JPS6340237B2 - - Google Patents

Info

Publication number
JPS6340237B2
JPS6340237B2 JP56025514A JP2551481A JPS6340237B2 JP S6340237 B2 JPS6340237 B2 JP S6340237B2 JP 56025514 A JP56025514 A JP 56025514A JP 2551481 A JP2551481 A JP 2551481A JP S6340237 B2 JPS6340237 B2 JP S6340237B2
Authority
JP
Japan
Prior art keywords
coal
heavy oil
slurry
supplied
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56025514A
Other languages
Japanese (ja)
Other versions
JPS57141495A (en
Inventor
Yasuyuki Nakabayashi
Hikoo Matsura
Jintaro Suzuki
Yasutomo Tomura
Ken Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
IHI Corp
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
IHI Corp
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd, IHI Corp, Hitachi Zosen Corp, Mitsubishi Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP2551481A priority Critical patent/JPS57141495A/en
Publication of JPS57141495A publication Critical patent/JPS57141495A/en
Publication of JPS6340237B2 publication Critical patent/JPS6340237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 開示技術は石炭重油系の燃料スラリーを製造す
る際に一定の粘性の安定した性状のスラリーを得
る製造技術の分野に属する。 <要旨の概要> 而して、この出願の発明は石炭と加熱重油とを
別々にボールミル等に供給し、混合すると共に粉
砕分散し、所定濃度、粒度、温度にし、同時に発
生水蒸気分をスラリー分から分離し、石炭重油系
スラリーを得るようにした製造方法に関する発明
であり、特に、供給石炭量を検出し、これに対応
して設定比率の重油供給量を決めるようにし、而
して、製品スラリー温度と供給重油温度とを検知
して設定スラリー温度になるように加熱するよう
にし、又、石炭の含有水分を検知して実供給量を
決め、対応実質重油量も決め、最適性状の石炭重
油系スラリーを得るようにした製造方法に係る発
明である。 <従来技術> 周知の如く、石炭重油系スラリーは省エネルギ
ー、高率輸送の可能性が高い等のメリツトのため
に、各種の技術、例えば、所謂COM等が開発改
良され、研究が続けられている。 そして、石炭を微粉砕して重油と混合分散して
スラリーとした後は製造工程のみならず、貯蔵プ
ロセスは勿論のこと、使用時にも安定した性状を
保つことが必要とされる。 これに対処するに、例えば、公知先願技術であ
る特開昭55−135196号に示される様に、重油を加
熱して供給し、性状について種々の安定化処理を
行うようにしている技術がある。 ところで、各種の製造スラリーについての性状
については発熱量、比重、引火点、温度、粘度等
があるが、石炭重油系スラリーにあつてはスラリ
ー自体の状態としては液性であり、輸送には適し
ている。 そこで、輸送スラリーが輸送には適した能力、
性状を失うと、所定の輸送量を確保出来ないデメ
リツトが生じてくることになる。 而して、輸送に係るスラリーの流動性を決定す
るのはスラリーの粘性であり、そのため、該粘性
が第一義的に石炭重油系スラリーの製品の性状と
して最重要であることが分る。 ところで、該スラリーの粘度を決める要因には
石炭の銘柄、及び、重油の銘柄の各物性、石炭の
濃度、粒度、スラリー水分、温度等があるが、そ
のうち、性状に関して最も影響が大きいのは濃度
と温度であり、スラリー温度が低下すると、粘性
が大になり、上述の如きトラブルが発生すること
が知られている。 又、石炭、重油系スラリー製造に供される湿式
ボールミルの粉砕性能決定においても粘性が大き
くなる。 勿論、前述の如く、石炭、重油の性状において
それらの水分等も粘性決定に大きく与るが、それ
らは上記ボールミル等への投入の前段で決定さ
れ、しかも、水分の影響は僅かである。 又、石炭の濃度が高くなると、当然のことなが
ら粘性が高くなるものである。 <発明が解決しようとする問題点> さりながら、これまでの石炭重油系スラリー製
造においては予め定められた石炭重油供給比率を
決めておき、計器による測定制御等により重油加
熱温度を決めるだけであつたため、常に均一な安
定した温度粘性のスラリーが得られないという問
題があつた。 <発明の目的> この出願の発明の目的は上述従来技術に基づく
石炭重油系スラリーの問題点を解決すべき技術的
課題とし、最もスラリーの粘性に係りある石炭濃
度と、スラリー温度、及び、重油供給温度とを最
適に制御するようにし、安定した性状のスラリー
を得るようにしてエネルギー産業における燃料技
術利用分野に益する優れた石炭重油系スラリー製
造方法を提供せんとするものである。 <問題点を解決するための手段・作用> 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明の構成は前述問題点を解決する
ために、安定した石炭石油系スラリーを製造する
に際し、設定石炭供給量、それも含有水分を検知
し、実質給炭量を常に安定して供給し、これに対
し設定比率の実質重油を供給し、又、得られたス
ラリーの温度と供給重油の温度を検知し、設定供
給重油温度にして一定粘度を有する安定した性状
のスラリーを得ることが出来るようにした技術的
手段を講じたものである。 <実施例> 次に、この出願の発明の実施例を図面に従つて
説明すれば以下の通りである。 第1図に示す実施例において、石炭Cは所定品
質銘柄のものを設定粒度に粗破砕されて乾燥さ
れ、シユート1より定量供給コンベヤ2を介して
湿式ボールミル3に供給され、又、同時に所定品
種の重油Lもポンプ4により流量計5、流量調整
弁6を通り、蒸気加熱器7により加熱され、同じ
く上記ボールミル3に供給され、所定に装備され
たボールにより定温状態で混合され、石炭Cは設
定粒度に微粉砕され、分散され、スラリー状とな
つてミスト、及び、脱水蒸気を含有して後部から
排出され、設定分離器8に於いてミスト、蒸気と
スラリーは分離され、スラリーSは補助タンク9
を経てポンプ10によりストレージタンク11に
貯蔵される。 而して、スラリーSの性状安定化はミル3の粉
砕粒度一定、脱水蒸発の粘度一定、即ち、濃度と
温度に与るため、濃度については前段制御で、
又、温度制御は後段で行うようにされている。 即ち、石炭Cの定量供給コンベヤ2により所定
重量供給される石炭Cに対しては図示しない適宜
重量検知装置を介して重量を検知され、その検知
信号は変換器12により設定器13からの設定重
量信号と調節計14で比較演算され、設定重量に
対し過不足ある場合はそれに応じて調節制御され
るようにされて定量供給コンベヤ2のモータ15
の動作を遅速させて供給される石炭量Cを設定量
に一致させる。 一方、変換器12からの重量検知信号が重油L
の制御用比率設定器16へ入力されて比率設定信
号が流量計5からの流量信号と比較され、供給石
炭Cの量に対する設定比率と過不足がある場合、
その過不足信号は調節計17で所定に調整された
制御出力信号として流量調整弁6の開度を調整
し、対応設定流量を決め、したがつて、自動的に
石炭濃度が常に一定に保たれるようにされる。 次に、第2図に示す様に、スラリー中の水分に
ついてはAゾーンに示す如く原料炭の含水率が通
常7〜12%にあるものが加熱重油により混合さ
れ、加熱されると、横軸に温度℃を、縦軸にスラ
リー中水分%をとれば、グラフTに示す様に、含
水率は昇温と共に低減するが、温度を一定にすれ
ば、スラリー中の含水率は決定される。 したがつて、前記粘性に関するフアクターとし
て一応は影響がなくなる。 もつとも、微小に影響がある場合の完全制御に
ついては後述する。 而して、温度制御については、第1図に図示す
る様に、分離器8のスラリー分離部に設けた温度
センサ18からの温度検知信号が変換器19を介
して調節計20に設定器21からの信号と合せて
入力され、該設定器21による設定温度差を検出
して過不足分を調節して設定器22に入力させ、
一方、加熱器7から加熱されて送給される重油の
検知温度の変換器23からの信号と共に調節計2
4に入力されてその出力信号は制御信号として蒸
気送給パイプ25の流量調節バルブ26を開閉調
整する。 これにより、スラリーSの温度を検知して加熱
器7の温度を制御し、ミル3内の重油Lの加熱温
度を設定温度に自動的に維持するようにし、した
がつて、これらのことからスラリー粘性を一定に
