JPS6340589B2 - - Google Patents

Info

Publication number
JPS6340589B2
JPS6340589B2 JP9213183A JP9213183A JPS6340589B2 JP S6340589 B2 JPS6340589 B2 JP S6340589B2 JP 9213183 A JP9213183 A JP 9213183A JP 9213183 A JP9213183 A JP 9213183A JP S6340589 B2 JPS6340589 B2 JP S6340589B2
Authority
JP
Japan
Prior art keywords
tip
orifice
nozzle
spray
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9213183A
Other languages
Japanese (ja)
Other versions
JPS59216649A (en
Inventor
Yoshinari Iwamura
Katsunori Okimoto
Toshio Tejima
Shinobu Myahara
Shigetaka Uchida
Taizo Sera
Tsuneo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Ikeuchi and Co Ltd
JFE Engineering Corp
Original Assignee
H Ikeuchi and Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Ikeuchi and Co Ltd, Nippon Kokan Ltd filed Critical H Ikeuchi and Co Ltd
Priority to JP9213183A priority Critical patent/JPS59216649A/en
Priority to DE19843419423 priority patent/DE3419423A1/en
Publication of JPS59216649A publication Critical patent/JPS59216649A/en
Publication of JPS6340589B2 publication Critical patent/JPS6340589B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明はスプレーノズルに関し、特に、鉄等
の高温物体をミスト冷却するために用いる気液混
合方式の広角均等扇形噴霧を行うスプレーノズル
に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a spray nozzle, and particularly relates to a spray nozzle that performs wide-angle uniform fan-shaped spray using a gas-liquid mixing method and is used to cool high-temperature objects such as iron with mist. .

一般に、鉄等の高温物体を製造工程途中で冷却
するには、液体のみを使用した一流体ノズルが用
いられているが、連続鋳造法の発達に伴ない一流
体ノズルでは局部的な過冷却等により表面割れが
発生している。これを防止し、かつ、製造時間の
短縮を図るためには、一流体ノズルより二流体ノ
ズルにより対象物表面上に広い範囲にわたつて均
等な噴量及び液滴の大きさで気水混合ミストを散
布する必要がある。
Generally, a single-fluid nozzle that uses only liquid is used to cool high-temperature objects such as iron during the manufacturing process, but with the development of continuous casting, single-fluid nozzles can cause problems such as localized supercooling. Surface cracks have occurred. In order to prevent this and shorten production time, a two-fluid nozzle is used instead of a one-fluid nozzle to spray a mixture of air and water mist over a wide area over a wide area with an even spray amount and droplet size. need to be dispersed.

従来技術 従来、上記した目的で提供されている二流体ノ
ズルは、流量分布の均一性、液滴粒の大きさ、霧
の幅方向の広がり等のいずれの点においても満足
すべきものはなかつた。これに対して、従来提供
されている第1図に示す如き広角均等扇形ノズル
を用いると、流量分布の均一性が不安定であり霧
の幅方向の広がりをあまり大きくできず液滴粒の
大きさが不均一になる欠点があつた。即ち、該ノ
ズルはノズル本体1の軸心に沿つて穿設した流路
2の先端2aを丸あるいは惰円、疑似惰円形状と
し、この先端が丸くなつた孔に両側よりVカツト
4をしてて吐出口3を形成している。この様な形
状のノズルに、気水混合液を流路2に供給する
と、液体が非圧縮であるのに対し、気体は圧縮性
であるため、先端の小径部へ行くに従い気体aは
流路の両側に押しやられ、液体wが流路の中心部
に集中する。そのため、吐出口3より噴射される
霧は、広がり方向の両側で気水混合状態の微細な
液滴を発生するが、中心部はほとんど液体だけと
なり粗大粒子の液滴となり、中心部の霧の巾は広
がらない。
Prior Art Conventionally, two-fluid nozzles provided for the above-mentioned purposes have not been satisfactory in terms of uniformity of flow rate distribution, size of droplets, spread of mist in the width direction, etc. On the other hand, when using a conventional wide-angle uniform fan-shaped nozzle as shown in Fig. 1, the uniformity of the flow rate distribution is unstable, and the spread of the mist in the width direction cannot be increased too much, resulting in a large droplet size. The problem was that the color was uneven. That is, in this nozzle, the tip 2a of the flow path 2 bored along the axis of the nozzle body 1 is formed into a round, inertial circle, or pseudo-inertial circle shape, and V-cuts 4 are made from both sides into the hole with the rounded tip. A discharge port 3 is formed by the discharge port 3. When a gas/water mixture is supplied to the flow path 2 of a nozzle with such a shape, since liquid is incompressible while gas is compressible, gas a flows through the flow path toward the small diameter part at the tip. is pushed to both sides of the flow path, and the liquid w concentrates in the center of the channel. Therefore, the mist ejected from the discharge port 3 generates fine droplets with a mixture of air and water on both sides in the spreading direction, but the center becomes almost only liquid and becomes coarse particle droplets. The width does not increase.

