JPS6340016A - Earth anchoring work - Google Patents

Earth anchoring work

Info

Publication number
JPS6340016A
JPS6340016A JP18012786A JP18012786A JPS6340016A JP S6340016 A JPS6340016 A JP S6340016A JP 18012786 A JP18012786 A JP 18012786A JP 18012786 A JP18012786 A JP 18012786A JP S6340016 A JPS6340016 A JP S6340016A
Authority
JP
Japan
Prior art keywords
anchor
grout
force
tension
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18012786A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tamura
田村 恵彦
Seiji Naito
内藤 清司
Isao Hashimoto
功 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP18012786A priority Critical patent/JPS6340016A/en
Publication of JPS6340016A publication Critical patent/JPS6340016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise the bearing force of anchors by a method in which a reaction body with faces crossing with the action line of a tensile force is fixed to a tension member, and the tension member is penetrated into an anchor hole and fixed by a tension force to the natural ground by the injection of grout. CONSTITUTION:Reaction bodies 1 of a lantern type hollow cylinder form are fixed to a tension member 2, e.g., PC steel wire, etc., and a compression face 11 and a lower face 12, which are not in parallel with the acting line of tension to be applied to the tension member 2, are provided for the outer face of the body 1. A through hole 13 for the member 2 and a through hole 14 for a grout- injection hose are formed in the upside and downside of the body 1. The member 2 is inserted into the anchor pit 4 being excavated, a grout 3 is injected into the pit 4, and a grout 6 is injected into the sheath 21 and the body 1. After the curing period of the grouts, the end of the member 2 is tensed to introduce a given tension P into it and an anchor head 5 is attached to the member 2 for fixation. The bearing force of anchor can thus be exactly calculated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アースアンカー工法に関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to an earth anchor construction method.

〈従来の技術〉 一般にアースアンカーの耐力は、地中に定着させた引張
材と定着グラウトとの付着力、および定着グラウトと他
山との付着力によって決定される。
<Prior Art> In general, the yield strength of an earth anchor is determined by the adhesion force between the tensile material fixed in the ground and the anchor grout, and the adhesion force between the anchor grout and other heaps.

ところで、第5図に一般的なアースアンカーを示す。By the way, FIG. 5 shows a general earth anchor.

このアースアンカーは、アンカー孔a内に引張材すを挿
入した後、アンカー孔a内に定着グラウトeを注入して
、引張材すを他山に定着する構造のものである。
This earth anchor has a structure in which a tensile material is inserted into an anchor hole a, and then fixing grout e is injected into the anchor hole a to fix the tensile material to another thread.

その後、引張材すの基端を緊張して、所定の引張力Pを
与えて定着している。
Thereafter, the base end of the tensile material is tensioned to apply a predetermined tensile force P to fix it.

〈本発明が解決しようとする問題点〉 前記した従来のアースアンカー工法には、次のような問
題点が存在する。
<Problems to be Solved by the Present Invention> The conventional earth anchor construction method described above has the following problems.

くイ〉従来のアースアンカーの耐力は、引張材すと定着
グラウトCとの摩擦抵抗力P、と、定着グラウトc七地
山との摩擦抵抗力P2の二つの抵抗力によって求められ
る。
The yield strength of a conventional earth anchor is determined by two resistance forces: the frictional resistance force P between the tensile material and the anchoring grout C, and the frictional resistance force P2 between the anchoring grout C and the ground.

しかし、引張材すに導入する引張力Pが非常に大きい場
合には、摩擦抵抗力P1の接触面債が相対的に小さいか
ら、摩擦切れを起こし易い。
However, if the tensile force P introduced into the tensile material is very large, friction breakage is likely to occur because the contact surface resistance of the frictional resistance force P1 is relatively small.

その結果、引張材すに摩擦切れを起こすと、アンカーと
しての耐力が得られなくな・ってしまう。
As a result, if friction breaks occur in the tensile material, it will no longer have the strength needed to serve as an anchor.

