JPS6340379A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPS6340379A
JPS6340379A JP18374286A JP18374286A JPS6340379A JP S6340379 A JPS6340379 A JP S6340379A JP 18374286 A JP18374286 A JP 18374286A JP 18374286 A JP18374286 A JP 18374286A JP S6340379 A JPS6340379 A JP S6340379A
Authority
JP
Japan
Prior art keywords
acceleration sensor
resistors
diffusion
stress
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18374286A
Other languages
Japanese (ja)
Inventor
Michiko Endou
みち子 遠藤
Yoshiaki Fujiwara
嘉朗 藤原
Yuji Kojima
雄次 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18374286A priority Critical patent/JPS6340379A/en
Publication of JPS6340379A publication Critical patent/JPS6340379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To construct a highly sensitive acceleration sensor by a method wherein a twin beam held structure is adopted and diffusion resistors are connected bridge-wise. CONSTITUTION:An acceleration sensor of this design is built of an overlap section 4 and flexible sections 9 and 10, respectively provided with diffusion resistors R1 and R3, on both sides of the overlap section 4. For the formation of diffusion resistors R1-R4, an approximately 2mum-thick arsenic diffusion layer is formed in an n-shaped Si wafer flexible portion, and each of the resistor is formed after a U shape. The resistors R1 and R3 (R2 and R4) are so formed that the longitudinal extension of the pattern they form is parallel (perpendicular) to the direction of generation of stress, which reverses the sign of the piezoelectric resistance to be presented. Further, input terminals 13 and 14 and measuring terminals 15 and 16 are on an upper substrate 1. They form a wiring pattern 17 for the diffusion resistors R1-R4 for the construction of a bridge of resistors. With flexible sections 9, 10, 11, and 12 being free of influence of inner stress of protecting films, there is an increase in the sensing accuracy.

Description

【発明の詳細な説明】 〔概要〕 残留内部応力による精度の低下をなくする方法として、
異方性エツチングにより重り部を中心として複数の撓み
部を設ける構成をとる加速度センサ。
[Detailed Description of the Invention] [Summary] As a method to eliminate the decrease in accuracy due to residual internal stress,
An acceleration sensor that uses anisotropic etching to provide a plurality of flexible parts around a weight part.

〔産業上の利用分野〕[Industrial application field]

本発明は測定精度を向上した加速度センサの構成に関す
る。
The present invention relates to the configuration of an acceleration sensor with improved measurement accuracy.

航空機、自動車、電車などの交通機関を初めとし機械設
備、建築などあらゆる部門にエレクトロエックス化によ
る省力化ないし無人化が進められている。
Labor-saving or unmanned systems using Electro-X are being promoted in all sectors, including transportation such as aircraft, automobiles, and trains, as well as machinery, equipment, and construction.

特に交通機関に対しては小形軽量化が必要条件であり、
半導体デバイスの形成に使用されているマイクロエレク
トロエックス技術を用いて各種のセンサが実用化され使
用されている。
Especially for transportation, compactness and weight reduction are necessary conditions.
Various sensors have been put into practical use using the microelectrox technology used to form semiconductor devices.

〔従来の技術〕[Conventional technology]

IC,LSIなど半導体デバイスの形成基板には多くの
場合、シリコン(St)単結晶基板(以下略してSiウ
ェハ)が使用され、薄膜形成技術と写真蝕刻技術(ホト
リソグラフィ或いは電子線リソグラフィ)を用いて半導
体集積回路が作られているが、この技術を用いてSiウ
ェハ上に同じような大きさで機械的な素子を形成するこ
とが行われている。
Silicon (St) single crystal substrates (hereinafter referred to as Si wafers) are often used as substrates for forming semiconductor devices such as ICs and LSIs, and are processed using thin film formation technology and photolithography technology (photolithography or electron beam lithography). Semiconductor integrated circuits are manufactured using this technology, and mechanical elements of similar size are formed on Si wafers using this technology.

具体例を挙げると、圧カセンサ、加速度センサ。Specific examples include pressure sensors and acceleration sensors.