保つてスラリー製造をすることが出来る。 而して、上述実施例のスラリー製造方法、特
に、比率演算、及び、設定値の設定について理論
的に説明すれば、次の通りである。 即ち、第1図の態様の場合、 石炭、重油比率演算式において、 (1)スラリー製造量 WS(Kg/h) スラリー組成 (重量比率)石炭濃度 C(%) スラリー中水分量 HS(%) 重油濃度 L(%) L=100−C−HS(%) を製造目標値として決定する。 (2) 石炭水分値HC、重油中水分HL、重油比重γ
を分析し求める。 (3) 次に、石炭供給量(乾炭) WCD=WS×C/100 WCD:石炭供給量(乾炭)(Kg/h) を求め、続いて、 (4) 石炭供給量(湿炭) WC=WCD/(100−HC)/100=WS・C/100−HC WC:石炭供給量(湿炭)(Kg/h) HC:石炭水分(ウエツトベース)(%) を求めてこのWCを石炭供給機に設定する。 (5) 次に、石炭供給比率 RC=WC/WCX RC:石炭供給比率(−) WCX:石炭供給機の最大供給量(Kg/h) を計算すると共に次の第(6)、(7)、(8)項を計算
し、石炭重油比率Rを比率設定器に設定する。 (6) 重油供給量 WL=WS×L/100/(100−HL)/100=WS×(100−C−
HS)/100−HL WL:重油供給量(Kg/h) HL:重油中水分(%) (7) 重油供給比率 RL=f(t)×WL/γ/QLX RL:重油供給比率(−) f(t):重油流量計温度補正係数(−) γ:重油比重(15℃/4℃)(−) QLX:重油供給機の最大供給量(/h) (8) 石炭重油比率 R=RL/RC=WCX・f(t)・(1
00−C−HS)(100−HC)/QLX・γ・C・(100−HL) (9) 製造目標値として定めたスラリー中水分量
HSとなるよう第2図より製品スラリー温度を
読みとり、設定器に設定する。 (10) 石炭供給機のスタートボタンを押し、製造を
開始する。 (11) 重油は石炭供給量に対し設定された比率設定
値に従い供給される。 (12) 重油は製品スラリーが設定された温度になる
ように加熱器がコントロールされ、加熱供給さ
れる。 上述プロセスに基づくスラリーの製造例を次の
表に示す。
<Industrial Application Field> The disclosed technology belongs to the field of manufacturing technology for obtaining a slurry with a constant viscosity and stable properties when manufacturing a coal-heavy oil-based fuel slurry. <Summary of the Summary> The invention of this application feeds coal and heated heavy oil separately into a ball mill or the like, mixes them and pulverizes and disperses them to a predetermined concentration, particle size, and temperature, and at the same time removes the generated water vapor from the slurry. This invention relates to a manufacturing method that separates coal to obtain heavy oil-based slurry, and in particular, detects the amount of coal to be supplied and determines the amount of heavy oil to be supplied at a set ratio in accordance with this, thereby producing a product slurry. The temperature and the supplied heavy oil temperature are detected to heat the slurry to the set slurry temperature, and the moisture content of the coal is detected to determine the actual supply amount, and the corresponding actual amount of heavy oil is determined, so that coal heavy oil with optimal properties is determined. This invention relates to a manufacturing method for obtaining a system slurry. <Prior art> As is well known, various technologies such as so-called COM etc. have been developed and researched for coal heavy oil based slurry due to its advantages such as energy saving and high possibility of high rate transportation. . After coal is finely pulverized and mixed and dispersed with heavy oil to form a slurry, it is necessary to maintain stable properties not only during the manufacturing process, but also during the storage process, as well as during use. To deal with this, for example, there is a technology that heats and supplies heavy oil and performs various stabilization treatments on its properties, as shown in Japanese Patent Application Laid-Open No. 55-135196, which is a known prior art. be. By the way, the properties of various manufactured slurries include calorific value, specific gravity, flash point, temperature, viscosity, etc., but in the case of coal heavy oil based slurry, the slurry itself is liquid and is not suitable for transportation. ing. Therefore, the transport slurry has a capacity suitable for transport,
If the properties are lost, there will be a disadvantage that the specified amount of transportation cannot be secured. Therefore, it is the viscosity of the slurry that determines the fluidity of the slurry during transportation, and therefore, it can be seen that the viscosity is primarily the most important property of the coal-heavy oil-based slurry product. Incidentally, the factors that determine the viscosity of the slurry include the brand of coal, physical properties of the brand of heavy oil, coal concentration, particle size, slurry moisture, temperature, etc. Among them, concentration has the greatest influence on the properties. It is known that when the slurry temperature decreases, the viscosity increases and the above-mentioned troubles occur. In addition, viscosity increases when determining the crushing performance of wet ball mills used for producing coal and heavy oil based slurries. Of