JPS6339764Y2 - - Google Patents

Info

Publication number
JPS6339764Y2
JPS6339764Y2 JP9791482U JP9791482U JPS6339764Y2 JP S6339764 Y2 JPS6339764 Y2 JP S6339764Y2 JP 9791482 U JP9791482 U JP 9791482U JP 9791482 U JP9791482 U JP 9791482U JP S6339764 Y2 JPS6339764 Y2 JP S6339764Y2
Authority
JP
Japan
Prior art keywords
pressure
coil spring
block
cylindrical
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9791482U
Other languages
Japanese (ja)
Other versions
JPS594020U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9791482U priority Critical patent/JPS594020U/en
Publication of JPS594020U publication Critical patent/JPS594020U/en
Application granted granted Critical
Publication of JPS6339764Y2 publication Critical patent/JPS6339764Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 この考案は調圧弁、とくに直動形調圧弁の温度
特性を改良したものに関する。
[Detailed Description of the Invention] This invention relates to a pressure regulating valve, particularly a direct acting pressure regulating valve with improved temperature characteristics.

一般に調圧弁すなわち圧力制御弁はそれをとお
される流体の圧力がその流入側においてはその流
出側においてよりも高い場合に、前記流入側の圧
力変動に関係なくそれより小さいほぼ一定の圧力
に調整できるものが従来多く用いられている。そ
の中でもとくに応答性が迅速な直動形のものにお
いてこの従来の調圧弁が装着される箇所の雰囲気
温度がかなり変化する場合には、それに伴つて流
出側の圧力、すなわち設定圧力が変化することは
さけられないので、その都度調整を必要とする
が、このことが用途によつては難点とされてい
る。
In general, a pressure regulator or pressure control valve adjusts the pressure of the fluid passing through it to a lower, almost constant pressure, regardless of pressure fluctuations on the inlet side, when the pressure of the fluid passing through it is higher on its inlet side than on its outlet side. Many things that can be used are conventionally used. Among them, in the case of a direct-acting type with particularly quick response, if the ambient temperature at the location where this conventional pressure regulating valve is installed changes considerably, the pressure on the outflow side, that is, the set pressure, changes accordingly. Since it cannot be avoided, adjustments must be made each time, but this is considered a difficulty depending on the application.

この考案は従来の直動形調圧弁における前記難
点に対処したもので、簡単な部材を付加すること
により従来のものが有している温度特性を改良
し、温度補償形の直動形調圧弁を提供することを
目的とする。
This idea addresses the above-mentioned difficulties in conventional direct-acting pressure regulating valves, and improves the temperature characteristics of conventional ones by adding simple components. The purpose is to provide

以下、この考案にかかる実施例について図面を
参照しながら説明する。図はこの実施例装置の側
断面図である。
Embodiments of this invention will be described below with reference to the drawings. The figure is a side sectional view of the device of this embodiment.