く口〉上記のように、引張材すの摩擦切れを防止するに
は、事前にアンカーの耐力等を正確に算出しておく必要
がある。
As mentioned above, in order to prevent the tensile material from breaking due to friction, it is necessary to accurately calculate the proof stress of the anchor in advance.

しかし、従来のアースアンカー工法では、アンカーの耐
力を、力学計算により正確に求めることが非常に困難で
あった。
However, in the conventional earth anchor construction method, it is extremely difficult to accurately determine the strength of the anchor through mechanical calculations.

く本発明の目的〉 本発明は、アンカーの耐力の向上が図れ、がっ、アンカ
ーの耐力を正確に算出することができる、アースアンカ
ー工法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an earth anchor construction method that can improve the proof strength of an anchor and accurately calculate the proof strength of the anchor.

く本発明の構成〉 以下、図面を参照しながら本発明の一実施例について説
明する。
Configuration of the Present Invention> An embodiment of the present invention will be described below with reference to the drawings.

まず、本工法に使用する主要な部材について説明する。First, the main components used in this construction method will be explained.

くイ〉反力体(第1.2図) 反力体1は、PCM線等の引張材2の途上に固定して、
定着グラウト3との間における反力抵抗体として機能す
る部材である。
〉Reaction force body (Fig. 1.2) The reaction force body 1 is fixed in the middle of the tensile material 2 such as PCM wire,
This is a member that functions as a reaction force resistor between the fixing grout 3 and the fixing grout 3.

反力体1の一例を第2図に示す。An example of the reaction force body 1 is shown in FIG.

この反力体1は、提燈形をした中空の筒体がらなり、そ
の外面には、引張材2に作用する引張力の作用線に並行
でない圧縮面11と、下部面12を有する。
This reaction force body 1 consists of a hollow cylindrical body in the shape of a lantern, and its outer surface has a compression surface 11 that is not parallel to the line of action of the tensile force acting on the tensile member 2, and a lower surface 12.

反力体1の上下面には、それぞれ引張材2を貫通するた
めの貫通孔13と、グラウト注入用ホースを挿入するた
めの挿入孔14を開設して形成する。
A through hole 13 for penetrating the tension member 2 and an insertion hole 14 for inserting a grout injection hose are formed on the upper and lower surfaces of the reaction body 1, respectively.

この反力体1は後述するように、内部にグラウト材を充
填して、剛性体として形成する関係がら、金属あるいは
樹脂等で製作できる。
As will be described later, the reaction force body 1 can be made of metal, resin, or the like, as long as it is filled with grout and formed as a rigid body.

[反力体の固定手段1 反力体1を引張材2の途上に固定するには、例えば、第
1図のように、反力体1の内部に固着グラウト6を充填
して引張材2に固定する方法や、あるいは、反力体1の
両端部に楔を打ち込んで固定する方法等が考えられる。
[Reaction force body fixing means 1 To fix the reaction force body 1 in the middle of the tension member 2, for example, as shown in FIG. Possible methods include a method of fixing the reaction force body 1, or a method of fixing the reaction force body 1 by driving wedges into both ends thereof.

く口〉施工方法(第1図) 以下、順を追って説明する。Construction method (Figure 1) The following is a step-by-step explanation.

(1)引張材の組立 引張材2の途上には、前記反力体1を固定する。(1) Assembling tensile material The reaction force body 1 is fixed in the middle of the tensile member 2.

そして、反力体1間の引張材2は、シース21でその周
囲を被覆する。
The tensile member 2 between the reaction force members 1 is covered with a sheath 21 .

この場合には、短寸のシース21と反力体1とを交互に
引張材2に貫通させて組み立てる。
In this case, the short sheath 21 and the reaction force body 1 are assembled by passing through the tension member 2 alternately.

組み立て方法は、反力体1とシース21の端部をねじ込
だり、接着して、反力体1とシース21とを交互に配列
する。
As for the assembly method, the ends of the reaction force body 1 and the sheath 21 are screwed together or bonded together, and the reaction force body 1 and the sheath 21 are arranged alternately.

