JPS633975B2 - - Google Patents

Info

Publication number
JPS633975B2
JPS633975B2 JP58198228A JP19822883A JPS633975B2 JP S633975 B2 JPS633975 B2 JP S633975B2 JP 58198228 A JP58198228 A JP 58198228A JP 19822883 A JP19822883 A JP 19822883A JP S633975 B2 JPS633975 B2 JP S633975B2
Authority
JP
Japan
Prior art keywords
yarn
sheath
core
rate
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58198228A
Other languages
Japanese (ja)
Other versions
JPS6094636A (en
Inventor
Masuki Fujimoto
Kuniaki Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP19822883A priority Critical patent/JPS6094636A/en
Publication of JPS6094636A publication Critical patent/JPS6094636A/en
Publication of JPS633975B2 publication Critical patent/JPS633975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、絹風合を有する新規なスパン調織編
物の製造に適した芯・鞘型混繊交絡フイラメント
糸に関する。 〔従来技術とその問題点〕 従来から、スパン糸とフイラメント糸の両者の
特徴を併せもつたスパン調フイラメント糸が数多
く提案されているが、未だその本質をついたもの
はない。その多くは、糸表面に毛羽、ループ、ケ
ン縮などを形成させ、スパン糸の毛羽に近づけて
外観や触感を似せようとするものである。 代表的な方法としてはタスラン糸がみられる
が、この技術では糸表面に無数に突出したクロー
ズドループやたるみによつて紡績糸様の毛羽感が
得られるものの、これらループ、たるみおよび交
絡によつて糸巻層からの解舒性が悪く、かつ糸の
強度が部分的に著しく低下し、製編織性が劣るば
かりか、編織物表面品位を極度に低下させる欠点
がある。風合い的には、染色仕上加工工程で熱処
理を受けると、いずれのフイラメントも均一に収
縮し、糸加工で与えたフイラメント間分散性を低
下させて、粗剛かつボリユーム感に欠ける欠点が
ある。またこの糸は、いずれのフイラメントもリ
ラツクス状態で流体乱流処理されて作られるた
め、ループ、たるみ、交絡を高次加工工程で消滅
することなく保持させるには、少なくとも15%以
上のリラツクス率が必要とされ、前記糸表面の大
きなループやたるみによつて、衣服用生地の機能
性に致命的な欠点がある。つまり、この糸を編織
物にしても、その表面にループやたるみを生じ、
これらがからみ合う、いわゆるフアスナー現象を
生ずるため、縫製時の延反や生地すべり困難、着
用時のすべり困難やほこり付着を生ずる。 又、タスラン方式以外の交絡技術にあつては流
体の糸送り作用がないことから、スパンライクを
出すためのかさ高化は単に糸の収縮差を利用する
にすぎないため、フイラメントライクな感じをぬ
け切れていない。又、絹様風合を出す方法として
は、三角断面糸を使用する方法や、微細捲縮を与
える方法は知られているが、あくまでもフイラメ
ント糸の領域での話であり、紡績風合の分野にお
いてはほとんどその例がみられないのである。 〔発明の目的〕 本発明の主な目的は、シルクライクな光沢やき
しみ感を有し、かつスパン糸の特長であるふくら
みやソフトな毛羽感を有し、高次加工工程での糸
扱い性が良く、更に衣料用として縫製あるいは着
用上問題のない織編物を作り得る新規なスパン調
フイラメント糸を提供することにある。更に適正
な繊維構成を採ることにより、例えばシルキーウ
ール調、シルキーリネン調、シルキーコツトン調
など、天然の長繊維と短繊維の特徴を併せもつた
ような高級かつ独特の風合いをもち、絹織物特有
のきしみを有しかつ発色性の高い布帛を形成し得
る新規なフイラメント糸を提供することにある。 〔発明の構成〕 本発明は前記目的を達成するため次の基本的な
技術構成を有する。即ち、2糸条以上のマルチフ
イラメント糸からなる芯・鞘型の混繊交絡糸にお
いて、芯糸の熱収縮率が鞘糸の熱収縮率に比べて
乾熱180℃・5分・自由状態で6%以上高く、か
つ芯糸の緩み率が4%以下であると共に、鞘糸の
緩み率が前記芯糸の緩み率以上でかつ9%以下で
あり、前記鞘糸は、同一溶剤に対して溶解性を異
にする少なくとも2種のポリマーにより構成され
た複合繊維糸を含むことを特徴とする絹風合を有
する紡績糸様フイラメント糸である。 以下本発明を詳細に説明する。 まず本発明の一つの目的である紡績糸風合をフ
イラメント糸で製造する点に関し検討するなら
ば、紡績糸の種々の特徴が、個々の繊維の微細捲
縮と、内層外層のマイグレーシヨン現象に起因し
ていることからマルチフイラメント糸に交絡効果
と収縮作用を与えることによつて各フイラメント
間の分散性を高めかつ微細捲縮を発生させること
を思いつき種々実験の結果全体の糸構造としては
第4,5図に示す様な少なくとも2種のフイラメ
ント糸からなる芯一鞘構造で交絡処理されている
ものが適していることを見出した。ここで芯糸と
鞘糸の収縮差をどの程度に設定すべきかが重要な
ポイントであり、第1図のように織物のふくらみ
程度を左右する厚さ増加率からみて、芯糸と鞘糸
の収縮差を乾熱180℃・5分・自由状態で6%以
上、望ましくは7%以上に設定することが、安定
して高いふくらみを得るために必要であることが
判つた。 ここで、芯糸としては、鞘糸に比べて高い収縮
率であつて、さらに繊細なふくらみと柔軟な風合
いを得るためには、芯糸として熱収縮差混繊糸を
使用することが好ましい。また鞘糸も熱収縮差混
繊糸や鞘糸の個々のフイラメントが糸軸方向に高
収縮部と低収縮部を交互ランダム長に有し、かつ
芯糸に比べてマルチフイラメント糸全体としての
収縮率が低いことが望ましい。又、本発明の構成
の範囲内で上記繊維を適正に組合せて用いること
により、非常に多様性に富んだフイラメント糸の
設計が可能である。 本発明のもう一つの重要なポイントは、発明糸
を用いて製編織する場合の高次加工性がよく、編
織物の品位を高め、かつ布帛でフアスナー現象を
生じない要件を満足させる必要がある。この点で
は、例えば第2図に示すように鞘糸の緩み率をど
の程度に設定するかが重要なポイントで、織物面
に糸の表面ループやたるみを少なく、小さくする
ため、鞘糸の緩み率を芯糸の緩み率以上で9%以
下、望ましくは8%以下に設定することが必要で
あることが判つた。ただし、この鞘糸の緩み率や
芯糸の緩み率は、本発明糸の混繊交絡性の強さ
や、トータルの糸の強度を決める重要なフアクタ
ーでもある。一般に2糸条のマルチフイラメント
糸を同一リラツクス状態で混繊交絡した糸では、
構成糸の緩み率を本発明糸の如く低くすると、製
編織時の高次加工張力ですぬけと呼ばれる現象が
生じ混繊交絡性が低下し、目的の糸質や編織物品
質が得られない。しかし、本発明では芯・鞘構造
としているため、製編織時の高次加工で張力を受
けても、芯糸が主として張力を受け、すぬけ現象
がなく混繊交絡性が低下することは少ないが、よ
り混繊交絡性を高くするために、芯糸側について
も緩みを与えることが必要である。そして、この
芯糸の緩み率として4%以下、好ましくは3%に
することが必要である。これよりも高い緩み率を
もたせると、一般の2糸条マルチフイラメント糸
を同一リラツクス状態で混繊交絡した糸と同様に
すぬけ現象が生じやすく、かつ最も大きな欠点で
ある芯糸のフイラメントが緩み交絡し、糸全体と
して芯糸の強力以下の低強力部が生じ、高次加工
工程で糸切れしたり、編織物の引裂強力を低下さ
せることになる。また同様の理由から、芯糸は鞘
糸の強度以上のマルチフイラメント糸であること
が望ましく、芯糸繊度もトータル繊度の20%以
上、望ましくは30%以上であることが良い。 ここで芯糸の緩み率、鞘糸の緩み率は次式で求
めた値である。 芯糸の緩み率(%)=l1−l0/l0×100 鞘糸の緩み率(%)=l2−l0/l0×100 l0:0.1g/d荷重下の糸全体の長さ(10cm)。 l1:l0の糸の混繊交絡を分解針でていねいに解
舒し、芯糸の個々のフイラメントの長さを
スケールで読み取つた平均の長さ。 l2:l0の糸の混繊交絡を分解針でていねいに解
舒し、鞘糸の個々のフイラメントの長さを
スケールで読み取つた平均の長さ。 以上詳細に説明したように、本発明の重要なポ
イントは、糸表面に突出したループやたるみ同志
がからみ合つて生ずるフアスナー現象がみられな
いで、かつ芯糸と鞘糸の熱収縮差による糸長差で
ふくらみ効果の得られる糸であるが、編織物の染
色仕上加工工程で熱処理を受けて得られる鞘糸の
たるみは、糸加工で得られるループやたるみと性
質が異なり、例えば第3図のように本発明の糸に
おける芯糸および鞘糸の緩み率内では、乾熱収縮
率差を高く設定しても編織物でのフアスナー現象
はほとんど問題にならないことが判つた。つま
り、本発明の目的を達成するためには、2糸条以
上のマルチフイラメント糸の主として鞘糸をリラ
ツクス状態にした芯・鞘型の混繊交絡糸とし、か
つ芯糸および鞘糸の緩み率をできるだけ低くおさ
え、むしろ芯糸と鞘糸の熱収縮差で高い糸長差が
得られる構造としたものが良いことが判明した。 次に本発明における目的の一つである絹様風合
を付与する点について述べるならば、従来前述し
た通り三角〜八角形の特殊断面糸を使用すること
により、シルキーな感触を出そうとする試みが行
なわれており、それなりの効果は得られている
が、単にこれ等の特殊糸を使用したのみでは、フ
イラメントライクな絹様風合しか得られなかつ
た。 本発明はこのようなペーパーライクの域を出な
い従来のシルク調合繊布帛から脱却し、紡績糸風
合のソフトでバルキー感を有し、しかもシルク調
の光沢ときしみ感を得るため検討した処、上述し
たきたフイラメント構造に、後述する複合繊維を
使用することによりよその目的を完全に達成する
ことが判明した。 即ち、溶剤に溶解し易い一種のポリマーを繊維
表面に配した複合繊維で溶剤処理により微細でか
つ鋭い端縁部を呈する溝状部が形成される如きも
のを使用することによつて、フイラメントそのも
のに光沢ときしみ感を付与し、かつ、これを特に
鞘糸側に配することによつて、表面は極めてソフ
トでなめらかな、光沢ときしみ感を呈するととも
に、バルキー調を示し糸方向には適度のムラ感を
もつ天然絹に近似した外観、風合が得られるのみ
ならず、芯糸の存在により腰のあるシルキー調布
帛を得ることが出来るのである。 ここで本発明に使用される複合繊維について述
べる。本発明に使用しうる複合繊維としては同一
の溶剤に対して溶解性を異にする少くとも2種の
ポリマーから同時紡糸の形で紡出されたものであ
つて、その断面形状、異種ポリマーの配列方法は
特定されるものではないが、好ましい例として第
8図に示されるものがある。第8図は複合繊維の
断面を示すものであつて、α成分ポリマーとβ成
分ポリマーの複合糸で、β成分は繊維の横断面の
内部方向に先細りのくさび状であり、β成分を形
成するポリマーがα成分を形成するポリマーより
溶剤に対し溶解性が大である。本発明において、
特にβ成分の形状は目的・効果を達成するための
重要なフアクターである。本発明でのβ成分のく
さび形状は例えば第8図に示すような繊維の横断
面において、繊維重心をG,Gからβ成分の存在