course, as mentioned above, in terms of the properties of coal and heavy oil, their moisture content plays a large role in determining their viscosity, but these are determined prior to feeding into the ball mill, etc., and the influence of moisture is minimal. Also, as the concentration of coal increases, the viscosity naturally increases. <Problems to be solved by the invention> However, in the production of coal-heavy oil-based slurry up to now, a predetermined coal-heavy oil supply ratio is determined in advance, and the heating temperature of the heavy oil is determined by measurement control using instruments, etc. Therefore, there was a problem in that it was not always possible to obtain a slurry with a uniform and stable temperature and viscosity. <Purpose of the Invention> The purpose of the invention of this application is to solve the problems of coal heavy oil based slurry based on the above-mentioned prior art, and to solve the problems of coal concentration, slurry temperature, and heavy oil slurry, which are most related to the viscosity of slurry. It is an object of the present invention to provide an excellent method for producing coal-heavy oil-based slurry that is beneficial to the field of fuel technology application in the energy industry by optimally controlling the supply temperature and obtaining slurry with stable properties. <Means/effects for solving the problems> In accordance with the above-mentioned object, the structure of the invention of this application, which is summarized in the above-mentioned claims, produces a stable coal-oil based slurry in order to solve the above-mentioned problems. At the same time, the set amount of coal to be supplied, as well as the moisture content, is detected, and the actual coal amount is constantly and stably supplied, and in response to this, the actual amount of heavy oil is supplied at a set ratio, and the temperature of the resulting slurry and the supplied heavy oil are A technical measure has been taken to detect the temperature of the supplied heavy oil and to obtain a slurry with stable properties and a constant viscosity by adjusting the supplied heavy oil temperature to a set value. <Example> Next, an example of the invention of this application will be described below with reference to the drawings. In the embodiment shown in FIG. 1, coal C is a predetermined quality brand, which is coarsely crushed to a predetermined particle size, dried, and supplied from a chute 1 via a quantitative supply conveyor 2 to a wet ball mill 3. The heavy oil L is also passed through a flow meter 5 and a flow rate regulating valve 6 by a pump 4, heated by a steam heater 7, and also supplied to the ball mill 3, where it is mixed at a constant temperature by a ball equipped in a predetermined manner, and the coal C is The slurry is finely pulverized to a set particle size, dispersed, and discharged from the rear containing mist and dehydrated steam.The mist, steam, and slurry are separated in the set separator 8, and the slurry S is auxiliary. tank 9
The water is then stored in a storage tank 11 by a pump 10. Therefore, the stabilization of the properties of the slurry S depends on the constant pulverized particle size in the mill 3 and the constant viscosity during dehydration and evaporation, that is, the concentration and temperature, so the concentration is controlled in the previous stage.
Further, temperature control is performed at a later stage. That is, the weight of the coal C supplied in a predetermined weight by the coal C constant supply conveyor 2 is detected via an appropriate weight detection device (not shown), and the detection signal is transmitted by the converter 12 to the set weight from the setting device 13. The signal is compared with the controller 14, and if the set weight is over or under, the control is adjusted accordingly, and the motor 15 of the constant supply conveyor 2 is controlled.
The amount of coal C supplied is made to match the set amount by slowing down the operation. On the other hand, the weight detection signal from the converter 12 is