反力体1の取り付は位置及び固定数は、地盤の性状や導
入予定の引張力等を考慮して決定する。
The mounting position and number of reaction force members 1 are determined by taking into account the properties of the ground, the tensile force to be introduced, and the like.

(2)引張材の挿入、グラウト注入 削孔を終えたアンカー孔4内に、組み立てた引張材2を
挿入する。
(2) Insert the assembled tensile material 2 into the anchor hole 4 after insertion of the tensile material and injection of grout.

次に、アンカー孔4内に定着グラウト3を注入し、また
シース21と反力体1内に固着グラウト6を注入する。
Next, the anchoring grout 3 is injected into the anchor hole 4, and the anchoring grout 6 is injected into the sheath 21 and the reaction body 1.

シース21と反力体1内に固着グラウト6を注入する場
合には、グラウト注入用のホースを、シース21の管内
と各反力体1に貫通させ、アンカーの先端まで挿入し、
先端から基端へ向けて順次固着グラウト6を注入して行
う。
When injecting the fixed grout 6 into the sheath 21 and the reaction force body 1, a hose for grout injection is passed through the tube of the sheath 21 and each reaction force body 1, and inserted to the tip of the anchor.
This is done by sequentially injecting the fixed grout 6 from the tip to the base.

(3)緊張、定着 所定の養生期間経過後、アンカー孔4から露出する引張
材2の端部を緊張して、所定の引張力Pを導入する。
(3) Tensioning and fixing After a predetermined curing period has elapsed, the end portion of the tensile material 2 exposed from the anchor hole 4 is tensioned to introduce a predetermined tensile force P.

さらに、引張材2の上記端部にアンカーヘッド5を装着
して定着する。
Further, an anchor head 5 is attached to the above-mentioned end portion of the tensile material 2 and fixed thereto.

くハ〉アンカーの耐力向上(第1.3図)第3図に示す
ように、反力体1の圧縮面11は、引張力Pの作用線に
対して角度θだけ傾斜しているので、引張力Pが、圧縮
面11と直角方向のPl、P2、P、のベクトルに分力
される。
(kuha) Improving the strength of the anchor (Fig. 1.3) As shown in Fig. 3, the compression surface 11 of the reaction force body 1 is inclined at an angle θ with respect to the line of action of the tensile force P. The tensile force P is divided into vectors Pl, P2, and P in a direction perpendicular to the compression surface 11.

分力された各ベクトルP1、P2、P3は、定着グラウ
ト3及び地山に対し、圧縮力として作用する。
Each of the divided force vectors P1, P2, and P3 acts on the fixing grout 3 and the ground as a compressive force.

従って、定着グラウト3と地山との間のI!J擦抵抗抵
抗力大する。
Therefore, I! between the fixed grout 3 and the ground! J Increases friction resistance.

また、引張材2に引張力Pが作用すると、反力体1の内
部の固着グラウト6が圧縮されて、引張材2を把持する
力に変わり、反力体1と引張材2の定着力が増大する。
Furthermore, when the tensile force P acts on the tensile member 2, the fixed grout 6 inside the reaction force body 1 is compressed, and the force changes to grip the tensile member 2, and the fixing force between the reaction force body 1 and the tensile member 2 is reduced. increase

以上のことから、従来のアンカー機構に比べて、大きな
反力と安定性が得られるので、アンカーの耐力の向上が
図れる。
From the above, it is possible to obtain greater reaction force and stability compared to conventional anchor mechanisms, thereby improving the strength of the anchor.

〈二〉引張力の制御(第3図) 前述のように、引張力Pを複数のベクトルに分力するこ
とが可能なので、分力された各ベクトルを求めることに
よって、引張力Pを求めることができる。
<2> Control of tensile force (Figure 3) As mentioned above, it is possible to divide the tensile force P into multiple vectors, so the tensile force P can be determined by determining each divided vector. Can be done.

そこで、反力体1の圧縮面11の角θを選択することに
より、発生するベクトルの方向を制御することができる
ので、引張力Pの反力方向を制御することも可能となる
Therefore, by selecting the angle θ of the compression surface 11 of the reaction force body 1, the direction of the generated vector can be controlled, and therefore the direction of the reaction force of the tensile force P can also be controlled.