この装置は底部が開放された中空円筒容器11
に円筒状基部12がねじ結合されており、円筒状
基部12には、流体の流入管路および流出管路が
管継手を介してそれぞれ接続されるめねじ部1
3,14が設けられ、めねじ部13は絞り弁部1
5を介して、めねじ部14は直接ベローズ16の
内部とそれぞれ導通するようにされている。ベロ
ーズ16はたとえばステンレススチールの薄板か
らなり、その中央部が円筒状に凹ませて成形され
ており、その外周部の下端面にて円筒状基部12
の上面にたとえばろう付けにより密閉固定されて
いる。そしてこのベローズ16の円筒状凹部17
にはプラスチツク材たとえばポリプロピレン材か
らなる厚さhの円筒状ブロツク18が収められ、
その上にコイルばね19が収められている。そし
てこのコイルばね19は、その上部に係合された
ばね押え20を中空円筒容器11の上部中央に螺
合された調整ねじ21の締め込みによつて圧下す
るときは圧縮コイルばねとして作用するようにな
つている。調整ねじ21を締め込むことによつて
圧縮コイルばねとして作用するこのコイルばね1
9に生ずる弾発力は、円筒状ブロツク18を介し
てベローズ16の円筒状凹部17の底部に作用
し、この底部をその際に生ずるベローズ16の弾
発力に抗して円筒状基部12の上面に近付ける。
この円筒状凹部17の底部の前記した下方向の移
動を絞り弁部15の可動弁体すなわちボール1
5′に伝達するために、このボール15′と前記円
筒状凹部17の底部との間に、伝達用ロツド22
が、前記弁部15とベローズ16内部空間との導
通路にその内周面に対して隙間を保つて収められ
ている。また絞り弁部15には、ボール15′を
その弁座に軽く押し付けておく圧縮コイルばね2
3が設けられている。なお24はロツクナツト
で、調整ねじ21のゆるみ止め用であり、25は
エアベントで、中空円筒容器11の内部空間26
を常時大気圧状態に保つようにされている。
This device consists of a hollow cylindrical container 11 with an open bottom.
A cylindrical base 12 is screwed to the cylindrical base 12, and the cylindrical base 12 has a female threaded portion 1 to which fluid inflow and outflow pipes are respectively connected via pipe joints.
3 and 14 are provided, and the female threaded portion 13 is connected to the throttle valve portion 1.
5, the female threaded portions 14 are directly connected to the inside of the bellows 16, respectively. The bellows 16 is made of a thin plate of stainless steel, for example, and has a cylindrical concave shape at its center, and a cylindrical base 12 at the lower end surface of its outer periphery.
It is hermetically fixed to the upper surface of, for example, by brazing. And the cylindrical recess 17 of this bellows 16
contains a cylindrical block 18 made of plastic material, for example polypropylene material, and having a thickness h;
A coil spring 19 is housed thereon. The coil spring 19 acts as a compression coil spring when the spring presser 20 engaged with the upper part of the coil spring 19 is lowered by tightening the adjustment screw 21 screwed into the center of the upper part of the hollow cylindrical container 11. It's summery. This coil spring 1 acts as a compression coil spring by tightening the adjustment screw 21.
The elastic force generated in the bellows 16 acts on the bottom of the cylindrical recess 17 of the bellows 16 via the cylindrical block 18, and the bottom is pushed into the cylindrical base 12 against the elastic force of the bellows 16 generated at that time. Bring it close to the top.
The movable valve body of the throttle valve portion 15, that is, the ball 1
5', a transmission rod 22 is inserted between this ball 15' and the bottom of the cylindrical recess 17.
is housed in a conduit between the valve portion 15 and the internal space of the bellows 16 with a gap maintained between the inner circumferential surface thereof. In addition, a compression coil spring 2 is attached to the throttle valve portion 15 to lightly press the ball 15' against the valve seat.
3 is provided. Note that 24 is a lock nut, which is used to prevent the adjustment screw 21 from loosening, and 25 is an air vent, which is used to prevent the inner space 26 of the hollow cylindrical container 11 from becoming loose.
is maintained at atmospheric pressure at all times.

つぎにこの装置における動作について説明す
る。。
Next, the operation of this device will be explained. .

この装置がめねじ部13,14においてそれに
ねじ込まれた管継手を介して流体の流入管路なら
びに流出管路にそれぞれ接続されており、流入管
路の流体圧力P1を流出管路における流体圧力P2
(ここにP1>P2とする)に調整する場合について
のべる。
This device is connected to an inflow pipe and an outflow pipe of a fluid through pipe fittings screwed into the female threaded portions 13 and 14, respectively, and the fluid pressure P1 in the inflow pipe is converted to the fluid pressure P1 in the outflow pipe. 2
(Here, let P 1 > P 2 ) be adjusted.

絞り弁部15のボール15′はその弁座に、ま
た伝達用ロツド22は、ベローズ16の円筒状凹
部17の底面およびボール15′にそれぞれ接触
しているものとする。
It is assumed that the ball 15' of the throttle valve portion 15 is in contact with its valve seat, and the transmission rod 22 is in contact with the bottom surface of the cylindrical recess 17 of the bellows 16 and the ball 15'.