化学濃度センサ、バブル、ノズル、プリンタ用ヘッドな
どがこれに当たり微細な機械素子が作られており、この
ような形成技術はマイクロメカニカル・デバイスと言わ
れている。
Fine mechanical elements such as chemical concentration sensors, bubbles, nozzles, and printer heads are made using this technology, and this type of formation technology is called micromechanical devices.

ここで、Stを基板として用いる理由は、Siはダイヤ
モンド構造をとり襞間性をもつもの\、次のような特徴
を備えていることによる。
Here, the reason why St is used as a substrate is that Si has a diamond structure and has interfold properties, and has the following characteristics.

■ 硬度は7で大部分の金属よりも硬く、機械的応力に
強く張力、圧縮力の何れについても鉄よりも高い弾性限
度(力を除いた際に復元する最大限界)をもっているこ
と。
■ It has a hardness of 7, which is harder than most metals, and it is resistant to mechanical stress and has a higher elastic limit than iron (maximum limit of recovery when force is removed) for both tension and compression.

■ 張力と圧縮力を繰り返すと多結晶からなる金属では
結晶粒界に応力が蓄積されて疲労を生じ破壊され易くな
るのに対し、Siはその強さが維持されること。
■ When subjected to repeated tension and compression, stress accumulates in the grain boundaries of polycrystalline metals, causing fatigue and making them more likely to break, whereas Si maintains its strength.

■ エツチング液の選択により異方性エツチングが可能
で、深い穴を正確に開けることができること、すなわち
、(110)面は最も速くエツチングされるが、(10
0)面では遅く、(111)面は殆んどエチングされな
くすることができる。
■ It is possible to perform anisotropic etching by selecting an etching solution, and to accurately drill deep holes. In other words, the (110) plane is etched fastest, but the
0) plane is etched slowly, and (111) plane can be hardly etched.

本発明は、Si基板上に形成した拡散抵抗値の変化を恩
知するピエゾ抵抗形加速度センサの構成に関するもので
ある。
The present invention relates to the configuration of a piezoresistive acceleration sensor that detects changes in diffused resistance formed on a Si substrate.

第4図はRoylanceの開発に係るSi加速度セン
サ5ilicon  Acceleron+eter’
  IEEE  TRANSACTION  0NEL
ECTRON DEVICE、 VOLJD−26,N
O,12,DEC,1979)すなわち、二枚のSiウ
ェハに異方性エツチングを施して上側の基板1と下側の
基板2を微細加工し、これを接着剤3を用いて接合しで
ある。
Figure 4 shows the Si acceleration sensor 5ilicon Acceleron+eter' developed by Roylance.
IEEE TRANSACTION 0NEL
ECTRON DEVICE, VOLJD-26,N
0, 12, DEC, 1979) That is, two Si wafers are subjected to anisotropic etching to form an upper substrate 1 and a lower substrate 2, which are then bonded together using an adhesive 3. .

ここで上側の基板1は中央に重り部(Mass)  4
があり、これを中心とし三方をエツチングして完全に打
ち抜くと共に、一方を浅くエツチングして撓み部5を設
け、これによって重り部4を支える片持梁(Canti
lever)形の構造をしている。
Here, the upper board 1 has a weight part (Mass) 4 in the center.
With this as the center, three sides are etched to completely punch out, and one side is shallowly etched to provide a flexible part 5, which forms a cantilever beam that supports the weight part 4.
It has a lever-shaped structure.

また、撓み部5の部分には不純物を拡散させて拡散抵抗
6を形成している。
Furthermore, a diffused resistor 6 is formed by diffusing impurities in the portion of the flexible portion 5 .

次に、動作原理としては上側の基板1より下側の基板2
の方向に加速度が加わる場合には撓み部5の部分の厚さ
は10μm程度と薄く、そのため重り部4は慣性により
下がり、撓み部5が撓むことにより拡散抵抗6に機械的
応力が加わって電気抵抗が変化する(ピエゾ抵抗が発生
する)。
Next, the operating principle is that the lower substrate 2 is lower than the upper substrate 1.
When acceleration is applied in the direction of Electrical resistance changes (piezoresistance occurs).