発明の目的 この発明は、上記した問題に鑑みてなされたも
のであり、気水混合液が吐出口の近傍で分離して
噴霧されることを防止し、均一な微細な液滴が霧
の広がり全体にわたつて噴霧されるようにするも
のである。
Purpose of the Invention This invention was made in view of the above-mentioned problems, and prevents the air/water mixture from being separated and sprayed near the discharge port, and allows uniform fine droplets to spread out in the mist. This is to ensure that it is sprayed all over the area.

発明の構成及び作用 この発明は、上記した目的を達成するため、ノ
ズル本体の中心に軸心に沿つて設けた気水混合液
の流入路の先端を漸次縮小してオリフイス部を形
成すると共に、ノズル本体の頂面の前後両側に外
方に向つて対称的に切欠いた前後一対の傾斜面を
設け、該傾斜面の切欠きにより上記流入路のオリ
フイス部の先端に前後方向に長い吐出口を形成
し、噴霧方向を前後方向とする一方、上記流入路
の噴霧方向と直交する左右側方に対称的に撹拌孔
を形成し、該撹拌孔の先端部を漸次縮小し該先端
より内方の側部を流入路のオリフイス部に連続さ
せ、撹拌孔に流入した気水混合液が先端部に沿つ
て流入路のオリフイス部に逆流し、噴射直前の流
入路の混合液を撹拌することにより、気液の分離
を防止し、微細な液滴が吐出孔より霧の広がり方
向の全体にわたつて散布されるようにしたことを
特徴とするスプレーノズルを提供するものであ
る。
Structure and operation of the invention In order to achieve the above-mentioned object, the present invention gradually reduces the tip of the inflow path for the air-water mixture provided along the axis at the center of the nozzle body to form an orifice portion. A pair of front and rear sloped surfaces are provided on both front and rear sides of the top surface of the nozzle body, and are cut out symmetrically toward the outside, and the notches in the slopes form a discharge port that is long in the front and rear direction at the tip of the orifice portion of the inflow channel. While the spraying direction is the front-back direction, stirring holes are formed symmetrically on the left and right sides perpendicular to the spraying direction of the inflow channel, and the tip of the stirring hole is gradually reduced to The side part is connected to the orifice part of the inflow channel, and the air/water mixture that has flowed into the stirring hole flows back to the orifice part of the inflow channel along the tip, stirring the mixed liquid in the inflow channel just before injection. The present invention provides a spray nozzle characterized in that separation of gas and liquid is prevented and fine droplets are dispersed from discharge holes over the entire area in the spreading direction of the mist.

実施例 以下、この発明を第2図以下に示す実施例によ
り詳細に説明する。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples shown in FIG. 2 and below.

ノズル本体10は断面略小判状で、前後両側外
面10aは直線状で、左右両側外面10bは円弧
状としており、かつ、図中、下側の先端面10c
より前後外面10bに向つて対称的にV字状に切
込んだ傾斜面10dを形成している。この断面V
字状の傾斜面10dは、先端面10cの中央より
前後両側に向つて拡大しながら上方へ傾斜してい
くと共に、前後外面10bでは先端より縮小しな
がら上方へ伸長した状態となつている。
The nozzle body 10 has a substantially oval-shaped cross section, the front and rear outer surfaces 10a are linear, the left and right outer surfaces 10b are arcuate, and in the figure, the lower tip surface 10c
A sloped surface 10d is formed which is symmetrically cut into a V-shape toward the front and rear outer surfaces 10b. This cross section V
The letter-shaped inclined surface 10d is inclined upward while expanding from the center of the distal end surface 10c toward both front and rear sides, and extends upward while contracting from the distal end on the front and rear outer surface 10b.