さてロツクナツト24をゆるめ、調整ねじ21
を締めこみ、ついでそれをロツクナツト24によ
りロツクし、前記したようにばね押え20を介し
てコイルばね19を圧縮する。この場合ばね押え
20の押し下げ量をδ1とすると、この押し下げに
よつて生ずるコイルばね19の弾発力が円筒状ブ
ロツク18を介してベローズ16に加えられるこ
とからそれ自身も圧縮され、その円筒状凹部17
の底部が押し下げられる。この押し下げ量をδ2
すると、コイルばね19の正味の圧縮量はδ1−δ2
となり、そのばね定数をk1とすると、コイルばね
19から円筒状ブロツク18およびベローズ16
の円筒状凹部17の底部を介して伝達ロツド22
によりボール弁部15のボール15′に加えられ
る下向きの力はk1・(δ1−δ2)であり、この力に
よりボール15′は弁座より離され、下方にδ2
け押し下げられる。一方ボール15′に作用する
上向きの力は、その投影面積をAとすると、流入
流体から作用するp1Aに、コイルばね23から作
用するk2δ2を加えたものである。ただしk2はコイ
ルばね23のばね定数である。ボール15′に作
用する前記した下向きの力、上向きの力は当然た
がいに釣合うことからk1・(δ1−δ2)=p1A+k2δ2
となる。
Now, loosen the lock nut 24 and adjust the adjustment screw 21.
is then locked with the lock nut 24, and the coil spring 19 is compressed via the spring retainer 20 as described above. In this case, if the amount of depression of the spring holder 20 is δ 1 , the elastic force of the coil spring 19 generated by this depression is applied to the bellows 16 via the cylindrical block 18, so that the spring holder 20 is also compressed, and its cylindrical shaped recess 17
The bottom of the is pressed down. If this pushing down amount is δ 2 , the net compression amount of the coil spring 19 is δ 1 − δ 2
, and if its spring constant is k 1 , then the coil spring 19 will lead to the cylindrical block 18 and the bellows 16.
through the bottom of the cylindrical recess 17 of the transmission rod 22.
The downward force applied to the ball 15' of the ball valve portion 15 is k 1 ·(δ 12 ), and this force causes the ball 15' to be separated from the valve seat and pushed downward by δ 2 . On the other hand, the upward force acting on the ball 15' is the sum of p 1 A acting from the inflowing fluid and k 2 δ 2 acting from the coil spring 23, assuming that its projected area is A. However, k 2 is the spring constant of the coil spring 23. Since the above-mentioned downward force and upward force acting on the ball 15' naturally balance each other, k1( δ1δ2 )= p1A + k2δ2
becomes.

前記したようにボール15′は下方にδ2だけ押
し下げられることからそれに対応した環状隙間が
ボール15′と弁座との間に生ずる。したがつて
圧力p1にて流入する流体は前記環状隙間をとおる
ことによつて絞り作用をうけ圧力がP′1に低下す
る。この圧力がP′1に低下した流体はベローズ1
6の内部空間を充たしてから前記した導通路をと
おつて流出管路へ流出する。一方ベローズ16の
内部を充たした流体の圧力P′1は、エアベント2
5により常時大気圧状態に保たれる中空円筒容器
11の内部空間26の圧力より高圧であるから、
ベローズ16は上方へ伸ばされる。この伸び量を
δ3とすると、前記した伝達ロツド22によるボー
ル15′の押し下げ量はδ2−δ3に減じ、コイルば
ね19の圧縮量は結局δ1−δ2+δ3となる。
As described above, since the ball 15' is pushed downward by δ 2 , a corresponding annular gap is created between the ball 15' and the valve seat. Therefore, the fluid flowing in at a pressure p1 passes through the annular gap and is subjected to a throttling action, thereby reducing the pressure to P'1 . The fluid whose pressure has decreased to P′ 1 is bellows 1
After filling the internal space of 6, it flows out to the outflow pipe through the aforementioned conduit. On the other hand, the pressure P' 1 of the fluid filling the inside of the bellows 16 is
5, the pressure is higher than the pressure in the internal space 26 of the hollow cylindrical container 11, which is always kept at atmospheric pressure.
Bellows 16 is extended upward. If this amount of extension is δ 3 , then the amount by which the ball 15' is pushed down by the transmission rod 22 is reduced to δ 2 −δ 3 , and the amount of compression of the coil spring 19 becomes δ 1 −δ 23 .