する頂点P,GP線上でβ成分の繊維重心Gにも
つとも近い点Q、α成分とβ成分の外周上におけ
る境界点M、,L、線PQと線MLの交点Nとする
とβ成分の繊維断面に対する深さ割合GQ/GPは
0.07〜0.9の範囲が好ましく、さらに好ましくは
0.15〜0.8の範囲が望ましい。GQ/GPが0.07より
低い場合は、β成分が複合繊維の横断面重心近く
まで存在することになり、β成分を選択的に溶解
除去した織編物では着用時の摩擦作用でα成分が
分割されることがあり、フロストと呼ばれる白化
変色しやすくなる。GQ/GPが0.9をこえると、
繊維の横断面中のくさびの数にもよるがβ成分の
繊維全体に対する割合が低くなり、目的のきし
み、衣ずれ効果を得にくくなる。またβ成分溶解
除去後のくさびの形状と布帛でのきしみ、発色性
との関係を種々検討した結果、第11図、第12
図から判断して、布帛のきしみを絹様のレベルに
するためには、第9図のβ成分の全部または一部
を溶解除去した後のくさび形の溝の幅MLまたは
M′L′が0.9μ以上、くさび形の溝の深さQNまたは
Q′N′が0.3μ以上が必要である。さらに布帛の染
色物の発色性で本発明のごときくさび形の溝をも
つ繊維では、くさびの形によつて、発色性はくさ
びのないものに比べて高くもなり低くもなる傾向
を示し、発色効果を少なくともくさびのないもの
より高くするためには、くさび形の溝の幅MLま
たはM′L′が1.2μ以下、くさび形の溝の深さQPま
たはQ′N′が1.4μ以下とする必要がある。したが
つて、布帛のきしみを絹織編物なみで、発色性を
少なくともくさびをもたないものより高くすると
いう両特性を満足させるには、くさび形の溝の幅
が0.9〜1.2μ、くさび形の溝の深さが0.3〜1.4μの
範囲が望ましい。本発明の複合繊維を形成するα
成分とβ成分の比、すなわち複合比はα成分:β
成分重量比で40:60〜95:5の範囲が好ましく、
50:50〜90:10の範囲がより望ましい。β成分の
量が60%を越えると紡糸・延伸性や製織性を低下
させることが多いし、α成分とβ成分の性質およ
び複合比によつてくさびの形状が変化し、前記く
さびの幅や深さを保持させるために適当な複合比
やα成分とβ成分の溶剤溶解速度比を選ぶ必要が
ある。 繊維断面内でのくさびの数は、織編物の表面に
も溝が存在することが好ましく、1フイラメント
当り2本以上が望ましいし、シルキーなきしみを
より発揮させるためのβ成分溶出前断面形状は第
10図のような多葉形の横断面を有する複合糸が
好ましい。尚この複合繊維は鞘糸全部に使用して
もよく又一部に使用してもよい。 また、本発明の糸において、この複合繊維は少
なくとも鞘糸に含まれていればよいので、鞘糸に
含まれていてかつ芯糸に含まれているものであつ
てもよい。又この複合繊維は芯糸よりも収縮性は
小さく、前述した糸緩み率を有する。 次に図面によつて本発明を詳細に説明する。 第4図および第5図は、本発明で得られる加工
糸(A,C)を乾熱180℃・5分・自由状態で処
理し、糸かさを発現した加工糸(B,D)をモデ
ル的に示したものである。なお、これら第4図、
第5図では、理解を容易にするため芯糸と鞘糸が
それぞれ2本ずつのフイラメントだけで代表的に
描かれ、他のフイラメントは省略してある。この
ためこれらの図では芯鞘構造には見えないが、実
際の糸条は上記に代表される芯糸と鞘糸とが多数
のマルチフイラメントとなつていることにより明
瞭な芯鞘構造を構成している。第4図の加工糸A
は、高収縮芯糸1と複合繊維から成る低収縮鞘糸
2が若干の糸長差を有しながら芯・鞘交絡部3で
強く混繊交絡している。この糸Aを乾熱処理する
と、高収縮した芯糸4と鞘糸5とで加工糸Bのよ
うに微細捲縮と高いかさ高性が得られるのであ
る。また、第5図の加工糸Cは、高収縮芯糸1と
低収縮鞘糸6,7が若干の糸長差を有しながら
芯・鞘交絡部3で強く混繊交絡している。ここ
で、低収縮鞘糸6,7は例えばあらかじめ不均一
熱処理等によつてさらに低収縮化された極低収縮
鞘糸部7と複合繊維から成る低収縮糸部6とで構
成されている。 したがつて、この糸Cを乾熱処理すると、高収
縮した芯糸4と鞘糸部8および極低収縮の鞘糸部
9とで加工糸Dのように微細捲縮とより高いかさ
高性および高嵩高部Eと極高嵩高部Fが得られ
る。本発明に用いられるマルチフイラメント糸と
しては、鞘糸が複合繊維から成る低収縮糸、芯糸
が鞘糸に比べて乾熱180℃・5分・自由状態で6
%以上高い収縮糸であれば特に限定されるもので
はなく、芯糸はポリアミド系、ポリエステル系、
ポリアクリロニトリル系、ポリビニルアルコール
系、ポリ塩化ピニリデン系、ポリエチレン系、ポ
リプロピレン系、ポリウレタン系等の熱可塑性合
成繊維マルチフイラメント糸や、レーヨン等の再
生繊維マルチフイラメント糸およびアセテート等
の半合成繊維マルチフイラメント糸等を単独ある
いは組合せで用いることができる。 一方、鞘糸としても特に限定されないが、例え
ば、α成分が通常のポリエステルまたはポリアミ
ドポリマーであれば、β成分は2.4モル%以上の
金属スルホネート基を含有したポリエステル、特
に2.4モル%以上がエチレン5―ソジユームスル
ホイソフタレート含有エステル共重合体があげら
れる。 また、いづれの単繊維のデニールが2種以上、
例えば0.5〜6デニールの範囲で変化したマルチ
フイラメントの組合せでも本発明は可能であり、
外観面からは、例えば円形、三角、五葉、八葉、
偏平などの繊維断面形状の異なる繊維の組合せ
や、染色性の異なる繊維の組合せでも特徴をより
発揮できる。 第6図は、本発明糸を得るための製造プロセス
を例示する概略図である。本発明糸を得るには少
なくとも2糸条以上のマルチフイラメント糸を鞘
糸を構成する糸10と芯糸を構成する糸11とし
て、それぞれフイードローラ12,13に供給す
る。鞘糸10はあらかじめフイードローラ12と
リラツクスローラ15の間で加熱体14に接触さ
せて熱処理し低収縮化糸として、芯糸11ととも
に流体乱流処理体16を通して混繊交絡処理後、
第2リラツクスローラ17を通して捲取機18で
巻取パツケージ19に巻取るのである。この際フ
イードローラ13と第2リラツクスローラ17の
間のリラツクス率(緩み率)は4%以下、リラツ
クスローラ15と第2リラツクスローラ17の間
のリラツクス率はほぼ9%以下、その結果として
芯糸の緩み率が4%以下、鞘糸の緩み率が9%以
下になるような条件が望ましい。 本発明に使用する交絡ノズルは流体を使用する
タイプのものであれば特に制約はなくあらゆるタ
イプのノズルが使用出来る。 また、複合繊維からなる鞘糸10の加熱体14
における熱処理条件は乾熱180℃・5分の自由状
態での収縮率が同条件での芯糸11の収縮率より
6%以上低くなる様にする。また鞘糸10として
予め上記収縮率を芯糸のそれに比べて6%以上低
くした複合繊維マルチフイラメント糸を用いる時
には加熱体14は不要である。 さらにより高いかさ高性や紡績糸様の嵩むらを
得たい場合には、鞘糸10をフイードローラ12
とリラツクスローラ15の間でリラツクス状態と
し、加熱体14で不均一熱処理することが望まし
い。 〔発明の効果〕 本発明による糸は上述の構成をとることによ
り、編織物の染色加工工程で熱処理を受けると、
個々のフイラメントが微細捲縮をもち、それぞれ
内層外層にマイグレートしながら熱収縮差による
糸長差を発現し、フイラメント糸編織物でありな
がら紡績糸使い編織物様のかさ高性、毛羽感、自
然な糸むら感および柔らかな触感を有する布帛と
なる。さらに、鞘糸の緩み率が9%以下であるた
め、混繊交絡糸にしては糸表面のループやたるみ
が小さく少なく、糸全体の強度も高いため、加工
糸巻層からの解舒性が良好、製編織性良好および
高次加工張力での交絡すぬけが少ないなどの高次
加工取扱い性の良好な糸であつて、かつ編織物表
面でもループやたるみが小さく少ないため、交絡
糸の致命的欠点とされていたループやたるみ同志
がからみあつて生ずるフアスナー現象およびほこ
りが付着しやすいという問題が解消される。ま
た、芯糸の緩み率が4%以下であるため、混繊交
絡糸にしては糸全体の強度が高く、交絡糸特有の
部分的に極低強度部が生ずることがないため、高
次加工工程での糸切れ、編織物製品の引裂強力低
下の心配が解消される。 さらに本発明では鞘糸が特殊複合繊維であるた
め糸又は編織物状態で溶剤処理を行なうことによ
り例えばくさび形溝を多発させ、上記糸そのもの
の構成との相乗効果によつて絹様の光沢やきしみ
効果、腰があつてソフトなスパン調シルクライク
布帛を得ることが出来さらには、染色後の発色性
が極めて良好なスパン調編織物が得られる。 次に実施例をあげて本発明を説明する。 実施例 1 ポリエチレンテレフタレートを溶融紡糸延伸し
て得られた75デニール、36フイラメントの三角断
面ポリエステル延伸糸(乾熱180℃・5分・自由
状態での収縮率が16.9%であつた)とα成分とし
てポリエチレンテレフタレート、β成分として全
構成単位の4.8モル%がエチレン5―ソジユーム
スルホイソフタレートであるポリエチレンテレフ
タレート共重合体とポリエチレンテレフタレート
を重量比で30:70の割合にブレンドしたポリマー
を用い、第8図のような三葉形断面の頂点からく
さび状にβ成分が複合された形で、α成分とβ成
分の重量比で85:15の割合に紡糸・延伸して得ら
れた75デニール、36フイラメントの三角断面複合
ポリエステル延伸糸(乾熱180℃・5分・自由状
態での収縮率が18.1%であつた)を使用し、第6
図に示すような装置で交絡処理を実施した。まず
複合ポリエステル延伸糸を鞘糸10のみに供給
し、表面速度201m/minのフイードローラ12
と表面速度200m/minのリラツクスローラ15
の間で0.5%のリラツクス状態で加熱体14に接
触走行させて熱処理し、流体乱流処理体16およ
び第2リラツクスローラ17を使用しないで巻取
機18で巻取パツケージ19に巻取つた。ここ
で、あらかじめ加熱体14の温度を種々変更し、
乾熱180℃・5分・自由状態での収縮率がそれぞ
れ15.1,12.2,10.5,9.4,6.7,2.3の計6水準の
熱処理低収縮化複合ポリエステル糸を得た。 次にこれら6水準の複合ポリエステル糸を鞘糸
10に、先のポリエステル糸を芯糸11として、
鞘糸は表面速度214m/minのリラツクスローラ
15、芯糸は表面速度202m/minのフイードロ
ーラ13に供給し、表面速度200m/minの第2
リラツクスローラ17との間で3Kg/cm2の圧縮空
気を通した流体乱流処理体16で混繊交絡し、巻
取パツケージ19に巻取つて表1のA〜Fの計6
水準の糸を得た。 表中、C〜Fが本発明糸、A〜Bは比較糸であ
る。即ち、糸のかさ発現能力は芯糸と鞘糸の乾収
差に関係し、安定して紡績糸様の高いかさ高性を
得るには、芯糸と鞘糸の乾収差を6%以上とする
必要があることが判つた。また、得られた6水準
の糸をそれぞれ2本引揃えてS方向に450T/m
の撚を加え、タテ・ヨコ糸に用いてタテ57本/
in、ヨコ54本/inの密度の2/2綾織に製織し、通
常のポリエステル染色加工法で加工した。ここ
で、織物の苛性ソーダによる減量加工は織物全体
として21.9%に設定した。いずれの糸も製織準
備、製織および染色加工上特に問題になる点はな
かつた。染色加工織物の特性は、表1および第1
図、第3図に示す通りで、織物のかさ発現能力
(織物の厚さ増加率)は、加工糸の芯糸と鞘糸の
乾収差に関係し、安定して高いかさ高性を得るに
は、乾収差を6%以上とする必要がある。またC
〜Fは織物のかさが高くても、混繊交絡糸使い織
物の欠点であるフアスナー現象はほとんど問題に
ならなかつた。 上記織物は、シルキースパン調の毛羽感、織糸
の太さむら感、柔らかい風合いとマイールドな光
沢を有するとともに、絹様のきしみ感と深みのあ
る色合い効果が認められた。 また、前記複合ポリエステル糸の中で、乾熱
