JPS6340057B2 - - Google Patents

Info

Publication number
JPS6340057B2
JPS6340057B2 JP57178834A JP17883482A JPS6340057B2 JP S6340057 B2 JPS6340057 B2 JP S6340057B2 JP 57178834 A JP57178834 A JP 57178834A JP 17883482 A JP17883482 A JP 17883482A JP S6340057 B2 JPS6340057 B2 JP S6340057B2
Authority
JP
Japan
Prior art keywords
module
antenna
center
communication
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57178834A
Other languages
Japanese (ja)
Other versions
JPS5967739A (en
Inventor
Haruo Shiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57178834A priority Critical patent/JPS5967739A/en
Publication of JPS5967739A publication Critical patent/JPS5967739A/en
Publication of JPS6340057B2 publication Critical patent/JPS6340057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/223Modular spacecraft systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits

Description

【発明の詳細な説明】 この発明は、いくつかのロケツト(又は、スペ
ースシヤトル)で低軌道の宇宙ステーシヨンへ分
割輸送され組立てられる三軸姿勢制御型通信衛星
に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-axis attitude control communication satellite that is transported and assembled in parts to a space station in low orbit using several rockets (or space shuttles).

ロケツト技術の進歩に伴い、静止通信衛星は次
第に大型化し、特に、大型アンテナを搭載するこ
とにより、同一周波数のスポツトビームをを多区
域に分割して放射できるで、周波数の再利用効率
が高まるだけでなく、アンテナ利得の増大により
地上と通信衛星双方の送信出力も低減出来ること
になる。従つて、こののような機能を有し、かつ
実現の容易な組立構造を有する通信衛星が望ま
れ、種々の提案がなされている。この様な通信衛
星を実現する手段としてシヤトルオービタで低軌
道に組立機材を打上げてから、オービタで軌道ア
ンテナフアーム(OAF)を組立て、(1)オービツ
ト・トランスフア・ビークル(OTV:orbit
transfer vehicle)で静止軌道に投入してから折
畳みアンテナを展開する案と、(2)低軌道で既にア
ンテナを完成させた後、電気推進のOTVで静か
に静止軌道迄輸送する案とがある。(例えば、B.
I.Edelson and W.L.Morgan“Orbital Antenna
Farms”Astronautics and Aeronautics
Vol.15、No.9,September 1977) これ迄発表されているアンテナフアームは、ト
ラス構造の梁を基準にしてアンテナとミツシヨン
機器を別々に取付けて行く方法が採られている。
しかし、指向性の鋭いマルチビーム大型アンテナ
を有する通信衛星に於ては、搭載されている受信
機及び送信機とアンテナとの間を多くの高周波フ
イーダで接続する必要があるため、アンテナ系と
無線通信機器とは一体化した構造が製造の容易
性、信頼性の点から優れている。また、アンテナ
は面精度としては信号周波数の一波長の約30分の
1以下としないと利得や指向特性を損つてしま
う。例えば、信号周波数として10GHzを考える
と、これは1ミリメートルの精度が要求されるこ
ととなる。一方、アンテナの直径としては5〜10
メートル程度を必要とし、日照や日陰による変形
をも考慮する必要がある。従つて、折畳み方式で
は1ミリメートル以下の精度を維持することは技
術的に問題が多い。また、静止軌道に於て通信系
ミツシヨン機器を追加接続する提案があるが、こ
れらの機器は単に機械的接続のみならず数多くの
電気的接続を要するので、実現する為の技術問題
が極めて多いと云える。
With advances in rocket technology, geostationary communication satellites have gradually become larger, and in particular, by being equipped with large antennas, spot beams of the same frequency can be divided into multiple areas and radiated, which will only increase frequency reuse efficiency. Rather, by increasing the antenna gain, the transmission output of both the ground and communication satellites can be reduced. Therefore, a communication satellite having such functions and an assembly structure that is easy to implement is desired, and various proposals have been made. As a means of realizing such a communication satellite, the assembled equipment is launched into low orbit using a shuttle orbiter, and then an orbital antenna arm (OAF) is assembled using the orbiter.
There are two options: (1) deploying the folding antenna after placing it in geostationary orbit using a transfer vehicle; and (2) having the antenna completed in low orbit and then quietly transporting it to geostationary orbit using an electric propulsion OTV. (For example, B.
I. Edelson and WLMorgan “Orbital Antenna
Farms”Astronautics and Aeronautics
(Vol. 15, No. 9, September 1977) The antenna farms that have been announced so far employ a method in which the antenna and the mission equipment are installed separately using the beam of the truss structure as a reference.
However, in communication satellites equipped with large, multi-beam antennas with sharp directivity, it is necessary to connect the onboard receivers and transmitters with the antennas using many high-frequency feeders. An integrated structure with communication equipment is superior in terms of ease of manufacture and reliability. In addition, the surface accuracy of the antenna must be approximately 1/30th of one wavelength of the signal frequency or less, otherwise the gain and directivity characteristics will be lost. For example, considering a signal frequency of 10 GHz, this requires an accuracy of 1 millimeter. On the other hand, the diameter of the antenna is 5 to 10
It is necessary to take into account the deformation caused by sunlight and shade. Therefore, it is technically problematic to maintain accuracy of 1 millimeter or less in the folding method. In addition, there is a proposal to connect additional communications mission equipment in geostationary orbit, but since these devices require not only mechanical connections but also numerous electrical connections, there are many technical problems to realize. I can say that.