同様に、反力体1の設置数と圧縮面11の角θから、各
圧縮面11に発生するベクトルの大きさを算出し、引張
力Pの大きさを容易Pl出することができる。
Similarly, the magnitude of the vector generated on each compression surface 11 can be calculated from the number of reaction force members 1 installed and the angle θ of the compression surface 11, and the magnitude of the tensile force P can be easily calculated as Pl.

くその他の実施例〉(第4図) 以上の実施例は、引張材2群の外周にシース21を取り
付けた場合である。
Other Embodiments (FIG. 4) In the above embodiment, the sheath 21 is attached to the outer periphery of the second group of tension members.

その他の実施例として、シース21を引張材2群の外周
に取り付ける代わりに、アンカーの定着長部り、の各引
張材2ごとに、ポリエチレン等の被覆材7を地上にて被
覆して、引張材2を保護することが考えられる。
As another embodiment, instead of attaching the sheath 21 to the outer periphery of the two groups of tension members, each tension member 2 in the anchorage length portion of the anchor is covered with a covering material 7 such as polyethylene on the ground, It is conceivable to protect the material 2.

また、アンカーの自由長部L2の各引張材2には、引張
材2が伸びるのを妨げないように、アンボンド材8によ
って、引張材2に接着しないで被覆して、引張材2を保
護することが考えられる。
Further, each tension member 2 in the free length portion L2 of the anchor is covered with an unbonded material 8 without adhering to the tension member 2 to protect the tension member 2 so as not to prevent the tension member 2 from stretching. It is possible that

〈本発明の効果〉 本発明は以上説明したようになるので、次のような効果
を期待することができる。
<Effects of the Present Invention> Since the present invention has been described above, the following effects can be expected.

くイ〉引張力の作用線に対して、並行しない圧縮面を有
する反力体を引張材に取り付けたことによって、引張力
は、反力体の圧縮面に対して、直角方向のベクトルの反
力に変換される。
B) By attaching a reaction force having a compression surface that is not parallel to the line of action of the tensile force to the tensile material, the tensile force is a reaction of a vector in a direction perpendicular to the compression surface of the reaction force. converted into power.

そのため、変換された各ベクトルは、定着グラウトおよ
び地山に対して圧縮力として作用し、定着グラウトと地
山間の摩擦抵抗力を増大させる。
Therefore, each transformed vector acts as a compressive force on the anchor grout and the rock, increasing the frictional resistance between the anchor grout and the rock.

また、引張材に引張力が作用すると、反力体の内部に注
入された固着グラウトが圧縮されて、引張tオを把持す
る力に変わり、反力体と引張材との定着力が増大する。
In addition, when a tensile force acts on the tension member, the fixed grout injected into the reaction body is compressed and turns into a force that grips the tension member, increasing the anchoring force between the reaction body and the tension member. .

従って、以上のことから従来のアンカー機構に比べて、
大きな反力と安定性が得られ、アンカーの耐力の向上が
図れる。
Therefore, from the above, compared to the conventional anchor mechanism,
Large reaction force and stability can be obtained, and the strength of the anchor can be improved.

〈口〉引張材に導入された引張力は、上記のように、反
力体の圧縮面に対して、直角方向のベクトルの反力に変
換できる。
<mouth> As described above, the tensile force introduced into the tensile member can be converted into a reaction force in a vector in a direction perpendicular to the compression surface of the reaction force body.

従って、反力体の圧縮面が引張力の作用線に対して成す
角を選択することによって、発生するベクトルの方向を
制御することができるので、導入する引張力の反力方向
ら、自在に制御することができる。
Therefore, by selecting the angle that the compression surface of the reaction body forms with the line of action of the tensile force, the direction of the generated vector can be controlled, so the direction of the reaction force of the introduced tensile force can be freely adjusted. can be controlled.