180℃・5分・自由状態での収縮率が9.4%の糸を
鞘糸10に、先のポリエステル延伸を芯糸11と
して、鞘糸はリラツクスローラ15、芯糸は表面
速度204m/minのフイードローラ13に供給し、
前記と同じ条件で加工糸を得る方法において、リ
ラツクスローラ15の表面速度を208,216,218,
220,224,248m/minと6通り変更し、6水準
の加工糸を得た。各糸の芯糸緩み率は1.97%、鞘
糸の緩み率がそれぞれ3.98,7.98,8.97,9.97,
11.97,23.96%であつた。この加工糸を前記と同
一条件で撚糸、製織、染色加工した。 得られた染色加工織物はいずれもかさ高性の高
い織物であるが、第2図に示すように鞘糸の緩み
率が10%以上ではフアスナー現象が生じ、衣料用
織物としては不向きな程度であつた。 さらに、前記加工条件で鞘糸側のリラツクスロ
ーラ15の表面速度を214m/minに固定し、芯
糸側のリラツクスローラ13の表面速度のみ、
202.2,204.3,206.3,208.2,209.3,210.7,
212.1m/minと7条件変更し加工した。得られた
加工糸は、芯糸の緩み率が1.0,2.1,3.1,4.0,
4.5,5.1,5.9%で、鞘糸の緩み率がいずれもほぼ
7.0%であつた。この加工糸をインストロン型の
強伸度試験機を用いて、切断強力を測定し、その
100回測定値の平均切断強度および100回測定値中
の低強度から5回の値の平均値(加工糸の最低強
度)を求めたところ、平均切断強度はそれぞれ
3.79,3.80,3.77,3.68,3.43,3.32,3.17g/d,
加工糸の最低強度はそれぞれ3.31,3.30,3.25,
3.13,2.92,2.72,2.58g/dであつた。 ここで芯糸側に使用したポリエステルマルチフ
イラメント糸の切断強度は4.95g/d、鞘糸側に
使用した複合ポリエステルマルチフイラメント糸
の切断強度は4.32g/dであつた。つまり、本発
明の加工糸で、芯糸および鞘糸に使用するマルチ
フイラメント糸の強度に比べて加工糸の強度低下
をできるだけ少なくおさえるためには、第7図の
ように芯糸の緩み率を4%以下、望ましくは3%
以下にすることが好ましいといえる。 注1 加工糸のかさ発現度:加工糸を綛繰機で80
回巻きの綛にして2綛とり、乾熱180℃・5
分・自由状態で処理してバルキー化させた後、
この綛を8回折りにして、2.5cm幅のポリエス
テルテープ織物で50gの重さの荷重をかけて見
掛体積を求め、このテープ中に含まれる糸の重
さで除して単位重量(1g)当りの見掛体積
(c.c.)を求めた値。
[Technical Field of the Invention] The present invention relates to a core-sheath type mixed fiber interlaced filament yarn suitable for producing a novel spun-like woven or knitted fabric having a silk texture. [Prior Art and its Problems] Many spun-like filament yarns that have the characteristics of both spun yarns and filament yarns have been proposed, but none has yet achieved the essence. Most of these methods involve forming fluff, loops, crimp, etc. on the surface of the yarn to approximate the fluff of spun yarn and to make it look and feel similar to the fluff of spun yarn. A typical method is Taslan yarn, and although this technique produces a fluffy feel similar to spun yarn due to the countless closed loops and slacks that protrude on the yarn surface, these loops, slacks, and entanglements create a fluffy feel. The unwinding properties from the thread-wound layer are poor, the strength of the yarn is significantly reduced in some parts, and the knitting and weaving properties are poor, as well as the surface quality of the knitted fabric is extremely reduced. In terms of texture, when subjected to heat treatment in the dyeing and finishing process, all filaments shrink uniformly, reducing the inter-filament dispersibility provided by yarn processing, resulting in a disadvantage of roughness and lack of volume. In addition, this yarn is made by subjecting each filament to fluid turbulence treatment in a relaxed state, so a relaxation rate of at least 15% is required to retain loops, slack, and entanglement without disappearing during high-level processing. The large loops and sag of the yarn surface required are fatal to the functionality of the garment fabric. In other words, even if this yarn is made into a knitted fabric, loops and sagging will occur on the surface,
These factors become intertwined, resulting in the so-called fastener phenomenon, which causes difficulty in spreading the fabric during sewing, making it difficult for the material to slip, and causing difficulty in slipping when worn and the adhesion of dust. In addition, in the case of entangling techniques other than the Taslan method, since there is no thread feeding action of the fluid, the bulking to create a spun-like effect is simply by utilizing the difference in shrinkage of the threads, resulting in a filament-like feel. It's not completely dry. Furthermore, methods for producing a silk-like texture are known, such as using triangular cross-section threads and providing fine crimps, but these only apply to the field of filament yarns and are not applicable to the field of spinning textures. There are almost no examples of this. [Objective of the Invention] The main object of the present invention is to have silk-like luster and squeaky feel, as well as the fullness and soft fluffiness that are characteristic of spun yarn, and to improve yarn handling properties in higher processing steps. It is an object of the present invention to provide a novel spun-like filament yarn that has good properties and can be used to make woven or knitted fabrics that are suitable for sewing or wearing clothing. Furthermore, by adopting an appropriate fiber composition, silk fabrics can have a luxurious and unique texture that combines the characteristics of natural long fibers and short fibers, such as silky wool, silky linen, and silky cotton. An object of the present invention is to provide a novel filament yarn that has a unique creak and can form a fabric with high color development. [Configuration of the Invention] The present invention has the following basic technical configuration to achieve the above object. In other words, in a core-sheath type interwoven interwoven yarn made of multifilament yarn with two or more threads, the heat shrinkage rate of the core yarn is higher than that of the sheath yarn when dry heated at 180℃ for 5 minutes in the free state. 