JPS6340844A - Surface flaw identification - Google Patents

Surface flaw identification

Info

Publication number
JPS6340844A
JPS6340844A JP18384986A JP18384986A JPS6340844A JP S6340844 A JPS6340844 A JP S6340844A JP 18384986 A JP18384986 A JP 18384986A JP 18384986 A JP18384986 A JP 18384986A JP S6340844 A JPS6340844 A JP S6340844A
Authority
JP
Japan
Prior art keywords
flaw
type
grade
unknown
identified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18384986A
Other languages
Japanese (ja)
Inventor
Takeshi Katayama
片山 健史
Osamu Shimomura
修 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18384986A priority Critical patent/JPS6340844A/en
Publication of JPS6340844A publication Critical patent/JPS6340844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To secure flexibility in application for other processes, by employing a multi-dimensional simultaneous pattern recognition based on a Mahalanobis distance for identification to reduce time and labor required for the building of an identification logic. CONSTITUTION:A flaw data analysis is performed on-line or off-line to determine a mean vector mui and a variance-covariance matrix SIGMAi with respect to a flaw type feature previously selected beforehand whereby an unknown flaw is identified. In this case, a flaw type feature vector (x) is determined to calculate a Mahalanobis distance Di for a known flaw type by the formula I and the flaw type with the distance Di minimized is identified as the unknown flaw type and the unknown flaw is identified to be an indistinct flaw belonging to none of available flaw type when the minimum distance is larger than a set value. In addition, a mean vector muij and a variance-covariance matrix SIGMAij of a grade feature value previously selected are determined for all grades in terms of flaw type beforehand to obtain a grade feature vector x' for the flaw type to which the unknown flaw was identified to belong. A Mahalanobis distance Dij is calculated by the formula II to identify the minimum grade as the unknown flaw grade.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検査体の表面疵の種類およびその有害度(
以下グレードと呼ぶ)の識別を行なう方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to the type of surface flaws on an object to be inspected and their degree of harmfulness (
The present invention relates to a method for identifying grades (hereinafter referred to as grades).

〔従来の技術〕[Conventional technology]

被検査体、例えば圧延鋼板の表面に発生する疵の識別方
法としてはミ例えば第2図に示すように鋼板1上の表面
疵の画像をITVカメラ2で撮影し、A/D変換器3を
介して信号処理装置4に取り込み、画像処理を行ない、
例えば画像中X、  Y方向の特徴量を抽出し、それら
の特徴量を用いて疵識別を行なう方法がある。このよう
な方法にて疵識別を行なうための論理は一般的に樹枝状
論理が用いられる(第86回計測部会資料 計86−5
−2)。樹枝状論理は例えば第3図に示すように複数の
特徴口に対し、それぞれの特徴について予め選定された
しきい値θと未知の疵データの特徴口との比較を段階的
に行なっていき、最終的に疵種が未知の疵データの屈す
る疵種を識別しようとするものである。この場合識別の
流れ、例えば第3図の5−6−7において使用する特@
口の組み合わせや順序等を決定するに際し、理論的手法
はな(試行錯誤により経験的に決定するのが普通である
。また疵種数が多くなるにつれて識別に必要な特徴口の
数が増え、論理自体が非常に複雑になる事は明らかであ
る。更に圧延鋼板等の製造においては、成品検査はもと
より成品に至るまでの各製造工程で数多くの表面検査が
必要である上に、それぞれの工程で発生する表面疵の種
類・性状も様々であって特定の工程のために作られた樹
枝状論理を他の工程に通用する事は非常に困難である。
A method for identifying defects occurring on the surface of an object to be inspected, such as a rolled steel plate, is to take an image of a surface defect on a steel plate 1 with an ITV camera 2, and then use an A/D converter 3 as shown in FIG. The image is taken into the signal processing device 4 via the
For example, there is a method of extracting feature amounts in the X and Y directions from an image and performing flaw identification using these feature amounts. Dendritic logic is generally used to identify defects using this method (86th Measurement Subcommittee Material, Total 86-5)
-2). For example, as shown in Fig. 3, the dendritic logic performs a step-by-step comparison between a threshold value θ selected in advance for each feature and a feature of unknown flaw data for a plurality of features, as shown in Fig. 3. Ultimately, the purpose is to identify the type of flaw that the flaw data of unknown flaw type succumbs to. In this case, the flow of identification, for example, the special @ used in 5-6-7 in Figure 3
There is no theoretical method for determining the combination and order of mouths (it is usually determined empirically through trial and error. Also, as the number of flaw types increases, the number of characteristic mouths required for identification increases, It is clear that the logic itself is extremely complex.Furthermore, in the production of rolled steel plates, etc., numerous surface inspections are required in each manufacturing process up to the finished product, as well as inspections for each process. The types and properties of surface flaws that occur in various processes make it extremely difficult to apply dendritic logic created for a specific process to other processes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の如く表面疵の識別方法として樹枝状論理を用いる
事は、識別論理の構築にかかる労力の増大、汎用性の欠
如等の問題点を有している。本発明は、識別論理の構築
が容易で且つ他工程への適用性に優れた表面疵の識別方
法を与えるものである。
As described above, the use of dendritic logic as a method for identifying surface flaws has problems such as increased labor required to construct the identification logic and lack of versatility. The present invention provides a surface flaw identification method that allows easy construction of identification logic and is highly applicable to other processes.