The ratio setting signal is input to the control ratio setting device 16 and is compared with the flow rate signal from the flowmeter 5, and if there is an excess or deficiency with respect to the set ratio with respect to the amount of supplied coal C,
The excess/deficiency signal is used as a control output signal adjusted to a predetermined value by the controller 17, and the opening degree of the flow rate adjustment valve 6 is adjusted to determine the corresponding set flow rate.Therefore, the coal concentration is automatically kept constant at all times. be made to be Next, as shown in Figure 2, regarding the moisture in the slurry, as shown in zone A, coking coal whose moisture content is usually 7 to 12% is mixed with heated heavy oil and heated, and the horizontal axis If we take the temperature in °C and the moisture % in the slurry on the vertical axis, as shown in graph T, the moisture content decreases as the temperature rises, but if the temperature is kept constant, the moisture content in the slurry is determined. Therefore, there is no influence as a factor regarding the viscosity. However, complete control when there is a slight influence will be discussed later. Regarding temperature control, as shown in FIG. is input together with a signal from the setting device 21, detects the temperature difference set by the setting device 21, adjusts the excess and deficiency, and inputs it to the setting device 22,
On the other hand, the controller 2 receives a signal from the converter 23 of the detected temperature of the heavy oil heated and fed from the heater 7.
4, and its output signal is used as a control signal to open and close the flow rate regulating valve 26 of the steam feed pipe 25. As a result, the temperature of the slurry S is detected and the temperature of the heater 7 is controlled, and the heating temperature of the heavy oil L in the mill 3 is automatically maintained at the set temperature. Slurry can be manufactured while keeping the viscosity constant. A theoretical explanation of the slurry manufacturing method of the above embodiment, particularly the ratio calculation and setting of set values, is as follows. That is, in the case of the embodiment shown in Fig. 1, in the formula for calculating the ratio of coal and heavy oil, (1) Slurry production amount W S (Kg/h) Slurry composition (weight ratio) Coal concentration C (%) Moisture content in slurry H S ( %) Heavy oil concentration L (%) L=100-C-H S (%) is determined as the production target value. (2) Coal moisture value H C , moisture content in heavy oil H L , heavy oil specific gravity γ
Analyze and find. (3) Next, calculate the coal supply amount (dry coal) W CD = W S × C/100 W CD : Coal supply amount (dry coal) (Kg/h), and then (4) Coal supply amount ( Wet coal) W C = W CD / (100-H C ) / 100 = W S・C / 100-H C W C : Coal supply amount (wet coal) (Kg/h) H C : Coal moisture (wet base) (%) and set this W C to the coal feeder. (5) Next, calculate the coal supply ratio R C = W C /W CX R C : Coal supply ratio (-) W CX : Maximum supply amount of the coal feeder (Kg/h), and perform the following (6) ), (7), and (8), and set the coal heavy oil ratio R in the ratio setting device. (6) Heavy oil supply amount W L = W S × L / 100 / (100-H L ) / 100 = W S × (100-C-
H S )/100−H L W L : Heavy oil supply amount (Kg/h) H L : Moisture in heavy oil (%) (7) Heavy oil supply ratio R L = f(t)×W L /γ/Q LX R L : Heavy oil supply ratio (-) f(t): Heavy oil flow meter temperature correction coefficient (-) γ: Heavy oil specific gravity (15℃/4℃) (-) Q LX : Maximum supply amount of heavy oil feeder (/h) (8) Coal heavy oil ratio R = R L / R C = W CX・f(t)・(1
00−C−H S ) (100−H C )/Q LX・γ・C・(100−H L ) (9) Moisture content in slurry determined as manufacturing target value
Read the product slurry temperature from Figure 2 so that it is H S , and set it on the setting device. (10) Press the start button on the coal feeder to start production. (11) Heavy oil will be supplied according to the ratio set to the coal supply amount. (12) The heater is controlled so that the product slurry reaches the set temperature, and the heavy oil is heated and supplied. An example of slurry production based on the above process is shown in the following table.