6% or more, and the loosening rate of the core yarn is 4% or less, and the loosening rate of the sheath yarn is higher than the loosening rate of the core yarn and 9% or less, and the sheath yarn is resistant to the same solvent. The present invention is a spun yarn-like filament yarn having a silk texture and characterized by containing a composite fiber yarn composed of at least two types of polymers having different solubility. The present invention will be explained in detail below. First of all, if we consider the production of spun yarn texture using filament yarn, which is one of the objects of the present invention, various characteristics of spun yarn are related to fine crimp of individual fibers and migration phenomenon of inner layer and outer layer. Because of this, we came up with the idea of increasing the dispersion between each filament and generating fine crimp by giving the multifilament yarn an entangling effect and a shrinking effect.As a result of various experiments, we found that the overall yarn structure was as follows. It has been found that a core-sheath structure consisting of at least two types of filament threads, as shown in Figures 4 and 5, which is intertwined, is suitable. The important point here is how much the shrinkage difference between the core yarn and the sheath yarn should be set. It has been found that it is necessary to set the shrinkage difference to 6% or more, preferably 7% or more in dry heat at 180°C for 5 minutes in a free state, in order to obtain a stable and high swelling. Here, as the core yarn, it is preferable to use a heat-shrinkable mixed fiber yarn as the core yarn in order to have a higher shrinkage rate than the sheath yarn and to obtain a more delicate bulge and soft texture. In addition, the sheath yarns also have heat-shrinkable differentially mixed fiber yarns and individual filaments of the sheath yarns that have alternating random lengths of high-shrinkage areas and low-shrinkage areas in the yarn axis direction, and the shrinkage of the multifilament yarn as a whole is greater than that of the core yarns. A low rate is desirable. Further, by appropriately combining and using the above-mentioned fibers within the scope of the present invention, it is possible to design filament yarns with a great variety of designs. Another important point of the present invention is that when the invented yarn is used for knitting and weaving, it has good high-order processability, improves the quality of the knitted fabric, and satisfies the requirements that the fabric does not cause the fastener phenomenon. . In this respect, for example, as shown in Figure 2, the important point is how to set the loosening rate of the sheath yarn. It has been found that it is necessary to set the loosening rate of the core yarn to 9% or less, preferably 8% or less. However, the loosening rate of the sheath yarn and the loosening rate of the core yarn are also important factors that determine the strength of the interlacing and entangling properties of the yarn of the present invention and the strength of the total yarn. In general, a yarn made by intertwining two multifilament yarns in the same relaxation state,
When the loosening rate of the constituent yarns is made low as in the yarn of the present invention, a phenomenon called shedding occurs due to high-order processing tension during weaving and weaving, resulting in a decrease in fiber-mixing and entangling properties, making it impossible to obtain the desired yarn quality and quality of the knitted fabric. However, since the present invention has a core/sheath structure, even if tension is applied during high-order processing during weaving and weaving, the core yarn will mainly receive the tension, and there will be no slip-through phenomenon and the intertwining property of the fibers will not deteriorate. However, in order to improve the interlacing properties, it is necessary to give some slack to the core yarn side as well. The loosening rate of this core yarn needs to be 4% or less, preferably 3%. If the loosening rate is higher than this, the slipping phenomenon will easily occur, similar to yarns made by mixing and interlacing general two-filament multifilament yarns in the same relaxation state, and the biggest drawback is that the filaments of the core yarn will loosen. As a result of entanglement, a low-strength region is created in the yarn as a whole, which is lower than the strength of the core yarn, resulting in yarn breakage in higher-order processing steps and a decrease in the tear strength of the knitted fabric. For the same reason, it is preferable that the core yarn is a multifilament yarn having a strength higher than that of the sheath yarn, and the core yarn fineness is preferably 20% or more, preferably 30% or more of the total fineness. Here, the loosening rate of the core yarn and the loosening rate of the sheath yarn are values determined by the following formula. Looseness rate of core yarn (%) = l 1 - l 0 / l 0 ×100 Looseness rate of sheath yarn (%) = l 2 - l 0 / l 0 ×100 l 0 : Entire yarn under 0.1g/d load length (10cm). l 1 : The average length of the intertwined fibers of l 0 yarn is carefully unwound with a disassembly needle, and the length of each filament of the core yarn is read on a scale. l 