この発明は、以上考察にもとづいて、低軌道の
宇宙ステーシヨンでの組立が容易で、かつ静止軌
道投入後の作動信頼度が高い複数個の大型アンテ
ナを有する三軸姿勢制御型通信衛星を提供するこ
とを目的としている。
Based on the above considerations, the present invention provides a three-axis attitude control communication satellite having multiple large antennas that is easy to assemble on a space station in low orbit and has high operational reliability after entering geostationary orbit. The purpose is to

本発明によれば、共通モジユールを中央部に配
し、その周囲に数個のほぼ類似した構造を有する
通信系モジユールと二組のパワーモジユールとを
配し、共通モジユールと通信系モジユール又はパ
ワーモジユールとの間を所定の長さの連結梁で放
射状に接続し、中央部に配した共通モジユールの
ほぼ中心軸近傍に重心を与えると共に、周囲の相
隣る通信系モジユール又はパワーモジユール間を
間隔保持のための支持梁で接続することを特徴と
する宇宙での組立式三軸姿勢制御型通信衛星が得
られる。
According to the present invention, a common module is disposed in the center, several communication modules having substantially similar structures and two sets of power modules are disposed around the common module, and the common module and the communication modules or power modules are disposed in the center. The modules are connected radially with connecting beams of a predetermined length, and the center of gravity is placed approximately near the central axis of the common module placed in the center, and the center of gravity is placed near the central axis of the common module placed in the center. A three-axis attitude control communication satellite that can be assembled in space is obtained, which is characterized in that the two are connected by support beams for maintaining spacing.

通信衛星はロケツトのペイロード増大に伴い、
大型化によるメリツトが増大しつつある。特に、
大型マルチビームアンテナを搭載した通信衛星は
周波数再使用、搭載送信機の所要出力低減などの
点で魅力ある通信システムを提供出来る。
As the payload of communication satellites increases,
The benefits of increasing size are increasing. especially,
Communication satellites equipped with large multi-beam antennas can provide attractive communication systems in terms of frequency reuse and reduced power requirements for onboard transmitters.

しかし反面、大型化による欠点について十分配
慮する必要がある。すなわち、整備、点検の困難
性、インテグレーシヨン設計と具体的作業の繁雑
さが増大する。本発明は適切にモジユール連結梁
で分散化した構造とし、かつ電気的、機械的にク
リテイカルな部分については宇宙ステーシヨンで
の組立作業を最少化することで、上述の問題点を
低減せしめている。
However, on the other hand, it is necessary to give sufficient consideration to the disadvantages of increasing the size. That is, the difficulty of maintenance and inspection, and the complexity of integration design and specific work increase. The present invention reduces the above-mentioned problems by creating a structure that is appropriately decentralized using modular connecting beams, and by minimizing assembly work on the space station for electrically and mechanically critical parts.