同様に、反力体の設置数と、反力体の圧縮面が引張力の
作用線に対して成す角から、反力体に発生するベクトル
の大きさを求め、引張力の大きさを容易に算出すること
ができる。
Similarly, from the number of reaction bodies installed and the angle that the compression surface of the reaction body makes with the line of action of the tensile force, find the magnitude of the vector generated in the reaction body, and easily calculate the magnitude of the tensile force. It can be calculated as follows.

これらのことより、アンカーの耐力を力学的に算出する
ことが可能となり、アンカーの耐力を正確に求めること
ができる。
From these facts, it becomes possible to dynamically calculate the proof strength of the anchor, and the proof strength of the anchor can be determined accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二本発明の一実施例の説明図 第2図:反力体の説明図 第3図:反力体の作用を示す説明図 第4図:その他の実施例の説明図 第5図:従来のアースアンカー工法の説明図出願人  
   大成建設株式会社 第1図 第49  1
Fig. 1 2 An explanatory diagram of one embodiment of the present invention Fig. 2: An explanatory diagram of the reaction force body Fig. 3: An explanatory diagram showing the action of the reaction force body Fig. 4: An explanatory diagram of another embodiment Fig. 5 :Explanatory diagram of conventional earth anchor method Applicant
Taisei Corporation Figure 1 Figure 49 1

Claims (1)

【特許請求の範囲】 引張材の途上に引張力の作用線に対して並行でない面を
有する抵抗体を固定し、 前記引張材をアンカー孔に挿入し、 アンカー孔内に定着グラウトを注入して地山に固着させ
、 引張材に所定の緊張力を与えて定着する、 アースアンカー工法。
[Claims] A resistor having a surface not parallel to the line of action of the tensile force is fixed in the middle of the tension member, the tension member is inserted into the anchor hole, and fixing grout is injected into the anchor hole. An earth anchor construction method in which the material is fixed to the ground and fixed by applying a predetermined tension to the tensile material.
JP18012786A 1986-08-01 1986-08-01 Earth anchoring work Pending JPS6340016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18012786A JPS6340016A (en) 1986-08-01 1986-08-01 Earth anchoring work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18012786A JPS6340016A (en) 1986-08-01 1986-08-01 Earth anchoring work

Publications (1)

Publication Number Publication Date
JPS6340016A true JPS6340016A (en) 1988-02-20

Family

ID=16077890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18012786A Pending JPS6340016A (en) 1986-08-01 1986-08-01 Earth anchoring work

Country Status (1)

Country Link
JP (1) JPS6340016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079369A (en) * 2007-09-25 2009-04-16 Ohbayashi Corp Natural ground reinforcing soil structure and natural ground reinforcing soil construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079369A (en) * 2007-09-25 2009-04-16 Ohbayashi Corp Natural ground reinforcing soil structure and natural ground reinforcing soil construction method

Similar Documents

Publication Publication Date Title
JPH0130968B2 (en)
JPH02266050A (en) Fixing method and fixing device for carbon fiber reinforced plastic plane plate
JPS6340016A (en) Earth anchoring work
JPH0428851B2 (en)
JP2590930Y2 (en) Anchor body for ground anchor
JPH0452317A (en) Anchor device
JPS622083B2 (en)
JPH0621951Y2 (en) Anchor structure
JPH0220747A (en) Anchoring method for fiber reinforced tension material
JPH0270821A (en) Anchor tension member
WO2019206071A1 (en) Embedded-type anchor device for tensile testing of rock, and testing method
JPS62148718A (en) Structure of anchor
JPH0752177Y2 (en) Tension steel fixture
JP2894223B2 (en) Adhesion transfer method ground anchor
JPH047228Y2 (en)
JPS6378919A (en) Tension member for pc construction work
JPH0441733B2 (en)
JPH0542169Y2 (en)
JPH0137533B2 (en)
JPH0413497B2 (en)
JPH05171620A (en) Reinforcing of pier of bridge and the like
JPH01165855A (en) Fixing structure of tendon
JPH0523694Y2 (en)
JPH07269025A (en) Placing joint method
SU976093A1 (en) Ferroconcrete anchor bolt