2 : The average length of the interwoven fibers of l 0 yarn is carefully unwound with a disassembly needle, and the length of each filament of the sheath yarn is read on a scale. As explained in detail above, the important points of the present invention are that the fastener phenomenon that occurs when loops or slacks protruding from the yarn surface are entangled with each other is not observed, and the yarn is produced by the difference in heat shrinkage between the core yarn and the sheath yarn. It is a yarn that can obtain a fluffing effect depending on the length difference, but the slack of the sheath yarn obtained by heat treatment in the dyeing and finishing process of knitted fabrics has different properties from the loops and slack obtained in yarn processing. For example, as shown in Figure 3. It was found that within the loosening ratio of the core yarn and sheath yarn in the yarn of the present invention, the fastener phenomenon in knitted fabrics hardly becomes a problem even if the dry heat shrinkage rate difference is set high. In other words, in order to achieve the object of the present invention, it is necessary to use a core-sheath type mixed fiber entangled yarn in which mainly the sheath yarn of the multifilament yarn with two or more yarns is in a relaxed state, and the loosening rate of the core yarn and the sheath yarn is It has been found that it is better to keep the value as low as possible, and rather create a structure that allows a high difference in yarn length to be obtained by the difference in heat shrinkage between the core yarn and the sheath yarn. Next, to discuss one of the purposes of the present invention, which is to impart a silky feel, as previously mentioned, we aim to create a silky feel by using threads with a special triangular to octagonal cross-section. Attempts have been made and some results have been obtained, but simply using these special threads has only resulted in a filament-like silky texture. The present invention breaks away from conventional silk-based synthetic fiber fabrics that are beyond paper-like, and uses a process that has been studied in order to obtain the soft and bulky feel of spun yarn, as well as the luster and squeaky feel of silk. It has been found that the other objectives can be completely achieved by using the composite fibers described below in the filament structure described above. That is, by using composite fibers in which a type of polymer that is easily soluble in solvents is arranged on the fiber surface, and grooves with fine and sharp edges are formed by solvent treatment, the filament itself can be By giving it a glossy and squeaky feel, and placing it especially on the sheath yarn side, the surface exhibits an extremely soft and smooth luster and squeaky feeling, as well as a bulky tone and moderate texture in the yarn direction. Not only is it possible to obtain an appearance and texture similar to natural silk, which has a sense of unevenness, but also a silky-looking fabric with elasticity can be obtained due to the presence of the core yarn. Here, the composite fiber used in the present invention will be described. Composite fibers that can be used in the present invention are those that are spun simultaneously from at least two types of polymers that have different solubility in the same solvent, and their cross-sectional shape, Although the arrangement method is not specified, a preferred example is shown in FIG. Figure 8 shows a cross section of a composite fiber, which is a composite yarn of an α component polymer and a β component polymer, where the β component has a wedge shape that tapers inward in the cross section of the fiber, forming the β component. The polymer has greater solubility in the solvent than the polymer forming the α component. In the present invention,
In particular, the shape of the β component is an important factor in achieving the purpose and effect. In the present invention, the wedge shape of the β component is such that, in the cross section of the fiber as shown in FIG. Assuming a nearby point Q, a boundary point M, , L on the outer periphery of α and β components, and an intersection N of lines PQ and ML, the depth ratio GQ/GP of the β component to the fiber cross section is
The range is preferably 0.07 to 0.9, more preferably
A range of 0.15 to 0.8 is desirable. When GQ/GP is lower than 0.07, the β component exists close to the center of gravity of the cross-section of the composite fiber, and in woven or knitted fabrics in which the β component is selectively dissolved and removed, the α component is split due to the frictional action when worn. This can lead to a white discoloration called frost. When GQ/GP exceeds 0.9,
Although it depends on the number of wedges in the cross section of the fiber, the proportion of the β component to the total fiber becomes low, making it difficult to obtain the desired squeaking and clothes-sliding effects. In addition, as a result of various studies on the relationship between the shape of the wedge after dissolving and removing the β component, squeakiness in the fabric, and color development, the results shown in Figures 11 and 12.