【表】 本製造において、各条件は以下であつた。 (1) 石炭供給機の最大供給量 WCX=900(Kg/h) (2) 重油供給機の最大供給量 QLX=800(/h) 重油流量計温度補正係数 f(t)=1.0(−) (3) 湿式ボールミル仕様 ミル径×ミル長=φ1200×2400(mm) ボール充填率 30% ところで、石炭Cの銘柄によつては厳密には含
水率が異なり、又、原料によつては送給中頻繁に
水分状況が変わる場合がある。 そして、該石炭Cの含水率変化に比し、相対的
には小さいが、重油Lも含水率等により比重が異
なる場合があり、又、該重油Lについては容量計
測であるため、石炭Cの比重濃度に対して温度に
よる容量変化が微妙な影響を及ぼす場合があり、
加えて、完全な品質管理からみると、スラリーS
中の水分管理も必要となり、更に、脱水分の蒸発
による気化分を考慮すると、ミル3内の絶対湿度
を脱水量に応じた値以下にする必要がある。 これに対処する実施例を第1図を参照して第3
図で説明すると、濃度比率を一定にする制御につ
いてはシユート1から供給する原料石炭Cに対し
サイクルサンプリング等の手段により水分計27
により含水量を検出し、設定器28の設定含水比
と演算器29で比較演算し、実質必要石炭量を換
算し、その出力を石炭量制御回路30に入力して
定量供給コンベヤ2の動作を制御するようにさ
れ、該供給コンベヤ2からの供給石炭重量は該石
炭量制御回路30から比率設定器16に入力され
る。 一方、ポンプ4を介して送給される重油Lは同
じく水分量をサイクルサンプリングにより水分計
31で検知し、又、温度を温度計32の適宜セン
サで検知し、更に、品質差による比重検知を比重
計33で行つて、流量計5からの流量検知信号と
共に検知信号を演算回路34に送信し、又、最終
製品のスラリーSの水分量を水分計35で検知
し、その検知信号を該演算回路34にフイードバ
ツクし、それらをトータルに演算して実質重油量
を換算し、その換算信号を前記比率設定器16に
送信して実質石炭量に対する実質重油量を決め、
調節計17での流量を決定を介して流量調整弁6
を所定に開閉する。 したがつて、この態様では確実に濃度は自動制
御される。 尚、この場合の含有水分に対する脱水による蒸
発については前記第2図に基づく温度により一意
的に決められ、加熱器7に対する温度制御は第1
図実施例の態様と同じようになされ、スラリーS
の粘性均一は保障される。 而して、分離器8で分離されたミストと蒸気は
放散器36でミストMと蒸気に分離され、ミスト
Mは適宜処理され、蒸気はダンパ37、ブロワ3
8を介し排気塔39により逸散される。 そこで、前述したように、ミル3内で脱水を充
分に行うためにはミル内の絶対湿度を脱水量に応
じた値以下にする必要があり、そのためにはミル
の通風量を確保することが条件とされる。 当該実施例においてはミル3入口での吸引負圧
を微差圧計40で検知し、変換器41による信号
と設定器42による信号とを比較して調節計43
を介してダンパ37の絞り量を制御し、ミル3内
の通風量をコントロールする。 而して、当該第3図の実施例について前述第1
図の実施例同様にそのスラリー製造プロセスを説
明すると、 (1′) 前述第(1)項について製造目標値として決定
する。 (2′) 前述第(2)項を計算し、WCDを石炭供給機に
設定する。 (3′) 演算器29には各装置定数であるWCX
QLX、及び、f(t)が入力されており、新た
に目標値である石炭濃度Cをインプツトする。 (4′) 製造目標値として定めたスラリー中水分量
HSとなるように第2図より製品スラリー温度
を読みとり、設定器に設定する。 (5′) ミル内にて水分が充分蒸発出来るようにミ
ル入口吸気静圧を設定する。 (6′) 石炭供給機のスタートボタンを押し、製造
を開始する。 (7′) 各検出機からのデータが瞬時に演算回路、
及び、演算器に入力され、上述第(1)項から第(8)
項までに示した演算が行われ、演算された石炭
重油比率Rに従い重油が供給される。 (8′) 重油は製品スラリーが設定された温度にな
るように加熱器がコントロールされ、加熱供給
される。 而して、上述プロセスに基づいてスラリーの製
造例を次の表に示す。
[Table] In this production, each condition was as follows. (1) Maximum supply amount of coal feeder W CX = 900 (Kg/h) (2) Maximum supply amount of heavy oil feeder Q LX = 800 (/h) Heavy oil flow meter temperature correction coefficient f (t) = 1.0 ( -) (3) Wet ball mill specifications Mill diameter x Mill length = φ1200 x 2400 (mm) Ball filling rate 30% By the way, depending on the brand of Coal C, the moisture content strictly varies, and depending on the raw material. Moisture conditions may change frequently during feeding. Although it is relatively small compared to the change in the moisture content of coal C, the specific gravity of heavy oil L may also vary depending on the moisture content, etc. Also, since the heavy oil L is measured by volume, the change in coal C Changes in capacitance due to temperature may have a subtle effect on specific gravity concentration.
In addition, from a complete quality control perspective, slurry S
It is also necessary to manage the moisture inside the mill 3, and furthermore, considering the vaporized content due to evaporation of dehydrated water, it is necessary to keep the absolute humidity inside the mill 3 below a value corresponding to the amount of dehydrated water. Referring to FIG.
To explain with a diagram, control to keep the concentration ratio constant is performed by using a moisture meter 27 for raw coal C supplied from the chute 1 by means such as cycle sampling.
Detects the moisture content, compares it with the water content ratio set by the setting device 28 and calculates it in the calculator 29, converts the actual required amount of coal, and inputs the output to the coal amount control circuit 30 to control the operation of the quantitative supply conveyor 2. The weight of coal supplied from the supply conveyor 2 is inputted from the coal amount control circuit 30 to the ratio setting device 16. On the other hand, the moisture content of the heavy oil L fed through the pump 4 is similarly detected by a moisture meter 31 through cycle sampling, the temperature is detected by an appropriate sensor of a thermometer 32, and the specific gravity is also detected due to quality differences. The hydrometer 33 is used to transmit the detection signal together with the flow rate detection signal from the flowmeter 5 to the calculation circuit 34.The moisture content of the final product slurry S is detected by the moisture meter 35, and the detection signal is sent to the calculation circuit 34. Feed back to the circuit 34, calculate the total amount to convert the actual amount of heavy oil, and send the conversion signal to the ratio setting device 16 to determine the actual amount of heavy oil with respect to the actual amount of coal,
The flow rate adjustment valve 6 determines the flow rate with the controller 17.
Open and close as required. Therefore, this embodiment ensures that the concentration is automatically controlled. In this case, the evaporation of the contained water by dehydration is uniquely determined by the temperature based on the above-mentioned FIG. 2, and the temperature control for the heater 7 is performed by the first
Slurry S
viscosity uniformity is ensured. The mist and steam separated by the separator 8 are separated into mist M and steam by the diffuser 36, the mist M is treated as appropriate, and the steam is sent to the damper 37 and the blower 3.
8 and is dissipated by the exhaust tower 39. Therefore, as mentioned above, in order to perform sufficient dehydration in Mill 3, it is necessary to reduce the absolute humidity inside the mill to a value corresponding to the amount of dehydration or less, and to do this, it is necessary to ensure the amount of ventilation in the mill. It is considered a condition. In this embodiment, the suction negative pressure at the inlet of the mill 3 is detected by a differential pressure gauge 40, the signal from the converter 41 is compared with the signal from the setting device 42, and the controller 43
The throttle amount of the damper 37 is controlled via the damper 37, thereby controlling the amount of ventilation inside the mill 3. Therefore, regarding the embodiment shown in FIG.
The slurry manufacturing process will be explained in the same manner as in the embodiment shown in the figure: (1') Item (1) above is determined as the manufacturing target value. (2′) Calculate the above item (2) and set W CD to the coal feeder. (3') The arithmetic unit 29 has each device constant W CX ,
Q LX and f(t) have been input, and a new target value, coal concentration C, is input. (4′) Moisture content in slurry determined as manufacturing target value
Read the product slurry temperature from Figure 2 so that it is H S , and set it on the setting device. (5') Set the mill inlet intake static pressure so that water can evaporate sufficiently in the mill. (6′) Press the start button on the coal feeder to start production. (7′) The data from each detector is instantly sent to the arithmetic circuit.
and is input to the arithmetic unit, and the above-mentioned items (1) to (8) are
The calculations shown above are performed, and heavy oil is supplied according to the calculated coal/heavy oil ratio R. (8′) The heater is controlled so that the product slurry reaches the set temperature, and the heavy oil is heated and supplied. An example of slurry production based on the above process is shown in the following table.