上記ノズル本体10の中央部には、上面に開口
した気水混合液流入路11をノズル本体10の軸
線l1に沿つて上下方向に穿設している。該流入路
11は上側部を大径部11aとし、下側を小径部
11bとし、該小径部11bの先端部を漸次縮小
して底面を丸形としたオリフイス部11cを設
け、該オリフイス部11cの底面はノズル本体1
0の先端面10cより僅かに内方に位置させてい
る。該流入路11のオリフイス部先端部は上記V
字状の切込みにより底面中央より前後両側にかけ
て開口し、図示の如き、前後方向の吐出口13を
形成し、該吐出口13より噴射される霧の噴射方
向を前後方向としている。
In the center of the nozzle body 10, a steam/water mixture inflow channel 11 opened on the upper surface is vertically bored along the axis l1 of the nozzle body 10. The inflow passage 11 has a large diameter part 11a on the upper side and a small diameter part 11b on the lower side, and is provided with an orifice part 11c whose bottom surface is rounded by gradually reducing the tip of the small diameter part 11b. The bottom of the nozzle body 1
It is located slightly inward from the tip surface 10c of 0. The tip of the orifice portion of the inflow channel 11 is connected to the above-mentioned V.
A letter-shaped notch opens from the center of the bottom surface to both front and rear sides, forming a discharge port 13 in the front-rear direction as shown in the figure, and the spray direction of the mist sprayed from the discharge port 13 is the front-rear direction.

上記ノズル本体10内には、流入路11の大径
部11aに連続して、中央の小径部11bの左右
両側部に断面円弧状の撹拌孔14を対称的に穿設
している。該撹拌孔14は内側部が流入路小径部
11bに連通した状態で軸芯に沿つてノズル本体
の下端近傍まで伸長し、下端部を漸次縮小して底
面14aを丸型としている。該底面14aは流入
路底面と略同一位置に左右方向に隣接して位置さ
せ、底面14aより僅かに上方の内側部を流入路
11のオリフイス部11cの左右側面に連通させ
ている。このように、撹拌孔14は吐出口13の
噴霧方向と直角方向に配設している。
In the nozzle main body 10, stirring holes 14 having an arcuate cross section are symmetrically formed on both left and right sides of a central small diameter portion 11b, continuous with the large diameter portion 11a of the inflow path 11. The stirring hole 14 extends along the axis to the vicinity of the lower end of the nozzle body with its inner side communicating with the small diameter inflow passage 11b, and the lower end is gradually reduced to form a round bottom surface 14a. The bottom surface 14a is located at substantially the same position as the bottom surface of the inflow channel and adjacent to it in the left and right direction, and the inner side slightly above the bottom surface 14a communicates with the left and right side surfaces of the orifice portion 11c of the inflow channel 11. In this way, the stirring holes 14 are arranged in a direction perpendicular to the spray direction of the discharge port 13.

上記した構造よりなるスプレーノズルでは、流
入路11の大径部11aより気水混合液は、中央
の小径部11bと左右両側の撹拌孔14に分かれ
て流入し、夫々軸芯に沿つて流通する。撹拌孔1
4に流入した気水混合液は底面14aに達する
と、丸形の底面14aに沿つて連通した流入路1
1のオリフイス部11cに図示の如く逆流して流
入する。この撹拌孔14からの逆流による流入液
により、流入路11のオリフイス部11cを流下
してきた気水混合液は第2図トに示す如く撹拌さ
れる。よつて、オリフイス部11cで中央部に液
体が周囲に気体が分離して偏在していた液体と気
体が、撹拌孔からの逆流による撹拌で均一に混合
され、吐出口13の近傍では均一な気水混合液と
なる。従つて、吐出口13から噴射される霧の広
がり全体にわたつて気水混合状体で微細な液滴が
発生する。その際、撹拌孔は噴射方向と直交する
方向に設けているため、撹拌により霧の幅方向の
広がりは阻害されず、かつ、気体と液体の混合が
広がり方向の全体にわたつて均一になされ、広が
り方向で気体と液体が分離することがないため、
流量分布も均等に制御しやすく、霧の幅も広くな
る。
In the spray nozzle having the above-described structure, the air/water mixture flows from the large diameter part 11a of the inflow path 11 into the small diameter part 11b in the center and the stirring holes 14 on both left and right sides, and flows through each of them along the axis. . Stirring hole 1
When the steam/water mixture that has flowed into the tube 4 reaches the bottom surface 14a, it flows through the inflow channel 1 that communicates along the round bottom surface 14a.
The water flows backward into the orifice portion 11c of No. 1 as shown in the figure. Due to the inflow liquid flowing back from the stirring hole 14, the air-water mixture flowing down the orifice portion 11c of the inflow path 11 is stirred as shown in FIG. Therefore, the liquid and gas, which were unevenly distributed in the orifice part 11c with the liquid separated in the center and the gas around, are mixed uniformly by the stirring caused by the backflow from the stirring hole, and a uniform gas is created near the discharge port 13. It becomes a water mixture. Therefore, fine droplets are generated in the air-water mixture over the entire spread of the mist ejected from the discharge port 13. At this time, since the stirring holes are provided in a direction perpendicular to the injection direction, the spreading of the mist in the width direction is not inhibited by stirring, and the mixing of gas and liquid is uniform throughout the spreading direction. Because gas and liquid do not separate in the direction of expansion,
It is easier to control the flow rate distribution evenly, and the width of the mist becomes wider.