Judging from the figure, in order to bring the squeak of the fabric to a silk-like level, the width of the wedge-shaped groove after dissolving or removing all or part of the β component in Figure 9 must be
M′L′ is 0.9μ or more, wedge-shaped groove depth QN or
Q'N' must be 0.3μ or more. Furthermore, with respect to the color development of dyed fabrics, fibers with wedge-shaped grooves such as those of the present invention tend to have higher or lower color development than those without wedges, depending on the shape of the wedge. In order to make the effect at least higher than that without a wedge, the width ML or M′L′ of the wedge-shaped groove should be 1.2μ or less, and the depth QP or Q′N′ of the wedge-shaped groove should be 1.4μ or less. There is a need. Therefore, in order to satisfy both the characteristics of making the squeak of the fabric similar to that of silk woven and knitted fabrics and the coloring property being at least higher than that of fabrics without wedges, the width of the wedge-shaped grooves should be 0.9 to 1.2μ, and the wedge shape should be It is desirable that the depth of the groove is in the range of 0.3 to 1.4μ. α forming the composite fiber of the present invention
The ratio of component and β component, that is, the composite ratio is α component: β
The weight ratio of the components is preferably in the range of 40:60 to 95:5,
A range of 50:50 to 90:10 is more desirable. If the amount of the β component exceeds 60%, spinning/drawability and weaving properties often decrease, and the shape of the wedge changes depending on the properties and composite ratio of the α and β components, and the width of the wedge and In order to maintain the depth, it is necessary to select an appropriate composite ratio and solvent dissolution rate ratio of α component and β component. Regarding the number of wedges in the cross section of the fiber, it is preferable that grooves also exist on the surface of the woven or knitted material, and two or more wedges per filament is desirable.The cross-sectional shape before β component elution should be A composite yarn having a multilobal cross section as shown in FIG. 10 is preferred. Incidentally, this composite fiber may be used for all of the sheath yarn or for only a part of the sheath yarn. Furthermore, in the yarn of the present invention, the composite fibers only need to be contained in at least the sheath yarn, and therefore may be contained in the sheath yarn and in the core yarn. Furthermore, this composite fiber has a smaller shrinkage than the core yarn and has the yarn loosening rate described above. Next, the present invention will be explained in detail with reference to the drawings. Figures 4 and 5 are models of processed yarns (B, D) that have developed bulk by dry heat treatment of processed yarns (A, C) obtained by the present invention at 180°C for 5 minutes in a free state. This is what is shown. Furthermore, these Figure 4,
In FIG. 5, for ease of understanding, only two filaments each of the core thread and the sheath thread are representatively drawn, and other filaments are omitted. Therefore, although it does not appear to be a core-sheath structure in these figures, the actual yarn has a clear core-sheath structure due to the core yarn and sheath yarn represented above forming a large number of multifilaments. ing. Processed yarn A in Figure 4
In this example, a high-shrinkage core yarn 1 and a low-shrinkage sheath yarn 2 made of composite fibers are strongly mixed and intertwined at a core-sheath intertwining portion 3 with a slight difference in yarn length. When this yarn A is subjected to dry heat treatment, the highly shrunk core yarn 4 and sheath yarn 5 produce fine crimps and high bulkiness like processed yarn B. Further, in the processed yarn C shown in FIG. 5, the high shrinkage core yarn 1 and the low shrinkage sheath yarns 6 and 7 are strongly mixed and intertwined at the core-sheath interlacing portion 3 while having a slight difference in yarn length. Here, the low-shrinkage sheath yarns 6, 7 are composed of an extremely low-shrinkage sheath yarn portion 7 which has been further reduced in shrinkage by, for example, non-uniform heat treatment, and a low-shrinkage sheath yarn portion 6 made of composite fiber. Therefore, when this yarn C is subjected to dry heat treatment, the highly shrunk core yarn 4, the sheath yarn portion 8, and the extremely low shrinkage sheath yarn portion 9 will have fine crimps, higher bulkiness, and A high bulky part E and a very high bulky part F are obtained. The multifilament yarn used in the present invention has a low shrinkage yarn in which the sheath yarn is made of composite fibers, and the core yarn is dry heated at 180°C for 5 minutes in a free state compared to the sheath yarn.
There is no particular limitation as long as the yarn has a high shrinkage of % or more, and the core yarn may be polyamide, polyester,
Thermoplastic synthetic fiber multifilament yarn such as polyacrylonitrile, polyvinyl alcohol, polypinylidene chloride, polyethylene, polypropylene, polyurethane, etc., recycled fiber multifilament yarn such as rayon, and semi-synthetic fiber multifilament yarn such as acetate. etc. can be used alone or in combination. On the other hand, the sheath yarn is not particularly limited, but for example, if the α component is a normal polyester or polyamide polymer, the β component is a polyester containing 2.4 mol% or more of metal sulfonate groups, especially 2.4 mol% or more of ethylene 5 -Sodium sulfoisophthalate-containing ester copolymers. In addition, the denier of each single fiber is 2 or more types,
For example, the present invention is possible with a combination of multifilaments varying in denier from 0.5 to 6 denier.
In terms of appearance, for example, circular, triangular, five-lobed, eight-lobed,
The characteristics can be further demonstrated by combining fibers with different cross-sectional shapes such as flat fibers, or by combining fibers with different dyeability. FIG. 6 is a schematic diagram illustrating the manufacturing process for obtaining the yarn of the present invention. To obtain the yarn of the present invention, at least two or more multifilament yarns are fed to feed rollers 12 and 13 as a yarn 10 constituting a sheath yarn and a yarn 11 constituting a core yarn, respectively. The sheath yarn 10 is brought into contact with the heating body 14 between the feed roller 12 and the relaxation roller 15 in advance, and heat-treated as a low-shrinkage yarn.The sheath yarn 10 is passed through the fluid turbulence treatment body 16 together with the core yarn 11, after which the yarn is mixed and entangled.
It passes through a second relaxation roller 17 and is wound up into a winding package 19 by a winding machine 18. At this time, the relaxation rate (looseness rate) between the feed roller 13 and the second relaxation roller 17 is 4% or less, and the relaxation rate between the relaxation roller 15 and the second relaxation roller 17 is approximately 9% or less. Conditions are desirable such that the loosening rate of the core yarn is 4% or less and the loosening rate of the sheath yarn is 9% or less. The entangling nozzle used in the present invention is not particularly limited as long as it uses fluid, and any type of nozzle can be used. In addition, the heating body 14 of the sheath yarn 10 made of composite fibers
The heat treatment conditions are such that the shrinkage rate in the free state of dry heat at 180°C for 5 minutes is 6% or more lower than the shrinkage rate of the core yarn 11 under the same conditions. Further, when a composite fiber multifilament yarn whose shrinkage rate is lowered by 6% or more than that of the core yarn is used as the sheath yarn 10, the heating element 14 is not necessary. If you want to obtain even higher bulkiness or spun yarn-like bulkiness, the sheath yarn 10 is transferred to the feed roller 12.
It is desirable that the material be placed in a relaxed state between the material and the relaxation roller 15, and then subjected to non-uniform heat treatment using the heating element 14. [Effects of the Invention] By having the above-described structure, the yarn according to the present invention undergoes heat treatment in the dyeing process of knitted fabrics.