【表】 尚、この出願の発明の実施態様は上述各実施例
に限るものでないことは勿論であり、他の種々の
態様が採用可能である。 <発明の効果> 以上、この出願の発明によれば、石炭重油系ス
ラリー製造方法において、供給石炭量に定率比で
重油を供給するように制御し、併せて製品スラリ
ー温度を検知してその検知量をフイードバツクし
て重油加熱温度を設定温度に保持するようにした
ことにより、スラリーの粘性に最も深い係り合い
を有する濃度と温度が常に一定に保持され、その
結果、該粘性は該定粘性を維持され、輸送に最適
性能を発揮するばかりでなく、ポンプ、ミルに必
要以上の負荷をかけず、又、不必要に昇温し、エ
ネルギーロスとならない優れた効果がある。 更に、粘性を一定に維持出来ることにより、ミ
ルの機能も設計通りに発揮出来、破砕粒度も予定
通りに、且つ、均一にされ、スラリー品質を向上
させ得る効果も奏される。 更に又、供給石炭から含有水分を検知して実質
設計給炭量を制御するようにしたうえに、当該設
計給炭量に定比に重油供給量を実質的に制御する
ようにして上記温度制御を行うようにしたことに
より、スラリーの実質濃度が確実、且つ、精密に
決められ、より品質の安定した石炭重油スラリー
が得られるという優れた効果がある。
[Table] It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments, and various other embodiments can be adopted. <Effects of the Invention> As described above, according to the invention of this application, in the coal heavy oil based slurry manufacturing method, the heavy oil is controlled to be supplied at a constant ratio to the amount of supplied coal, and at the same time, the temperature of the product slurry is detected. By feeding back the amount and maintaining the heating temperature of heavy oil at the set temperature, the concentration and temperature, which have the deepest relationship to the viscosity of the slurry, are always kept constant, and as a result, the viscosity changes from the constant viscosity. Not only does it maintain optimal performance for transportation, but it also has the excellent effect of not placing unnecessary loads on pumps and mills, and preventing unnecessary temperature rises and energy loss. Furthermore, since the viscosity can be maintained constant, the mill function can be performed as designed, the crushed particle size can be made uniform as planned, and the quality of the slurry can be improved. Furthermore, the moisture content in the supplied coal is detected to control the actual design coal feed amount, and the above temperature control is performed by substantially controlling the heavy oil supply amount at a constant ratio to the designed coal feed amount. By doing so, the effective concentration of the slurry can be determined reliably and precisely, and there is an excellent effect that a coal heavy oil slurry with more stable quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の実施例の説明図であ
り、第1図は1実施例の模式図、第2図は温度と
スラリー含水率の説明図、第3図は別の実施例の
説明図である。 C……石炭、L……重油、M……ミスト、V…
…水蒸気、S……スラリー。
The drawings are explanatory diagrams of embodiments of the invention of this application, and FIG. 1 is a schematic diagram of one embodiment, FIG. 2 is an explanatory diagram of temperature and slurry water content, and FIG. 3 is an explanatory diagram of another embodiment. It is. C...Coal, L...Heavy oil, M...Mist, V...
...Steam, S...slurry.