したがつてこのときのボール15′に作用する
上.下方向の力の釣合いを考えると、k1(δ1−δ2
+δ3)=p1A+k2(δ2−δ3)が成立つ。この場合前
記環状隙間は、δ3だけボール15′が押し上げら
れることによりそれだけ狭くなるから、この環状
隙間をとおる流入流体はより一層の絞り作用をう
け、圧力がp″1(p゜1<p′1<p1)に低下する。この
ような過程を短時間にくりかえすことによつてベ
ローズ16内の流体圧力は、調整ねじ21の締め
込みによるばね押え20の押し下げ量δ1に対応す
る一定の圧力p2に減圧され、流出管路の圧力がこ
の一定圧力p2に調整されることになる。
Therefore, the upper force acting on the ball 15' at this time. Considering the balance of downward forces, k 11 −δ 2
3 )=p 1 A+k 22 −δ 3 ) holds true. In this case, the annular gap becomes narrower due to the ball 15' being pushed up by δ 3 , so the inflowing fluid passing through this annular gap is further throttled, and the pressure becomes p″ 1 (p゜1 < p By repeating this process in a short time, the fluid pressure inside the bellows 16 becomes constant corresponding to the amount of depression δ 1 of the spring retainer 20 by tightening the adjustment screw 21. The pressure in the outflow pipe is adjusted to this constant pressure p2 .

このようにして、流出管路の流体圧力は、流入
管路の流体圧力P1より低い設定圧力p2に調整さ
れ、流入管路の圧力p1が若干変動してもそれより
も小さいほぼ一定の圧力p2に流出管路の圧力が保
たれる。
In this way, the fluid pressure in the outflow line is regulated to a set pressure p 2 that is lower than the fluid pressure P 1 in the inflow line, and is approximately constant, which is smaller even if the pressure in the inflow line p 1 fluctuates slightly. The pressure in the outflow line is maintained at a pressure of p 2 .

ところでこの装置が装着される箇所の雰囲気温
度がたとえば上昇し、圧力設定時の温度より△t
℃だけ高くなつたとする。この場合には、中空円
筒容器11がまず前記雰囲気温度に等しくなるま
で加熱され、それが膨張し、図示のの部分が△
だけのばされる。そのために前記した調整ねじ
21にて設定したばね押え20の押下げ量δ1がδ1
−△となる。また中空円筒容器11は金属たと
えばアルミニウムからなり、熱の良導体であるか
らその内部空間26の空気温度も前記雰囲気温度
とほぼ等しく昇温する。したがつてコイルばね1
9および円筒状ブロツク18が昇温した空気によ
つて加熱され、△t′(ただし△t′≦△t)だけ昇温
し、熱膨張によりそれぞれ伸ばされる。いま、△
t=30℃、=50mm、中空円筒容器11がアルミ
ニウム製であつたとすると、その線膨張係数d=
2.313×10-5/degであるから、△=50×30×
2.313×10-5≒0.035mm、一方円筒状ブロツク18
は、ポリプロピレン材であり、その線膨張係数
d′=11.0×10-5/deg、そして前記した△t′=25
℃、その厚さh=10mmであつたとすると、この円
筒状ブロツク18の伸び△h=10×25×11.0×
10-5≒0.028mmとなる。またコイルばね19自身
も昇温し、わずかに伸ばされることから、前記し
たばね押え20のコイルばね19に対する押し下
げ量δ1の減少量△は主として前記した円筒状ブ
ロツク18の押び△hさらに前記したコイルばね
19の伸びによつて実質的にキヤンセルされるこ
ととなり、前記した雰囲気温度の上昇により設定
圧力p2に及ぼされる影響が除去される。
By the way, if the ambient temperature at the location where this device is installed rises, for example, it will become △t lower than the temperature at the time of pressure setting.
Suppose that the temperature increases by ℃. In this case, the hollow cylindrical container 11 is first heated until it becomes equal to the ambient temperature, expands, and the part shown in the figure becomes △
Just stretched out. For this reason, the amount of depression δ 1 of the spring presser 20 set using the adjustment screw 21 described above is δ 1
−△. Further, since the hollow cylindrical container 11 is made of metal, such as aluminum, and is a good conductor of heat, the temperature of the air in the internal space 26 rises to approximately the same level as the ambient temperature. Therefore, coil spring 1
9 and the cylindrical block 18 are heated by the heated air, the temperature rises by Δt' (where Δt'≦Δt), and each is expanded by thermal expansion. Now, △
Assuming that t = 30°C, = 50 mm, and the hollow cylindrical container 11 is made of aluminum, its linear expansion coefficient d =
Since 2.313×10 -5 /deg, △=50×30×
2.313×10 -5 ≒0.035mm, while cylindrical block 18
is a polypropylene material, and its coefficient of linear expansion is
d′=11.0×10 -5 /deg, and △t′=25 mentioned above
℃, and its thickness h=10 mm, the elongation of this cylindrical block 18 △h=10×25×11.0×
10 -5 ≒0.028mm. In addition, since the coil spring 19 itself also rises in temperature and is slightly stretched, the amount of decrease Δ in the pressing down amount δ 1 of the spring presser 20 with respect to the coil spring 19 is mainly due to the pressing force Δh of the cylindrical block 18 described above, and the This is substantially canceled by the expansion of the coil spring 19, and the effect on the set pressure p2 due to the above-mentioned increase in ambient temperature is eliminated.