Each filament has fine crimps, and while migrating to the inner layer and outer layer, differences in yarn length occur due to differences in heat shrinkage.Although it is a filament knitted fabric, it has the bulkiness and fluffiness of a knitted fabric using spun yarn. The fabric has a natural thread unevenness and a soft feel. Furthermore, since the sheath yarn has a loosening rate of 9% or less, there are fewer loops and slacks on the yarn surface compared to a mixed fiber entangled yarn, and the strength of the yarn as a whole is high, making it easy to unwind from the processed thread-wound layer. It is a yarn that is easy to handle in high-order processing, such as good knitting and weaving properties and little entanglement and slippage under high-order processing tension, and has small loops and sag on the surface of the knitted fabric, so it is not fatal for entangled yarns. The disadvantages of the fastener phenomenon caused by the entanglement of loops and slacks and the tendency for dust to adhere are eliminated. In addition, since the loosening rate of the core yarn is 4% or less, the strength of the entire yarn is high for a mixed fiber entangled yarn, and there is no local extremely low strength part that is unique to interwoven yarns, so high-order processing is possible. Eliminates concerns about yarn breakage during the process and loss of tear strength of knitted fabric products. Furthermore, in the present invention, since the sheath yarn is a special composite fiber, it is treated with a solvent in the yarn or knitted fabric state to create, for example, multiple wedge-shaped grooves, and the synergistic effect with the structure of the yarn itself creates a silk-like luster. It is possible to obtain a spun-like silk-like fabric that has a squeak effect, firmness, and softness, and furthermore, a spun-like knitted fabric that has extremely good color development after dyeing. Next, the present invention will be explained with reference to Examples. Example 1 75 denier, 36 filament triangular cross-section polyester drawn yarn obtained by melt spinning and drawing polyethylene terephthalate (dry heat at 180°C for 5 minutes, shrinkage rate in free state was 16.9%) and α component Using polyethylene terephthalate as the β component, a polyethylene terephthalate copolymer in which 4.8 mol% of the total structural units is ethylene 5-sodium sulfoisophthalate and polyethylene terephthalate in a weight ratio of 30:70, A 75 denier product obtained by spinning and drawing the β component in a wedge-shaped composite form from the apex of the trilobal cross section at a weight ratio of α component and β component of 85:15 as shown in Figure 8. , 36 filament triangular cross-section composite polyester drawn yarn (dry heat at 180°C for 5 minutes, shrinkage rate in free state was 18.1%).
The entanglement process was carried out using the apparatus shown in the figure. First, the composite polyester drawn yarn is supplied only to the sheath yarn 10, and the feed roller 12 with a surface speed of 201 m/min is fed.
Relax roller 15 with a surface speed of 200 m/min
The material was heat-treated by being run in contact with the heating element 14 in a 0.5% relaxed state between 0.5% and 50%, and then wound onto the winding package 19 by the winding machine 18 without using the fluid turbulence treatment element 16 and the second relaxation roller 17. . Here, the temperature of the heating element 14 is variously changed in advance,
Heat-treated low-shrinkage composite polyester yarns with shrinkage rates of 15.1, 12.2, 10.5, 9.4, 6.7, and 2.3 in the free state after dry heating at 180°C for 5 minutes were obtained. Next, these six levels of composite polyester yarn are used as the sheath yarn 10, and the previous polyester yarn is used as the core yarn 11,
The sheath yarn is fed to a relax roller 15 with a surface speed of 214 m/min, the core yarn is fed to a feed roller 13 with a surface speed of 202 m/min, and the second roller is fed with a surface speed of 200 m/min.
The fibers are mixed and entangled in the fluid turbulence processing body 16 through which 3 kg/cm 2 of compressed air is passed between the relaxation roller 17, and the fibers are wound into the winding package 19 to form a total of 6 fibers A to F in Table 1.
I got a level thread. In the table, C to F are yarns of the present invention, and A to B are comparative yarns. In other words, the ability of yarn to develop bulk is related to the dry aberration between the core yarn and sheath yarn, and in order to stably obtain high bulkiness similar to spun yarn, the dry aberration between the core yarn and sheath yarn should be 6% or more. It turned out that it was necessary. In addition, two yarns of each of the six levels obtained were pulled together and 450T/m was drawn in the S direction.
57 vertical and horizontal yarns
It was woven into a 2/2 twill weave with a density of 54 wefts/in and processed using a normal polyester dyeing process. Here, the weight loss of the fabric using caustic soda was set to 21.9% for the fabric as a whole. None of the yarns presented any particular problems in preparation for weaving, weaving, and dyeing. The properties of dyed fabrics are shown in Table 1 and Section 1.
As shown in Figure 3, the ability to develop bulk of a fabric (thickness increase rate of the fabric) is related to the dry aberration of the core yarn and sheath yarn of the processed yarn, and it is necessary to stably obtain high bulkiness. The dry aberration must be 6% or more. Also C
~F, even though the fabric was bulky, the fastner phenomenon, which is a drawback of fabrics using mixed fibers and interlaced yarns, was hardly a problem. The above-mentioned woven fabric had a silky span-like fluffy feel, an uneven thickness of the yarn, a soft texture, and a mild luster, as well as a silky squeaky feel and a deep color effect. In addition, in the composite polyester yarn, dry heat
A yarn with a shrinkage rate of 9.4% in a free state at 180°C for 5 minutes is used as the sheath yarn 10, and the previously drawn polyester is used as the core yarn 11. Supplied to the feed roller 13,
In the method of obtaining processed yarn under the same conditions as above, the surface speed of the relaxation roller 15 is set to 208, 216, 218,
The process was changed in 6 ways: 220, 224, and 248 m/min, and 6 levels of processed yarn were obtained. The core yarn loosening rate of each yarn is 1.97%, and the sheath yarn loosening rate is 3.98, 7.98, 8.97, 9.97, respectively.
They were 11.97% and 23.96%. This processed yarn was twisted, woven, and dyed under the same conditions as above. The obtained dyed fabrics are all highly bulky fabrics, but as shown in Figure 2, when the sheath yarn loosening rate is 10% or more, a fastener phenomenon occurs, making them unsuitable for use as clothing fabrics. It was hot. Further, under the above processing conditions, the surface speed of the relaxation roller 15 on the sheath yarn side was fixed at 214 m/min, and only the surface speed of the relaxation roller 13 on the core yarn side was set at 214 m/min.
202.2, 204.3, 206.3, 208.2, 209.3, 210.7,
Machining was performed with 7 conditions changed to 212.1m/min. The resulting processed yarn has a core yarn loosening rate of 1.0, 2.1, 3.1, 4.0,
At 4.5, 5.1, and 5.9%, the loosening rate of the sheath threads is almost the same.
It was 7.0%. The cutting strength of this processed yarn was measured using an Instron type strength and elongation tester.
When we calculated the average cutting strength of 100 measurements and the average value of the 5 lowest strength values among the 100 measurements (the lowest strength of processed yarn), the average cutting strength was
3.79, 3.80, 3.77, 3.68, 3.43, 3.32, 3.17g/d,
The minimum strength of processed yarn is 3.31, 3.30, 3.25, respectively.
They were 3.13, 2.92, 2.72, and 2.58 g/d. The cutting strength of the polyester multifilament yarn used as the core yarn was 4.95 g/d, and the cutting strength of the composite polyester multifilament yarn used as the sheath yarn was 4.32 g/d. In other words, in order to minimize the decrease in the strength of the processed yarn of the present invention compared to the strength of the multifilament yarn used for the core yarn and sheath yarn, the loosening rate of the core yarn must be adjusted as shown in Figure 7. 4% or less, preferably 3%
It can be said that it is preferable to do the following. Note 1 Level of bulkiness of processed yarn: Processed yarn is 80
Make 2 skeins into a round skein and dry heat at 180℃・5
After being processed in a free state for 1 minute and bulked,
Fold this skein 8 times, apply a load of 50 g with a 2.5 cm wide polyester tape fabric to find the apparent volume, and divide by the weight of the yarn contained in this tape to find the unit weight (1 g ) The value of the apparent volume (cc) per unit.