Claims (1)

【特許請求の範囲】 1 石炭と加熱重油を混合して粉砕分散し同時に
ミスト水蒸気を分離して石炭重油系スラリーを得
るようにした製造方法において、石炭供給量を検
知して設定比率に対応して重油供給量を制御する
ようにし、又上記石炭重油系スラリーの温度と供
給重油の温度を検知比較し該供給重油を設定温度
に加熱してスラリー性状安定にするようにしたこ
とを特徴とする石炭重油系スラリー製造方法。 2 石炭と加熱重油を混合して粉砕分散し同時に
ミスト水蒸気を分離して石炭重油系スラリーを得
るようにした製造方法において、供給石炭から水
分量を検出して演算し設定石炭量を供給するよう
にすると共に該設定石炭供給量に対し設定比率の
重油供給量を制御するようにし、又上記石炭重油
系スラリーの温度と供給重油の温度を検知比較し
該供給重油を設定温度に加熱してスラリー性状安
定にするようにしたことを特徴とする石炭重油系
スラリー製造方法。
[Scope of Claims] 1. A manufacturing method in which coal and heated heavy oil are mixed and pulverized and dispersed, and at the same time, mist water vapor is separated to obtain a coal heavy oil-based slurry, which detects the coal supply amount and responds to a set ratio. The amount of heavy oil supplied is controlled by the above-mentioned method, and the temperature of the coal heavy oil based slurry and the supplied heavy oil are detected and compared, and the supplied heavy oil is heated to a set temperature to stabilize the properties of the slurry. Coal heavy oil based slurry manufacturing method. 2. In a production method in which coal and heated heavy oil are mixed and pulverized and dispersed, and at the same time, mist water vapor is separated to obtain a coal heavy oil slurry, a set amount of coal is supplied by detecting and calculating the moisture content from the supplied coal. At the same time, the fuel oil supply amount is controlled at a set ratio to the set coal supply amount, and the temperature of the coal heavy oil slurry and the supplied heavy oil are detected and compared, and the supplied heavy oil is heated to the set temperature to make the slurry. A method for producing a coal/heavy oil slurry characterized by stabilizing its properties.
JP2551481A 1981-02-25 1981-02-25 Preparation of coal and heavy oil-containing slurry Granted JPS57141495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2551481A JPS57141495A (en) 1981-02-25 1981-02-25 Preparation of coal and heavy oil-containing slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2551481A JPS57141495A (en) 1981-02-25 1981-02-25 Preparation of coal and heavy oil-containing slurry

