising a valve that changes the degree of opening.
囲第1項又は第2項記載の反応制御装置。(3) The reaction control device according to claim 1 or 2, wherein the liquid fuel is an alcohol-based fuel.
燃料タンクにリサクルする特許請求の範囲第1項ないし
第1項のいずれかに記載の反応制御装置。(4) The reaction control device according to any one of claims 1 to 1, wherein the liquid fuel used in the control means is recycled to the liquid fuel tank of the reaction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61184455A JPS6340901A (en) | 1986-08-05 | 1986-08-05 | Reaction control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61184455A JPS6340901A (en) | 1986-08-05 | 1986-08-05 | Reaction control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6340901A true JPS6340901A (en) | 1988-02-22 |
Family
ID=16153449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61184455A Pending JPS6340901A (en) | 1986-08-05 | 1986-08-05 | Reaction control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6340901A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0693793A3 (en) * | 1994-07-20 | 2000-05-10 | dbb fuel cell engines GmbH | Method and device for supplying doses of methanol and/or water to a system fuel cell system |
WO2001024294A2 (en) * | 1999-09-30 | 2001-04-05 | Robert Bosch Gmbh | Device for supplying the consumers of a fuel cell system with liquid media |
-
1986
- 1986-08-05 JP JP61184455A patent/JPS6340901A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0693793A3 (en) * | 1994-07-20 | 2000-05-10 | dbb fuel cell engines GmbH | Method and device for supplying doses of methanol and/or water to a system fuel cell system |
WO2001024294A2 (en) * | 1999-09-30 | 2001-04-05 | Robert Bosch Gmbh | Device for supplying the consumers of a fuel cell system with liquid media |
WO2001024294A3 (en) * | 1999-09-30 | 2001-10-11 | Bosch Gmbh Robert | Device for supplying the consumers of a fuel cell system with liquid media |
US7044160B1 (en) | 1999-09-30 | 2006-05-16 | Robert Bosch Gmbh | Device for supplying the consumers of a fuel cell system with liquid media |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101331637A (en) | Fuel cell system and vehicle | |
JP2014239056A (en) | Fuel cell system | |
US8609292B2 (en) | Fuel cell system | |
CN101803090A (en) | Fuel cell system | |
JP3761865B2 (en) | Fuel cell hydrogen tank system pressure regulation | |
JP2009522724A (en) | Air draw through fuel cell fuel recycle loop | |
JPS6340901A (en) | Reaction control device | |
US7192458B1 (en) | Process, control system and apparatus for the distribution of air in a fuel cell/fuel processor system | |
EP1427047B1 (en) | Method for controlling flow rate of oxidizer in fuel cell system | |
WO2007142245A1 (en) | Fuel cell system | |
US20050120731A1 (en) | Electrochemical cell cooling system | |
JP4264996B2 (en) | Operation method of fuel cell system | |
US20040058208A1 (en) | Method and apparatus for a combined fuel cell and hydrogen purification system | |
JP2000119001A (en) | Hydrogen-generating apparatus | |
JPH0287480A (en) | Operation stopping method of fuel cell power generation device | |
JP2922209B2 (en) | Fuel cell power generation system | |
JP2001338671A (en) | Controller for fuel cell | |
JPS6229867B2 (en) | ||
JPS6332868A (en) | Fuel cell power generating system | |
JP2001028270A (en) | Fuel cell power generating device with raw fuel changeover apparatus and operation method therefor | |
JPS6345762A (en) | Operation controller of fuel cell power generating plant | |
JPH04121972A (en) | Method of water supply for fuel cell power generation system and water supply apparatus | |
JP4786892B2 (en) | Fuel cell back pressure valve controller | |
JP2004087403A (en) | Fuel cell system | |
JPS6345763A (en) | Operation controller of fuel cell power generating plant |