〔問題点を解決するための手段1作用〕第1図に、本発
明の疵識別要領を示す。本発明の前記問題点を解決する
ための手段の特徴は、以下に説明する様に、マハラノビ
ス距離による多次元同時パターン認識を用いる点である
。表面疵の疵種は、その発生要因や性状等に基づき人間
が分類定置したものであって、同じ疵種と言えども全く
同じ性状を有するものはあり得ず、第4図に示す3次元
特徴室間における分布例のように任意の特徴口(例えば
長さ、幅、面積など)について観た時、その平均値のま
わりに統31的なばらつきをもって疵種毎の分布を形成
する。
[Means 1 for Solving the Problems] FIG. 1 shows the flaw identification procedure of the present invention. A feature of the means for solving the above problems of the present invention is that multidimensional simultaneous pattern recognition using Mahalanobis distance is used, as will be explained below. The types of surface flaws are classified and established by humans based on their occurrence factors and properties, and even if they are the same type of flaw, it is impossible for them to have exactly the same characteristics. When looking at arbitrary characteristics (for example, length, width, area, etc.), as in the example of the distribution between rooms, the distribution for each flaw type is formed with uniform variations around the average value.

従って本発明はオンラインあるいはオフラインにおける
多数の疵データ解析を行ない、予め選定した疵種特徴口
に対する平均値ベクトルpiおよび分散共分散行列Σi
を疵種毎に求めておき、未知の疵を識別する場合、その
疵の疵種特徴口ベクトルXを求め、前記既知の疵種に対
するマハラノビス距離Diを式 %式%) (但しiは疵種、Lはベクトルの転置を表わす)により
計算する(第1図の)。このうちでマハラノビス距離D
iが最小となる疵種を未知の疵が属する疵種であると識
別する(第1図■)。この際、最小のマハラノビス距離
が予め設定したしきい値θよりも大きい場合は、未知の
疵はどの疵種にも屈さない不明底であると識別する(第
1図■)。
Therefore, the present invention analyzes a large number of defect data online or offline, and calculates the mean value vector pi and variance-covariance matrix Σi for preselected defect type characteristics.
is determined for each type of flaw, and when identifying an unknown flaw, the flaw type characteristic mouth vector , L represents the transpose of the vector) (in FIG. 1). Among these, Mahalanobis distance D
The flaw type for which i is the minimum is identified as the flaw type to which the unknown flaw belongs (Fig. 1 ■). At this time, if the minimum Mahalanobis distance is larger than a preset threshold value θ, the unknown flaw is identified as an unknown flaw that does not succumb to any type of flaw (■ in FIG. 1).

一方、マハラノビス距離Diが小さい順に未知の疵が属
する疵種の第1候補、第2候補・・・・・・の如く識別
結果に冗長さを持たせて最終的な人間による判断のため
の情報とする事も可能である。また、人間は疵の有害度
(以下グレードという)に関し、全ての疵種について同
一の識別基準を用いている訳ではなく、まず疵種の識別
を行ない、次にその疵種毎に経験的に有する識別基準、
すなわち大きさ、凹凸、コントラストなどのグレード特
徴9を用いてグレードの識別を行なっている。ある疵種
に限って、任意の特徴空間における分布を観ると前記の
疵種の分布と同様に、グレード毎に平均値のまわりに統
計的なばらつきをもって分布する。
On the other hand, redundancy is provided in the identification results, such as the first candidate, the second candidate, etc. to which the unknown defect belongs in order of decreasing Mahalanobis distance Di, and information for final human judgment. It is also possible to do this. In addition, humans do not use the same identification criteria for all types of scratches regarding the degree of harmfulness (hereinafter referred to as grade); they first identify the type of scratch, and then use empirical methods for each type of scratch. identification criteria,
That is, grades are identified using grade features 9 such as size, unevenness, and contrast. When looking at the distribution in an arbitrary feature space for a certain type of flaw, it is distributed with statistical variation around the average value for each grade, similar to the distribution of the above-mentioned flaw type.