Publications (2)

Publication Number Publication Date
JPS57141495A JPS57141495A (en) 1982-09-01
JPS6340237B2 true JPS6340237B2 (en) 1988-08-10

Family

ID=12168163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2551481A Granted JPS57141495A (en) 1981-02-25 1981-02-25 Preparation of coal and heavy oil-containing slurry

Country Status (1)

Country Link
JP (1) JPS57141495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161119U (en) * 1988-04-28 1989-11-09
JPH0224232A (en) * 1988-07-11 1990-01-26 Delta Kogyo Kk Automobile seat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672228B2 (en) * 1983-09-30 1994-09-14 バブコツク日立株式会社 Method for producing high-concentration coal-water slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135196A (en) * 1979-04-09 1980-10-21 Electric Power Dev Co Ltd Manufacture of coal-heavy oil mixed fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135196A (en) * 1979-04-09 1980-10-21 Electric Power Dev Co Ltd Manufacture of coal-heavy oil mixed fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161119U (en) * 1988-04-28 1989-11-09
JPH0224232A (en) * 1988-07-11 1990-01-26 Delta Kogyo Kk Automobile seat

Also Published As

Publication number Publication date
JPS57141495A (en) 1982-09-01

Similar Documents

Publication Publication Date Title
CN103082390B (en) The control method that a kind of drum-type cut-tobacco drier three grades regulates
CN101356992A (en) Downstream type tobacco-dryer exit tobacco-shred water control method
CN104172457A (en) Tobacco shred dryer control system and method
CN203314089U (en) Cut-tobacco roller drying outlet moisture control system based on moisture removal humidity
KR100901792B1 (en) Lumber pelet manufacture device and it&#39;s process
JPS6340237B2 (en)
CN104728854B (en) Pulverized coal preparation system and method with air-blew pulverized coal heat measurement and control functions
CN110205150B (en) Improved coking coal moisture control method and equipment
US4179265A (en) Method and apparatus for operating rotary driers
JP4534660B2 (en) Control method of moisture content of dry sludge from sludge drying furnace
CN206927864U (en) A kind of hydro-thermal process improves the device of low-order coal water coal slurry concentration
CN110848657A (en) Device and method for controlling moisture content of steam for drying
CN109340809B (en) Control system and method for high-volatile powdered coal preparation and drying process
CN115751906A (en) Industrial production drying system, control method thereof and drying equipment
US2931718A (en) Method and apparatus for automatically measuring and controlling moisture in a sinter mix or the like
CN204360174U (en) The dry automatic control system of a kind of starch
CN101118445A (en) Method for controlling air temperature of humiture test box and structure thereof
JPH0132278B2 (en)
CN205940053U (en) Automatic accuse temperature drying system
CN106139625A (en) A kind of intelligence exsiccator
JPH01261496A (en) Method of regulating water content of slurry in production of coal-water slurry
JPH02122848A (en) Method and apparatus for controlling vertical mill
JPH0292990A (en) Method for controlling charging of coal into coke furnace
CN212994368U (en) Material moisture content control system and drum-type cut tobacco dryer
JPH06330051A (en) Method for regulating moisture content of coke feedstock coal