そこで、このピエゾ抵抗の大きさを検出して加速度を測
定するものである。
Therefore, acceleration is measured by detecting the magnitude of this piezoresistance.

然し、かかる従来の加速度センサにおいては上側の基板
1の上に化学的気相成長法(略称CVO法)などにより
二酸化珪素(SiO□)などの保護膜7が設けられてい
るが、この形成が高温で行われるために保護膜7の中に
内部応力を生じ、このため重り部4に加速度の印加がな
くとも撓み部5に撓みを生じ、精度の高い測定を行うこ
とができないと云う問題がある。
However, in such a conventional acceleration sensor, a protective film 7 made of silicon dioxide (SiO□) is provided on the upper substrate 1 by a chemical vapor deposition method (abbreviated as CVO method). Since the measurement is carried out at a high temperature, internal stress is generated in the protective film 7, and therefore, even if no acceleration is applied to the weight section 4, the deflection section 5 is bent, making it impossible to perform highly accurate measurements. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来の加速度センサは薄く形成されて
いる撓み部5と重り部4を保護して信頼性を確保するた
めに保護膜7が設けられているが、この保護膜7の残留
内部応力により加速度が加わらなくとも撓み部5が撓ん
でピエゾ抵抗を生じており、これにより測定精度が低下
していることが問題である。
As described above, the conventional acceleration sensor is provided with a protective film 7 to protect the thinly formed flexible part 5 and weight part 4 and ensure reliability. The problem is that the bending portion 5 bends due to stress even when no acceleration is applied, producing piezoresistance, which reduces measurement accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は異方性エツチングにより重り部を中心とし
て複数の撓み部を設け、それぞれの撓み部に拡散抵抗を
設けた構成の加速度センサにより解決することができる
The above problem can be solved by an acceleration sensor having a structure in which a plurality of bending parts are provided around the weight part by anisotropic etching, and each bending part is provided with a diffused resistor.

〔作用〕[Effect]

本発明は従来の片持梁構造を改め重り部を中心として複
数の梁を備えた両持梁構造とし、撓み部のそれぞれに拡
散抵抗を設けることにより保護膜の形成による残留内部
応力が原因でピエゾ抵抗が発生するのを防ぐものである
The present invention has changed the conventional cantilever structure to a double-supported beam structure with multiple beams centered around the weight part, and by providing a diffusion resistance in each of the bending parts, residual internal stress due to the formation of a protective film can be reduced. This prevents piezoresistance from occurring.

〔実施例〕〔Example〕

第1図は本発明に係る加速度センサの断面図、また第2
図はこの平面図であって、第1図は第2図のx−x ′
線位置に対応している。
FIG. 1 is a sectional view of an acceleration sensor according to the present invention, and FIG.
The figure is a plan view of this, and FIG.
It corresponds to the line position.

すなわち、本発明に係る加速度センサは第1図に示すよ
うに重り部4を中央にして両方に撓み部9.10があり
、この撓み部に従来と同様に拡散抵抗R1,R3を備え
た構成をとる。
That is, as shown in FIG. 1, the acceleration sensor according to the present invention has a bending part 9 and 10 on both sides of the weight part 4 in the center, and these bending parts are provided with diffused resistors R1 and R3 as in the conventional case. Take.

ここで拡散抵抗R,,R1は厚さが約lOμ−の撓み部
9.10の付は根位置に設けられているが、この理由は
加速度による重り部4の降下に際してこの付は根位置に
最も大きな応力が発生することによる。
Here, the base of the flexure portion 9.10 of the diffused resistors R, , R1 having a thickness of approximately 1Oμ- is provided at the root position. Due to the occurrence of the greatest stress.

なお、撓み部は第2図に示すように左右の撓み部9.1
0のみならず上下にも撓み部10.11として十字形に
設けである。
Note that the flexible portions are the left and right flexible portions 9.1 as shown in Fig. 2.
Flexible portions 10.11 are provided not only at the top and bottom but also in the shape of a cross.