上記した第2図に示す本発明のスプレーノズル
と、第1図に示す従来のスプレーノズルとを用い
て、霧の粒径の比較実験および流量分布の比較実
験を行なつた。
Using the spray nozzle of the present invention shown in FIG. 2 and the conventional spray nozzle shown in FIG. 1, experiments were conducted to compare the particle size of mist and the flow rate distribution.

粒径比較実験 第1図と第2図のスプレーノズルを流入路及び
オリフイスの形状を同一寸法に加工し、同一の気
水混合液を使用し、空気圧4Kg/cm2、液圧4Kg/
cm2で噴霧した場合のノズルを下の霧は第3図に示
す如くであり、第1図の従来例のイの場合はザウ
ター平均粒径は240μ、第2図の本発明のロの場
合は同180μであつた。この結果より、撹拌孔を
設けたものがザウター平均粒径は小さくなつてお
り、霧の中心部まで空気が混ざり、微細化に寄与
していることが立証できた。
Particle Size Comparison Experiment The spray nozzles shown in Figures 1 and 2 were machined to have the same dimensions for the inflow channel and orifice, and the same air/water mixture was used, with an air pressure of 4 kg/cm 2 and a liquid pressure of 4 kg/cm 2 .
The mist below the nozzle when spraying at cm 2 is as shown in Figure 3. In case A of the conventional example in Figure 1, the Sauter average particle diameter is 240μ, and in case B of the present invention in Figure 2. was 180μ. These results demonstrate that the Sauter average particle size is smaller in the fog with stirring holes, and that air is mixed into the center of the mist, contributing to its miniaturization.

流量分布比較実験 上記粒径実験と同様に、オリフイス形状等を同
一寸法に加工し、同一気水混合液を用いて、空気
圧3Kg/cm2、液圧3Kg/cm2で噴霧し、噴霧高さに
100mmの位置で、霧の広がり方向に流量分布を測
定し、かつ、霧の厚さをスプレーパターンで測定
した。その結果は第4図に示す通りであり、イに
示す第1図の従来のノズルでは、400mmに広がり、
均等部の長さSLは80mmで、ノズル直下から100mm
離れた所では50%となつていた。また、霧の厚さ
は中心部が狭く35mmであつた。これに対し、ロに
示す第2図の本発明ノズルでは、従来タイプと同
じく400mmに広がつているが、均等部の長さSL
280mmと非常に長くなつている。かつ、霧の厚さ
は中心部で50mmとなり従来タイプより厚い。上記
結果より、本発明のノズルでは、オリフイス近傍
で気体と液体が十分撹拌され、霧の広がり方向に
ほぼ均等に気水混合液が噴射されるため、均等な
流量分布が安定して得られやすく、かつ、幅の広
い霧が得られることが立証された。
Flow rate distribution comparison experiment Similar to the above particle size experiment, the orifice shape etc. were machined to the same dimensions, and the same air/water mixture was sprayed at an air pressure of 3 Kg/cm 2 and a liquid pressure of 3 Kg/cm 2 , and the spray height was to
At a position of 100 mm, the flow rate distribution was measured in the direction of the spread of the mist, and the thickness of the mist was also measured using the spray pattern. The results are shown in Figure 4.The conventional nozzle shown in Figure 1, shown in A, spreads to 400 mm.
The length of the uniform part S L is 80 mm, 100 mm from directly below the nozzle.
In remote areas, it was 50%. Additionally, the thickness of the fog was narrow at 35 mm in the center. On the other hand, in the nozzle of the present invention shown in Fig. 2 shown in B, the width is 400 mm as in the conventional type, but the length S L of the equal part is
It is extremely long at 280mm. Moreover, the thickness of the fog is 50mm at the center, which is thicker than the conventional type. From the above results, in the nozzle of the present invention, the gas and liquid are sufficiently stirred near the orifice, and the air/water mixture is injected almost evenly in the direction of mist spread, making it easier to stably obtain an even flow rate distribution. , and it has been proven that a wide fog can be obtained.