故に疵種識別の場合と同様に、疵種毎に予め選定したグ
レード特徴口の平均値ベクトルμij1分散共分散行列
Σijを全てのグレードについて求めておき、未知の疵
が属すると識別された疵種におけるグレードを識別する
ためのグレード特徴量ベクトルx′を求め、その疵種の
全てのグレードに列するマハラノビス距離Dijを式 %式%) (但しjはグレードを表わす)により計算する(第1図
■)。このうちでマハラ′ノビス距AltDijが最小
となるグレードを未知の疵のグレードであると識別する
(第1図■)。
Therefore, as in the case of defect type identification, the mean value vector μij1 variance-covariance matrix Σij of the grade characteristic holes selected in advance for each defect type is calculated for all grades, and the defect type to which the unknown defect is identified is determined. Find the grade feature vector x' for identifying the grade in , and calculate the Mahalanobis distance Dij for all grades of that flaw type using the formula (%) (where j represents the grade) (Figure 1). ■). Among these, the grade with the minimum Mahala'nobis distance AltDij is identified as the grade with unknown flaws (Fig. 1 (■)).

〔実施例〕〔Example〕

以下に本発明法をステンレス溝板製造最終工程における
表面疵の識別に適用した例を示す。
An example in which the method of the present invention is applied to the identification of surface flaws in the final process of manufacturing a stainless steel groove plate will be shown below.

第1表に示す9種類の識別対象疵種に対し、第2表に示
す11種類の疵積特徴量について疵種。
For the nine types of flaws to be identified shown in Table 1, the flaw types are determined for the 11 types of flaw feature values shown in Table 2.

グレードが既知の約1600の疵データより予め疵種特
徴金の平均値ベクトルと分散共分散行列を求めておき、
前記疵データの疵種の識別を行なった結果72%の一致
率が得られた。この場合、不明底か否かの判定のしきい
値θは36程度が適当であった。またグレードの識別に
関しては、底面積和なるグレード特徴量を用いて4グレ
ードの識別を行なった結果91%の一致率が得られた。
The mean value vector and variance-covariance matrix of the defect type characteristic gold are calculated in advance from data on about 1,600 defects with known grades.
As a result of identifying the type of flaw in the flaw data, a matching rate of 72% was obtained. In this case, the appropriate threshold value θ for determining whether the bottom is unknown is about 36. Regarding grade identification, four grades were identified using the grade feature amount, which is the sum of the base areas, and a 91% match rate was obtained.

第1表 識別対象疵種とその性状 第2表 疵識別のための疵積特徴量 〔発明の効果〕 本発明を表面m識別に用いる事により識別論理の構築に
要する時間・労力の大幅な軽減、他工程への通用に対す
る柔軟性の確保が可能となった。
Table 1: Flaw types to be identified and their properties Table 2: Flaw feature quantities for flaw identification [Effects of the invention] By using the present invention for surface m identification, the time and effort required to construct identification logic can be significantly reduced. , it has become possible to ensure flexibility for application to other processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による表面疵識別方法を示すフローチャ
ート、第2図は本発明を行なう装置構成の一例を示す説
明図、第3図は表面7jff識別のための樹枝状論理を
示す図、第4図は多次元特徴空間での表面疵の分布の一
例を示す説明図である。 ■・・・被検査体、  2・・・ITVカメラ、  3
・・・A/D変換器、  4・・・信号処理装置、5,
6.7・・・樹枝状論理の分岐点。
FIG. 1 is a flowchart showing a surface flaw identification method according to the present invention, FIG. 2 is an explanatory diagram showing an example of the configuration of an apparatus for carrying out the present invention, FIG. 3 is a diagram showing dendritic logic for surface 7jff identification, and FIG. FIG. 4 is an explanatory diagram showing an example of the distribution of surface flaws in a multidimensional feature space. ■...Object to be inspected, 2...ITV camera, 3
...A/D converter, 4...signal processing device, 5,
6.7... Branching point of dendritic logic.

Claims (1)