従来の装置−図示した実施例装置の構成におい
て円筒状ブロツク18を取り除き、それだけコイ
ルばね19の巻き数を増したもの−において実測
した結果によれば雰囲気温度10℃上昇するに伴い
流出側の流体圧力が約1%低くなつたが、この装
置においてはほとんど変化がみられず、温度補償
効果が明らかである。
According to the results of actual measurements in a conventional device - one in which the cylindrical block 18 is removed from the configuration of the illustrated example device and the number of turns of the coil spring 19 is increased accordingly, the fluid on the outflow side decreases as the ambient temperature rises by 10°C. Although the pressure was lowered by about 1%, almost no change was observed in this device, and the temperature compensation effect was evident.

このことから、中空円筒状容器11の内部空間
26の長さに対し、円筒状ブロツク18の厚さ
hをh=×d/d′なる関係が成立つように、い
いかえればコイルばね19の下部に挿入する円筒
状ブロツク18に線熱膨張係数が金属のそれより
もはるかに大きいプラスチツク材(たとえばポリ
プロピレン)製のものを用い、その厚さhを、中
空円筒状容器11の内部空間の長さに両者の線
膨張係数値の逆比d/d′を乗じたものとすればよ
いことがわかる。
From this, the thickness h of the cylindrical block 18 is set to the length of the internal space 26 of the hollow cylindrical container 11 so that the relationship h=xd/d' is established, in other words, the lower part of the coil spring 19 The cylindrical block 18 to be inserted into the container is made of a plastic material (for example, polypropylene) whose coefficient of linear thermal expansion is much larger than that of metal, and its thickness h is determined by the length of the internal space of the hollow cylindrical container 11. It can be seen that it is sufficient to multiply d/d' by the inverse ratio d/d' of their linear expansion coefficient values.