尚、この発明は、第2図に示す実施例に限定さ
れず、ノズル本体1′は第5図に示す如く断面真
円形状でもよく、また、第6図に示す如く、撹拌
孔14′の先端14′aは円錐形状とし必ずしも丸
味をつけなくてもよい。さらに、第7図に示す如
く、撹拌孔14″は流入路11′の噴霧方向と直角
方向に夫々2個設けてもよい。この場合、ノズル
先端面に切込むVカツトの傾斜面10′dは外方
に向けて巾広がりとせずに細巾としており、撹拌
孔14″の底面が開口しないようにしている。さ
らに、第8図に示す如く、吐出口13′を前後方
向に長い惰円状としてもよい。なおカツトはVカ
ツトのみでなく、第9図に示す如く、Uカツトで
吐出口を惰円形状としてもよい。
Note that the present invention is not limited to the embodiment shown in FIG. 2, and the nozzle body 1' may have a perfect circular cross section as shown in FIG. The tip 14'a has a conical shape and does not necessarily have to be rounded. Furthermore, as shown in FIG. 7, two stirring holes 14'' may be provided in the direction perpendicular to the spray direction of the inflow channel 11'. In this case, the inclined surface 10'd of a V-cut cut into the nozzle tip surface. The width of the stirring hole 14'' is not widened toward the outside, but rather narrow, so that the bottom surface of the stirring hole 14'' does not open. Furthermore, as shown in FIG. 8, the discharge port 13' may be formed in a circular shape that is long in the front-rear direction. Note that the cut is not limited to a V-cut, but may be a U-cut with a circular discharge opening as shown in FIG.

上記第5図から第9図に示す変形例において、
他の部分は第2図と同一の構造であるため、同一
符号を付して説明を省略する。
In the modified examples shown in FIGS. 5 to 9 above,
Since the other parts have the same structure as in FIG. 2, they will be given the same reference numerals and the explanation will be omitted.

効 果 以上の説明より明らかなように、この発明に係
わるスプレーノズルによれば、吐出口近傍のオリ
フイスの気水混合液が十分撹拌されるように噴霧
方向に直角な位置に対称的に撹拌孔を設けた構成
としているため、吐出口近傍の気体と液体の分離
が防止される。よつて、霧の広がり全体にわたつ
て気水混合状態で微細な液滴が発生する効果を有
すると共に、流量分布の均一性、霧の広がり等に
おいて、極めて大きな効果を有するものである。
Effects As is clear from the above explanation, according to the spray nozzle of the present invention, stirring holes are arranged symmetrically at positions perpendicular to the spray direction so that the air-water mixture in the orifice near the discharge port is sufficiently stirred. Since the configuration is provided with the above, separation of gas and liquid in the vicinity of the discharge port is prevented. Therefore, it has the effect of generating fine droplets in a mixed state of air and water over the entire spread of the mist, and has extremely large effects on the uniformity of the flow rate distribution, the spread of the mist, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスプレーノズルを示しイは正面
図ロは平面図ハは底面図ニはハの−線断面図
ホはニの−線断面図、第2図はこの発明のス
プレーノズルを示しイは正面図ロは側面図ハは平
面図ニは底面図ホはニの−線断面図ヘはニの
−線断面図、トはニの要部拡大図、第3図
イ,ロは粒径実験の結果を示す図面、第4図イ,
ロは流量分布実験の結果を示す図面、第5図はこ
の発明のスプレーノズルの変形例を示しイは平面
図ロは断面図、第6図は他の変形例を示す断面
図、第7図は他の変形例を示しイは平面図ロは底
面図ハは断面図、第8図は他の変形例を示しイは
平面図ロは底面図、第9図も他の変形例を示しイ
は底面図ロは断面図である 10……ノズル本体、11……気水混合液流入
路、13……吐出口、14……撹拌孔。
Figure 1 shows a conventional spray nozzle, A is a front view, B is a plan view, C is a bottom view, D is a sectional view taken along the line C, E is a sectional view taken along the line D, and Figure 2 shows the spray nozzle of the present invention. A is a front view, B is a side view, C is a plan view, D is a bottom view, E is a cross-sectional view of D, H is a cross-sectional view of D, G is an enlarged view of the main parts of D, and Figure 3 A and B are grains. Drawings showing the results of diameter experiments, Figure 4 A,
B is a drawing showing the results of a flow rate distribution experiment, FIG. 5 is a modified example of the spray nozzle of the present invention, A is a plan view, B is a sectional view, FIG. 6 is a sectional view showing another modified example, and FIG. 8 shows another modification; A is a top view; B is a bottom view; FIG. 9 is a top view; 10 is a bottom view, B is a sectional view, 10... Nozzle main body, 11... Air-water mixed liquid inflow channel, 13... Discharge port, 14... Stirring hole.