ここで、拡散抵抗R+、Rt、Rs、R4はn形のSi
ウェハの撓み部に硼素(B)を約2μ糟の深さに拡散さ
せ、コの字状のパターン形状に作られているが、ここで
R,とR3は抵抗パターンの長平方向が応力発生方向と
平行となるように、またR2とR4は抵抗パターンの長
平方向が応力発生方向と直角となるように形成されてお
り、これによりピエゾ抵抗の符号が反対となるようにし
ている。
Here, the diffused resistors R+, Rt, Rs, and R4 are made of n-type Si.
Boron (B) is diffused to a depth of approximately 2 μm in the flexible portion of the wafer, creating a U-shaped pattern, where R and R3 are such that the longitudinal direction of the resistor pattern is the stress generation direction. R2 and R4 are formed so that the longitudinal direction of the resistance pattern is perpendicular to the direction of stress generation, so that the signs of the piezoresistors are opposite to each other.

また、上側の基板1には入力端子13.14と測定端子
15.16があり、これよりそれぞれの拡散抵抗R1,
R1,R3,R4に配線パターン17が形成され、第3
図に示すように抵抗ブリッジ形に結線しであるが、この
実施例の場合は厚さが約8000人のアルミニウム(A
 I )蒸着膜で形成し、配線パターン17の幅は20
p11とした。
In addition, the upper substrate 1 has input terminals 13.14 and measurement terminals 15.16, from which the respective diffused resistors R1,
A wiring pattern 17 is formed on R1, R3, and R4, and the third
As shown in the figure, the wires are connected in a resistor bridge type.
I) Formed with a vapor deposited film, the width of the wiring pattern 17 is 20
It was set as p11.

このようにして形成した加速度センサにおいては撓み部
9.10.11.12が保護膜の内部応力によって撓む
ことがないので、従来の片持梁形の構造と比較して感知
精度が5倍に向上し、高性能化を実現することができた
In the acceleration sensor formed in this way, the flexible portions 9, 10, 11, and 12 do not bend due to the internal stress of the protective film, so the sensing accuracy is five times higher than that of the conventional cantilever structure. We were able to achieve higher performance.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明は両持梁構成をとり、また拡散
抵抗をブリッジ形に配線接続することにより従来の片持
梁構造に比較して高感度の加速度センサを実現すること
ができる。
As described above, the present invention employs a double-supported beam structure and connects diffused resistors in a bridge-like manner, thereby making it possible to realize an acceleration sensor with higher sensitivity than the conventional cantilever structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る加速度センサの断面図、第2図は
本発明に係る加速度センサの平面図、第3図は拡散抵抗
の結線図、 第4図は従来の加速度センサの断面図、である。 参介曲(二4斤、るm月宋浸マンリの千句図手 2 口
FIG. 1 is a sectional view of an acceleration sensor according to the present invention, FIG. 2 is a plan view of an acceleration sensor according to the present invention, FIG. 3 is a wiring diagram of a diffused resistor, and FIG. 4 is a sectional view of a conventional acceleration sensor. It is. Sansukekyoku (24 catties, 1000 poems of Song Dynasty Manli) 2 mouths

Claims (2)