以下図面を参照して本発明を詳細に説明する。
第1図は、本発明を適用した大型通信衛星の静止
軌道上に於ける外観図の1例であり、第2図はそ
の正面図である。また、第3図は第2図のa−b
断面図である。図において、1は共通モジユール
で大型通信衛星全体に共通な追跡・テレメトリ・
コマンド(TTC)機能、姿勢制御システム、通
信系モジユール間の交換機能などを収容してい
る。また、4〜9は6個の独立した通信系モジユ
ールを示しているが、この数は2個乃至8個が実
際的であろう。2と3は全く同一の構造のパワー
モジユールであつて、その側面構造は第3図A及
びBに示される。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is an example of an external view of a large communication satellite to which the present invention is applied in a geostationary orbit, and FIG. 2 is a front view thereof. In addition, Fig. 3 shows a-b of Fig. 2.
FIG. In the figure, 1 is a common module for tracking, telemetry, and
It houses the command (TTC) function, attitude control system, exchange function between communication modules, etc. Further, although 4 to 9 indicate six independent communication modules, it would be practical to set the number to two to eight. 2 and 3 are power modules having exactly the same structure, the side structures of which are shown in FIGS. 3A and 3B.

第3図Aは静止軌道上で太陽電池パドル21,
31を展開した構造を、同図Bは宇宙ステーシヨ
ンよりOTV10で遷移軌道上を飛翔しているとき
の様態を示している。パワーモジユール2,3に
は充電器、姿勢制御用の燃料及びジエツトノズル
22/32,23/33,24/34を搭載している。また、バ
ワーモジユール2,3は共通モジユール1と連結
梁101,106で結ばれる。なお、共通モジユ
ール1にはTTC用のオムニアンテナ11が取付
けられる。連結梁101〜108の強度は若干柔
軟であつて、OTV10の推力が変動した場合、
短形状のトラス構造が若干平行四辺形状に変形し
ても、各モジユールの中心軸の方向はほぼ動かな
いといえる。また支持梁111〜118は連結梁
101〜108のねじれ運動を防止するために取
付けられる。この事は通信系モジユールの場合、
アンテナの指向方向が変わらないことを保証す
る。更に、連結梁101〜108を構成する管の
中には共通モジユール1との間の電気配線が通つ
ている。また、連結梁101〜108の長さは各
モジユールの重量が確定した後、重心が共通モジ
ユールの中心軸に来る関係に於いて決定される。
Figure 3A shows the solar array paddle 21 on the geostationary orbit.
Figure B shows the expanded structure of 31 when it is flying in a transition orbit with OTV10 from the space station. Power modules 2 and 3 are equipped with a charger, fuel for attitude control, and jet nozzles 22/32, 23/33, and 24/34. Further, the power modules 2 and 3 are connected to the common module 1 by connecting beams 101 and 106. Note that an omni antenna 11 for TTC is attached to the common module 1. The strength of the connecting beams 101 to 108 is slightly flexible, and when the thrust of the OTV 10 fluctuates,
Even if the rectangular truss structure is slightly deformed into a parallelogram shape, it can be said that the direction of the central axis of each module remains almost unchanged. Further, the support beams 111-118 are attached to prevent twisting movement of the connecting beams 101-108. This is true in the case of communication modules.
Guarantees that the pointing direction of the antenna does not change. Furthermore, electrical wiring to and from the common module 1 runs through the tubes forming the connecting beams 101 to 108. Further, the lengths of the connecting beams 101 to 108 are determined after the weight of each module is determined, so that the center of gravity is aligned with the central axis of the common module.

第4図A及びBは通信系モジユールの断面図を
示している。4は送受信装置、変復調装置、交換
機、大型アンテナの放射器、414などを収容し
たモジユールであつて、放射器の方向は地上で調
整の後、半固定する。第4図Aはカセグレンタイ
プ、同図Bはオフセツトタイプのアンテナであつ
て、放射器414の取付位置はカセグレンタイプ
がモジユールルのほぼ中心部、オフセツトタイプ
ではモジユールの縁に取付けられる。
FIGS. 4A and 4B show cross-sectional views of the communication module. 4 is a module that accommodates a transmitter/receiver, a modulator/demodulator, an exchange, a large antenna radiator, 414, etc., and the direction of the radiator is semi-fixed after being adjusted on the ground. FIG. 4A shows a Cassegrain type antenna, and FIG. 4B shows an offset type antenna.The mounting position of the radiator 414 is approximately at the center of the module in the Cassegrain type, and at the edge of the module in the offset type.