Claims (1)

【特許請求の範囲】[Claims] 1 ノズル本体の中心に軸心に沿つて設けた気水
混合液の流入路の先端を漸次縮小してオリフイス
部を形成すると共に、ノズル本体の頂面の前後両
側に外方に向つて対称的に切欠いた前後一対の傾
斜面を設け、該傾斜面の切欠きにより上記流入路
のオリフイス部の先端に前後方向に長い吐出口を
形成し、噴霧方向を前後方向とする一方、上記流
入路の噴霧方向と直交する左右両側方に対称的に
撹拌孔を形成し、該撹拌孔の先端部を漸次縮小し
該先端より内方の側部を流入路のオリフイス部に
連続させ、撹拌孔に流入した気水混合液が先端部
に沿つて流入路のオリフイス部に逆流し、噴射直
前の流入路の混合液を撹拌する構成としたことを
特徴とするスプレーノズル。
1 The tip of the inlet channel for the air/water mixture provided along the axis at the center of the nozzle body is gradually reduced to form an orifice, and the orifice is formed symmetrically outward on both the front and rear sides of the top surface of the nozzle body. A pair of front and rear sloped surfaces are provided with a notch, and the cutout of the slope forms a discharge port that is long in the front and back direction at the tip of the orifice portion of the inflow path, and the spray direction is the front and rear direction. Stirring holes are formed symmetrically on both left and right sides perpendicular to the spray direction, and the tip of the stirring hole is gradually reduced, and the side part inward from the tip is connected to the orifice of the inflow path, and the flow flows into the stirring hole. A spray nozzle characterized in that the steam/water mixture flows back into the orifice part of the inflow path along the tip and stirs the mixture in the inflow path immediately before being sprayed.
JP9213183A 1983-05-24 1983-05-24 Spray nozzle Granted JPS59216649A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9213183A JPS59216649A (en) 1983-05-24 1983-05-24 Spray nozzle
DE19843419423 DE3419423A1 (en) 1983-05-24 1984-05-24 Spray nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9213183A JPS59216649A (en) 1983-05-24 1983-05-24 Spray nozzle

Publications (2)

Publication Number Publication Date
JPS59216649A JPS59216649A (en) 1984-12-06
JPS6340589B2 true JPS6340589B2 (en) 1988-08-11

Family

ID=14045872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9213183A Granted JPS59216649A (en) 1983-05-24 1983-05-24 Spray nozzle

Country Status (1)

Country Link
JP (1) JPS59216649A (en)

Also Published As

Publication number Publication date
JPS59216649A (en) 1984-12-06

Similar Documents

Publication Publication Date Title
JPS6326202Y2 (en)
US6036116A (en) Fluid atomizing fan spray nozzle
EP0249186A1 (en) Atomizer nozzle assemble
EP1926559B1 (en) Multiple discharge orifice spray nozzle
JPS62204873A (en) Spray nozzle
US4511087A (en) Air mist nozzle apparatus
JPH05184976A (en) Spray nozzle device having grooved deflecting face
JPH09220495A (en) Fluid injection nozzle
JPH0790186B2 (en) Fan-shaped spray nozzle
KR102279187B1 (en) 2 Fluid Nozzle
US2304857A (en) Nozzle
JPS6340589B2 (en)
JP2014034020A (en) Spray gun
JPH0315493B2 (en)
JPH04176352A (en) Spray nozzle
JPS5831980B2 (en) push button for sprayer
JP3008535B2 (en) Spray nozzle for combustion
JPH0568306B2 (en)
JPH0233426B2 (en) SUPUREENOZURU
JP2004344689A (en) Two-fluid nozzle
JPH0221867B2 (en)
JPS6345903B2 (en)
JPH02237670A (en) Gas-liquid spray nozzle
JPS5924560A (en) Water and air spray nozzle
JPH0563658U (en) Two-fluid injection nozzle