以上の説明によつて明らかなようにこの考案に
かかる調圧弁においては、流入管路と接続される
絞り弁部の開度を調整する調整機構のコイルばね
と可動弁体との間にプラスチツク材からなる円筒
状ブロツクを介在させ、このブロツクの厚さが、
前記調整機構が内蔵される容器の内部空間の長さ
に対して、前記ブロツクおよび前記容器のそれぞ
れ構成材質のもつ線膨張係数値の逆比の関係を保
つようにされていることから、流出管路の圧力設
定後、この調圧弁が装着される箇所の雰囲気温度
が変化することにより生ずる前記コイルばねの設
定圧縮量の変化は主としてほぼ同時に生ずる前記
ブロツクの厚みの寸法変化によつてキヤンセルさ
れ、前記した雰囲気温度の変化が設定圧力に及ぼ
す影響を除去することができ、温度補償の機能を
もたしめえたものである。
As is clear from the above explanation, in the pressure regulating valve according to this invention, a plastic material is used between the coil spring of the adjustment mechanism that adjusts the opening degree of the throttle valve section connected to the inflow pipe and the movable valve body. A cylindrical block consisting of is interposed, and the thickness of this block is
Since the adjustment mechanism is designed to maintain an inverse ratio of the linear expansion coefficient values of the respective constituent materials of the block and the container to the length of the internal space of the container in which the adjustment mechanism is built, the outflow pipe After the pressure of the coil spring is set, a change in the set compression amount of the coil spring caused by a change in the ambient temperature at the location where the pressure regulating valve is installed is mainly canceled by a dimensional change in the thickness of the block that occurs almost simultaneously; It is possible to eliminate the influence of the above-mentioned change in ambient temperature on the set pressure, and it also has a temperature compensation function.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案にかかる実施例装置の側断面図で
ある。 11…中空円筒状容器、12…円筒状基部、1
5…絞り弁部、15′…可動弁体(ボール)、16
…ベローズ、17…円筒状凹部、18…円筒状ブ
ロツク、21…調整ねじ、22…伝達ロツド、1
6,17,18,22…調整機構、…中空円筒
状容器の内部空間の長さ、h…円筒状ブロツクの
厚さ。
The figure is a side sectional view of an embodiment of the device according to this invention. 11...Hollow cylindrical container, 12...Cylindrical base, 1
5... Throttle valve part, 15'... Movable valve body (ball), 16
... Bellows, 17 ... Cylindrical recess, 18 ... Cylindrical block, 21 ... Adjustment screw, 22 ... Transmission rod, 1
6, 17, 18, 22...adjustment mechanism,...length of internal space of hollow cylindrical container, h...thickness of cylindrical block.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流出管路の圧力を調整する調整機構にコイルば
ねを有し、このコイルばねを介して、流入管路に
接続される絞り弁部の可動弁体を移動させ、前記
弁部の開度を加減することにより流出管路の圧力
を調整するようにした直動形調圧弁において、前
記コイルばねと可動弁体との間にプラスチツク材
からなる円筒状ブロツクを介在させ、さらにこの
ブロツク厚さを、前記調整機構が内蔵される容器
の内部空間の長さに対して、前記ブロツクおよび
前記容器のそれぞれ構成材質のもつ線膨張係数値
の逆比の関係に設定したことを特徴とする調圧
弁。
The adjustment mechanism that adjusts the pressure in the outflow pipe has a coil spring, and the movable valve body of the throttle valve connected to the inflow pipe is moved via the coil spring to adjust the opening degree of the valve. In a direct acting pressure regulating valve that adjusts the pressure of the outflow pipe by adjusting the pressure in the outflow pipe, a cylindrical block made of plastic material is interposed between the coil spring and the movable valve body, and the thickness of this block is The pressure regulating valve is characterized in that the length of the internal space of the container in which the adjusting mechanism is built is set in an inverse ratio of the linear expansion coefficient values of the respective constituent materials of the block and the container.
JP9791482U 1982-06-28 1982-06-28 pressure regulating valve Granted JPS594020U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9791482U JPS594020U (en) 1982-06-28 1982-06-28 pressure regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9791482U JPS594020U (en) 1982-06-28 1982-06-28 pressure regulating valve

Publications (2)

Publication Number Publication Date
JPS594020U JPS594020U (en) 1984-01-11
JPS6339764Y2 true JPS6339764Y2 (en) 1988-10-19

Family

ID=30232700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9791482U Granted JPS594020U (en) 1982-06-28 1982-06-28 pressure regulating valve

Country Status (1)

Country Link
JP (1) JPS594020U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734050B2 (en) * 1985-03-20 1995-04-12 三菱電線工業株式会社 Radiation resistant optical fiber for radiation field
JP4790397B2 (en) * 2005-12-05 2011-10-12 タイム技研株式会社 Governor equipment

Also Published As

Publication number Publication date
JPS594020U (en) 1984-01-11

Similar Documents

Publication Publication Date Title
US5452741A (en) Pressure reducing valve
JP6526751B2 (en) Diaphragm interface device for improving diaphragm cycle life
US4724870A (en) Flow regulator
EP0560874A1 (en) Accurate high-flow clean regulator with input-pressure balancing
JPS6339764Y2 (en)
US5230359A (en) Supply pressure compensated fluid pressure regulator and method
US4417689A (en) Pressure regulator with temperature compensation device
US5950652A (en) Load balanced pressure regulator and method and apparatus for delivering process gas for manufacturing semiconductor devices employing same
US2669071A (en) Flat characteristic regulator
US2542802A (en) Thermostatic expansion valve with adjustable pressure limiting feature
JPS638483B2 (en)
US4484888A (en) Adjustable expander-evaporator and variable maximum flow limiter for a liquified gas lighter
US4219042A (en) Pneumatic relay
US1874680A (en) Gas regulator
JPH117325A (en) Pressure reducing valve
US2854207A (en) Regulator valves
US3001535A (en) Test regulator
US2619104A (en) Valve mechanism
US2967704A (en) Spring adjusting device
JP4138874B2 (en) Spring loaded bellows adjuster
JP2541494Y2 (en) Pressure reducing valve for steam
JPS6324485Y2 (en)
US3066694A (en) Pressure regulating valve
JPH077664Y2 (en) Temperature control valve
JPH02125309A (en) Pressure control valve