また、アンテナの二次反射板基礎組立部411
は空中線の放射器414に取付けられた構造で、
かつH1ロケツトで解体することなく運搬出来る
寸法になつている。
In addition, the secondary reflector base assembly section 411 of the antenna
is a structure attached to the antenna radiator 414,
Moreover, the dimensions are such that it can be transported using the H1 rocket without being dismantled.

一次反射板413とこれを支持する支持アーム
415及び二次反射板追加組立部412は、宇宙
ステーシヨンで組立乃至調整を必要とする部分で
ある。一次反射板413は機械的に若干可動にな
つている大型通信衛星全体の姿勢のゆらぎに基づ
くアンテナの指向方向を若干補正出来るようにな
つている。この為の駆動メカニズムはモジユール
本体の内部に収容されている。
The primary reflector 413, the support arm 415 that supports it, and the secondary reflector additional assembly section 412 are parts that require assembly or adjustment on the space station. The primary reflector 413 is designed to slightly correct the pointing direction of the antenna based on the fluctuations in the attitude of the large communication satellite as a whole, which is mechanically movable. The drive mechanism for this is housed inside the module body.

本発明を適用することにより下記の効果が期待
出来る。
By applying the present invention, the following effects can be expected.

(1) 各モジユールはアンテナ二次反射板追加組立
部を除き、H1ロケツトで宇宙ステーシヨンへ
解体せず運搬出来る規模であつて、かつ各モジ
ユールは専門工場で並行して生産出来る。
(1) Each module, excluding the antenna secondary reflector additional assembly, is of a scale that can be transported to the space station by the H1 rocket without disassembly, and each module can be produced in parallel at a specialized factory.

(2) 連結梁の長さは比較的簡単に変えられるので
重心とすべきOTVの取付位置を常に共通モジ
ユール背面の定位置とすることが出来る。
(2) Since the length of the connecting beam can be changed relatively easily, the mounting position of the OTV, which should be the center of gravity, can always be set at the fixed position on the back of the common module.

(3) 連結梁の柔軟性によりOTVの推力が通信系
ミツシヨン機器に与える衝撃振動を緩和出来
る。
(3) The flexibility of the connecting beams can alleviate the shock vibrations that the OTV thrust exerts on communication transmission equipment.

(4) 各モジユールは共通モジユールを除きサテラ
イト配置となつているので、宇宙ステーシヨン
に於いて、並行した組立点検・整備・交換が可
能である。
(4) Since each module, except for the common module, is arranged as a satellite, assembly, inspection, maintenance, and replacement can be performed in parallel at the space station.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した通信衛星の外観図、
第2図は第1図の正面図、第3図は第2図のa−
b断面図、第4図Aは本発明を適用した通信系モ
ジユールの断面図、第4図Bは本発明を適用した
通信系モジユールのもう一つの事例を示す断面図
を示す。 図において、1……共通モジユール、2,3…
…パワ・モジユール、10……OTV、11……
TTCアンテナ、21,31……太陽電池パドル、
4〜9……通信系モジユール、101〜108…
…連結梁、111〜118……支持梁、411…
…アンテナ二次反射板基礎組立部、412……ア
ンテナ二次反射板追加組立部、413……アンテ
ナ一次反射板、414……アンテナ放射器、41
5……アンテナ一次反射板支持部である。
Figure 1 is an external view of a communication satellite to which the present invention is applied;
Figure 2 is a front view of Figure 1, Figure 3 is a-a- of Figure 2.
FIG. 4A is a cross-sectional view of a communication module to which the present invention is applied, and FIG. 4B is a cross-sectional view showing another example of a communication module to which the present invention is applied. In the figure, 1...common module, 2, 3...
...Power Module, 10...OTV, 11...
TTC antenna, 21, 31...Solar battery paddle,
4-9...Communication module, 101-108...
...Connection beam, 111-118...Support beam, 411...
...Antenna secondary reflector basic assembly part, 412...Antenna secondary reflector plate additional assembly part, 413...Antenna primary reflector plate, 414...Antenna radiator, 41
5...Antenna primary reflector support part.