【特許請求の範囲】 被検査体の表面疵を画像処理して抽出した特徴量を用い
て疵種およびグレードを識別する方法において、疵種が
既知である多数の疵データより予め選定した疵積特徴量
に対する平均値ベクトルμiおよび分散共分散行列Σi
を疵種毎に求めておき、疵種が未知の疵データに関して
求めた疵種特徴量ベクトルxについて前記既知の疵種に
対するマハラノビス距離 Di=(x−μi)^tΣ^−^1_i(x−μi)(
iは疵種を表わす添字) を計算し、その最小値を与える疵種を前記未知の疵デー
タの属する疵種であると識別し、次に疵種およびグレー
ドが既知である多数の疵データより予め選定したグレー
ド特徴量に対する平均値ベクトルμijおよび分散共分
散行列Σijを各疵種のグレード毎に求めておき、未知
の疵データに関して求めたグレード特徴量ベクトルx′
について前記の疵種が未知の疵データが属すると識別さ
れた疵種の全てのグレードに対するマハラノビス距離D
ij=(x′−μij)^tΣij(x′−μij)(
jはグレードを表わす添字) を計算し、その最小値を与えるグレードを前記未知の疵
データが属するグレードであると識別する表面疵識別方
法。
[Claims] In a method for identifying a flaw type and grade using feature quantities extracted by image processing of a surface flaw on an object to be inspected, a flaw area whose flaw type is preselected from a large number of flaw data whose flaw types are known is used. Mean value vector μi and variance-covariance matrix Σi for the feature quantity
is calculated for each type of defect, and the Mahalanobis distance Di=(x-μi)^tΣ^-^1_i(x- μi)(
i is a subscript representing the flaw type), the flaw type that gives the minimum value is identified as the flaw type to which the unknown flaw data belongs, and then the The mean value vector μij and the variance-covariance matrix Σij for the grade feature selected in advance are obtained for each grade of each defect type, and the grade feature vector x' obtained for the unknown defect data is
Mahalanobis distance D for all grades of the defect type to which the defect data to which the defect type is unknown belongs is identified for
ij=(x′-μij)^tΣij(x′-μij)(
j is a subscript representing a grade), and the grade that gives the minimum value is identified as the grade to which the unknown flaw data belongs.
JP18384986A 1986-08-05 1986-08-05 Surface flaw identification Pending JPS6340844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18384986A JPS6340844A (en) 1986-08-05 1986-08-05 Surface flaw identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18384986A JPS6340844A (en) 1986-08-05 1986-08-05 Surface flaw identification

Publications (1)

Publication Number Publication Date
JPS6340844A true JPS6340844A (en) 1988-02-22

Family

ID=16142908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18384986A Pending JPS6340844A (en) 1986-08-05 1986-08-05 Surface flaw identification

Country Status (1)

Country Link
JP (1) JPS6340844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185395A (en) * 2007-01-29 2008-08-14 Mitsubishi Heavy Ind Ltd Mounting substrate visual inspection method
JP2014228357A (en) * 2013-05-21 2014-12-08 大成建設株式会社 Crack detecting method
JP2019124633A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Flaw inspection apparatus and flaw inspection method for steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185395A (en) * 2007-01-29 2008-08-14 Mitsubishi Heavy Ind Ltd Mounting substrate visual inspection method
JP2014228357A (en) * 2013-05-21 2014-12-08 大成建設株式会社 Crack detecting method
JP2019124633A (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Flaw inspection apparatus and flaw inspection method for steel sheet

Similar Documents

Publication Publication Date Title
CN111815601B (en) Texture image surface defect detection method based on depth convolution self-encoder
CN104458755A (en) Multi-type material surface defect detection method based on machine vision
Lee et al. The model of surface roughness inspection by vision system in turning
CN104914111A (en) Strip steel surface defect on-line intelligent identification and detection system and detection method
US10290113B2 (en) Surface state monitoring apparatus for metallic body and surface state monitoring method for metallic body
CN114199892B (en) Plate measuring method and system based on machine vision
CN106683093A (en) Board appearance quality comprehensive quantitative evaluation method
CN102253049A (en) Method for accurately detecting surface quality on line in production process of band steel
CN114994061A (en) Machine vision-based steel rail intelligent detection method and system
Purr et al. Stamping plant 4.0–basics for the application of data mining methods in manufacturing car body parts
CN114565314A (en) Hot rolled steel coil end face quality control system and method based on digital twinning
CN115035092A (en) Image-based bottle detection method, device, equipment and storage medium
Litvintseva et al. Real-time steel surface defect recognition based on CNN
JPS6340844A (en) Surface flaw identification
CN107900114A (en) A kind of method and device evaluated cold-rolled strip steel shape quality
Si et al. Deep learning-based defect detection for hot-rolled strip steel
CN113962954A (en) Surface defect detection method based on SE-R-YOLOV4 automobile steel part
CN113681731A (en) Detection method and system for marble processing and storage medium
Mohammed et al. Optimized fuzzy c-means clustering methods for defect detection on leather surface
Georgieva et al. Identification of surface leather defects.
SU878530A1 (en) Method of formation of optical surfaces
CN114677334A (en) Method, system and device for controlling surface quality of special-shaped blank
Vaidelienė et al. The use of Haar wavelets in detecting and localizing texture defects
Feng et al. A method for surface detect classification of hot rolled strip steel based on Xception
Pishyar et al. Investigation of different algorithms for surface defects of steel sheet for quality