【特許請求の範囲】[Claims] (1)シリコンウエハに異方性エツチングを施して、拡
散抵抗が形成されている撓み部で支えられる重り部4を
作り、前記撓み部の撓みにより加速度を測定する加速度
センサにおいて、 前記撓み部は前記重り部4を中心として対称方向に複数
個設けられていることを特徴とする加速度センサ。
(1) In an acceleration sensor that performs anisotropic etching on a silicon wafer to create a weight portion 4 supported by a flexure portion on which a diffused resistance is formed, and measures acceleration by the flexure of the flexure portion, the flexure portion is An acceleration sensor characterized in that a plurality of acceleration sensors are provided in a symmetrical direction with the weight portion 4 as the center.
(2)前記撓み部は前記重り部4を中心とした対称方向
に四個設けられ、それぞれの撓み部9,10,11,1
2上に形成された拡散抵抗R_3,R_1,R_2,R
_4が抵抗ブリッジ形に配線接続されていることを特徴
とする特許請求の範囲第1項記載の加速度センサ。
(2) The four flexible parts are provided in symmetrical directions around the weight part 4, and each of the flexible parts 9, 10, 11, 1
Diffused resistors R_3, R_1, R_2, R formed on 2
2. The acceleration sensor according to claim 1, wherein _4 is wire-connected in a resistor bridge type.
JP18374286A 1986-08-05 1986-08-05 Acceleration sensor Pending JPS6340379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18374286A JPS6340379A (en) 1986-08-05 1986-08-05 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18374286A JPS6340379A (en) 1986-08-05 1986-08-05 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPS6340379A true JPS6340379A (en) 1988-02-20

Family

ID=16141181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18374286A Pending JPS6340379A (en) 1986-08-05 1986-08-05 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPS6340379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259264A (en) * 1988-04-08 1989-10-16 Fujikura Ltd Semiconductor acceleration sensor
JPH04132495U (en) * 1991-05-24 1992-12-08 石垣機工株式会社 Support device for impeller shaft in vertical shaft pump
US5172205A (en) * 1990-09-26 1992-12-15 Nissan Motor Co., Ltd. Piezoresistive semiconductor device suitable for use in a pressure sensor
EP0729019A2 (en) * 1995-02-27 1996-08-28 Motorola, Inc. Method of forming a piezoresistive pressure sensor and a piezoresistive pressure sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259264A (en) * 1988-04-08 1989-10-16 Fujikura Ltd Semiconductor acceleration sensor
JP2551625B2 (en) * 1988-04-08 1996-11-06 株式会社フジクラ Semiconductor acceleration sensor
US5172205A (en) * 1990-09-26 1992-12-15 Nissan Motor Co., Ltd. Piezoresistive semiconductor device suitable for use in a pressure sensor
JPH04132495U (en) * 1991-05-24 1992-12-08 石垣機工株式会社 Support device for impeller shaft in vertical shaft pump
EP0729019A2 (en) * 1995-02-27 1996-08-28 Motorola, Inc. Method of forming a piezoresistive pressure sensor and a piezoresistive pressure sensor
EP0729019A3 (en) * 1995-02-27 1996-12-11 Motorola Inc Method of forming a piezoresistive pressure sensor and a piezoresistive pressure sensor

Similar Documents

Publication Publication Date Title
JP2575939B2 (en) Semiconductor acceleration sensor
US4071838A (en) Solid state force transducer and method of making same
JPH10177033A (en) Acceleration measuring instrument
US4050049A (en) Solid state force transducer, support and method of making same
KR100499970B1 (en) Acceleration sensor
US20090071251A1 (en) Acceleration sensor
JPH07113647B2 (en) Semiconductor acceleration sensor
US20170001857A1 (en) Sensor element and method of manufacturing the same
JPH0690219B2 (en) Equipment for measuring mechanical forces and force effects
KR100508198B1 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
JPS6340379A (en) Acceleration sensor
JP3330074B2 (en) 3-axis acceleration sensor
US7939355B2 (en) Single-mask fabrication process for linear and angular piezoresistive accelerometers
Roylance A MINIATURE INTEGRATED CIRCUIT ACCELEROMETER FOR BIOMEDICAL APPLICATIONS.
JPH08107219A (en) Semiconductor acceleration sensor and its manufacture
JPH01287470A (en) Semiconductor acceleration sensor
JP3642054B2 (en) Piezoresistive 3-axis acceleration sensor
JPS6394690A (en) Device for detecting force
JP2765610B2 (en) Semiconductor vibration / acceleration detector
Eklund et al. Single-mask SOI fabrication process for linear and angular piezoresistive accelerometers with on-chip reference resistors
JP4466344B2 (en) Acceleration sensor
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH0712932Y2 (en) Semiconductor acceleration sensor