Claims (1)

【特許請求の範囲】 1 共通モジユールを中央部に配し、その周囲に
数個のほぼ類似した構造を有する通信系モジユー
ルと二組のパワーモジユールとを配し、前記共通
モジユールと前記通信系モジユール及び前記パワ
ーモジユールとの間を所定の長さの連結梁で放射
状に接続し、前記中央部に配した共通モジユール
のほぼ中央軸近傍に重心を与えると共に、周囲の
相隣る前記通信系モジユール及び前記パワーモジ
ユール間を間隔保持のための支持梁で接続するこ
とを特徴とする宇宙での組立式三軸姿勢制御型通
信衛星。 2 前記通信系モジユールが地上に於て、予め大
型アンテナのホーン型放射器と二次反射板の基礎
組立部とを一体にして組立て、低軌道の宇宙ステ
ーシヨンに於て、前記大型アンテナの一次反射板
及び二次反射板追加組立部を付加することを特徴
とする特許請求の範囲第1項記載の宇宙での組立
式三軸姿勢制御型通信衛星。
[Scope of Claims] 1. A common module is disposed in the center, and around it several communication modules having substantially similar structures and two sets of power modules are disposed, and the common module and the communication system The module and the power module are radially connected by a connecting beam of a predetermined length, and the center of gravity is provided approximately near the central axis of the common module arranged in the center, and the communication system adjacent to the surrounding An assembly type three-axis attitude control communication satellite for use in space, characterized in that a module and the power module are connected by a support beam for maintaining spacing. 2. The communication system module is assembled in advance by integrating the horn-shaped radiator of the large antenna and the basic assembly of the secondary reflector on the ground, and the primary reflection of the large antenna is carried out on the space station in low orbit. The three-axis attitude control communication satellite in space as claimed in claim 1, further comprising a plate and a secondary reflector additional assembly section.
JP57178834A 1982-10-12 1982-10-12 Assembling method of three-axis attitude control type communication satellite Granted JPS5967739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178834A JPS5967739A (en) 1982-10-12 1982-10-12 Assembling method of three-axis attitude control type communication satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178834A JPS5967739A (en) 1982-10-12 1982-10-12 Assembling method of three-axis attitude control type communication satellite

Publications (2)

Publication Number Publication Date
JPS5967739A JPS5967739A (en) 1984-04-17
JPS6340057B2 true JPS6340057B2 (en) 1988-08-09

Family

ID=16055475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178834A Granted JPS5967739A (en) 1982-10-12 1982-10-12 Assembling method of three-axis attitude control type communication satellite

Country Status (1)

Country Link
JP (1) JPS5967739A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686255B2 (en) * 2007-08-28 2010-03-30 Raytheon Company Space vehicle having a payload-centric configuration

Also Published As

Publication number Publication date
JPS5967739A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
EP3289313B1 (en) System and method for assembling and deploying satellites
US5927654A (en) Spacecraft with active antenna array protected against temperature extremes
US8789796B2 (en) High capacity broadband satellite
EP3024732B1 (en) Side-by-side dual-launch arrangement with improved payload compatibility
US8035573B2 (en) Deployable panel structure for an array antenna
US4562441A (en) Orbital spacecraft having common main reflector and plural frequency selective subreflectors
US9650160B2 (en) Satellite with deployable payload modules
JP3122147B2 (en) Geostationary earth observation satellite
US11072441B2 (en) Stackable spacecraft
US6239763B1 (en) Apparatus and method for reconfiguring antenna contoured beams by switching between shaped-surface subreflectors
US11319092B2 (en) Space vehicle, launcher and stack of space vehicles
US9908643B2 (en) Passive thermal system providing an embedded interface for heat pipes
US20230321903A1 (en) 3d printed spacecraft structures
JPS6340057B2 (en)
US20030234746A1 (en) Sub-reflector shaping in an unfurlable reflector antenna system
JPS6382900A (en) Information transmitter for spaceship
Buntschuh First-generation RCA direct broadcast satellites
Templeton Intelsat VII overall spacecraft design
Golder et al. Configuration Development of the Land Mobile Satellite System (LMSS) Spacecraft
Golden et al. Multi-cell satellite for the communications of year 2000
Maegele et al. The German TV-Sat broadcasting satellite system
Hockensmith et al. Performance interface document for users of Tracking and Data Relay Satellite System (TDRSS) electromechanically steered antenna systems (EMSAS)
Yasaka et al. Multi-band multi-beam antenna complex for orbit experiment
Hunter Orbiting deep space relay station study. Volume 2: Conceptual design
Noreen et al. Mars Exploration Deep Space Return Link Scenarios...