【表】 注2 厚さ増加率:織上りの生機および染色加工
後の織物を、面積2cm2のプレツサーフート中に
はさんで10g/cm2の荷重をかけて厚さを測定
し、次式で求めた値。 厚さ増加率(%) =染色加工後の織物厚さ−生機の厚さ/生機の厚さ
×100 注3 フアスナー現象:染色加工後の織物(幅20
cm、長さ50cm)をヨコ糸に沿つて2つ折りと
し、平らでなめらかなステンレス板の間にはさ
み、さらに上側のステンレス板の重さと荷重の
重さの和が5Kgになるように荷重をのせ、1分
間放置した後荷重と上側のステンレス板を除い
て2つ折りの織物を除々に開いて、織物の表面
に突出したループやたるみ同志がからみ合つて
いる程度、つまりフアスナー現象の程度を級判
定する。 5級:フアスナー現象がない。 4級:フアスナー現象が若干みられるが問題な
い。 3級:フアスナー現象がみられるがほとんど問
題ない。 2級:フアスナー現象がみられ、やや問題にな
る。 1級:フアスナー現象が著しく問題になる。 実施例 2 芯糸は実施例1と同じものを使用し、鞘糸は実
施例1の鞘糸と同じ組成であるがポリエチレンテ
レフタレート共重合体とポリエチレンテレフタレ
ートを重量比で5:95,10:90,20:80,30:
70,50:50,100:0の割合にブレンドしたポリ
マーを用い、第8図のような複合繊維となし、α
成分とβ成分は重量比でそれぞれ90:10,85:
15,80:20,70:30の割合に紡糸・延伸して得ら
れた75デニール、36フイラメントの三角断面複合
ポリエステル延伸糸計20水準糸を使用した。鞘糸
はあらかじめ熱処理し、いずれも乾熱180℃・5
分・自由状態での収縮率を6〜9%に設定した。
芯糸は表面速度204m/minのフイードローラ1
3に供給し、鞘糸は表面速度212m/minのリラ
ツクスローラ15に直接供給して、後は実施例1
と同一条件で混繊交絡処理して20水準の加工糸を
得た。得られた糸の特性は、芯糸と鞘糸の乾収差
が8〜11%、芯糸の緩み率が1.97%、鞘糸の緩み
率が5.98%、加工糸のかさ発現度が約39〜43Ω/
gの範囲の糸であつた。 これらの糸を18Gの天竺・筒編とし、精練、
180℃中間セツト、苛性ソーダ減量加工、染色、
160℃仕上セツトするにあたつて減量加工で各水
準の減量率を0〜35%まで変更し、編地分解鞘糸
の繊維断面のくさび形溝形状と編地の発色性(黒
染編地の△L)および編地のきしみの程度につい
て調べたところ、第11図および第12図の様な
結果が得られた。つまり発色性をブランク糸(苛
性ソーダ減量加工なし)並以上に保つためには、
溝の幅1.2μ以下、溝の深さ1.4μ以下にすることが
望ましい。また、絹様のきしみを得るには、溝の
幅0.9μ以上、溝の深さ0.3μ以上が望ましい。した
がつて、衣料用繊維としては、発色性およびきし
みの両特性を同時に満足させる必要があり、β成
分の一部あるいは全部を溶解除去した後のくさび
形の溝幅は0.9〜1.2μ、溝深さは0.3〜1.4μの範囲
になるような繊維設計、染色加工条件が望まし
い。編物や織物の発色性は、前記加工工程中染色
条件としてSumikaron Black S―BB(住友化学
株式会社製分散染料)14% owfを含む浴比1:
30の染浴中で130℃・60分染色し、還元洗浄、水
洗、乾燥し黒染した布帛を、染色物のL値デジタ
ル測色色差計算機〔スガ試験機(株)製〕で測定した
L値で表示し、 発色性(△L)=〔それぞれの布帛のL値〕−〔比
較糸使い布帛の減量加工なし布帛のL値〕 で判定した。L値は色の視感濃度をあらわすもの
で、L値の小さいものほど濃色であることを示す
ものである。したがつて、△Lが零未満であれ
ば、くさび形の溝が、布帛の発色性を高める方向
に寄与していることを示す。編物や織物のきしみ
効果は、それぞれの編地や織物の仕上加工布を繊
維機械学会編、丸善(株)発行、繊維便覧(加工編)
試験検査部門の平面摩擦係数測定法と同様の方法
で、摩擦面36cm2、荷重2160g、摩擦速度0.5cm/
minで布帛―布帛摩擦した時のステイツクスリツ
プ10個所の平均幅(g)を求め、この値できしみ効果
をあらわした。数値が高い程きしみ効果がが高い
ことをあらわすが、編地の場合、先練家蚕絹を含
む編地のステイツクスリツプ幅と官能検査による
きしみ感の関係について調べたところ、絹様のき
しみ効果を得るにはステイツクスリツプ幅が350
g以上であればよいことがわかつた。 また、実施例2の結果から目標の溝幅や溝深さ
を得るための例として、実施例2のごときα成分
が通常のポリエチレンテレフタレートで、β成分
が全構成単位の4.8モル%がエチレン5―ソジユ
ームスルホイソフレートであるポリエチレンテレ
フタレート共重体と通常のポリエチレンテレフタ
レートを重量比で30:70〜20:80のブレンド比と
し、α成分とβ成分の複合比は重量比で85:15〜
80:20とすれば、通常のシルキー織編物の苛性ソ
ーダ減量加工の減量率つまり35%以下の範囲内で
目標の溝幅や溝深さを保持できることがわかつ
た。
[Table] Note 2 Thickness increase rate: Measure the thickness by sandwiching the finished greige fabric and the dyed fabric in a presser foot with an area of 2 cm 2 and applying a load of 10 g/cm 2 , and using the following formula. The value found. Thickness increase rate (%) = Fabric thickness after dyeing process - Thickness of gray fabric / Thickness of gray fabric x 100 Note 3 Fastner phenomenon: Fabric thickness after dyeing process (width 20
cm, length 50cm) in half along the weft, sandwich it between flat and smooth stainless steel plates, and then place a load on it so that the sum of the weight of the upper stainless steel plate and the weight of the load is 5kg. After leaving it for a minute, the load and the upper stainless steel plate are removed, and the two-folded fabric is gradually opened, and the degree of intertwining of loops and slack protruding from the surface of the fabric, that is, the degree of fastener phenomenon, is judged. Grade 5: No fastener phenomenon. Grade 4: Slight fasner phenomenon is observed, but there is no problem. Grade 3: Fastener phenomenon is observed, but there is almost no problem. Grade 2: A fastener phenomenon is observed, which is somewhat problematic. Grade 1: The Fassner phenomenon becomes a significant problem. Example 2 The same core yarn as in Example 1 was used, and the sheath yarn had the same composition as the sheath yarn in Example 1, but the weight ratio of polyethylene terephthalate copolymer and polyethylene terephthalate was 5:95 and 10:90. ,20:80,30:
Using polymers blended in the ratio of 70, 50:50, 100:0, it is made into a composite fiber as shown in Figure 8, α
The weight ratio of component and β component is 90:10 and 85:
A total of 20 drawn 75-denier, 36-filament triangular cross-section composite polyester yarns obtained by spinning and drawing at ratios of 15, 80:20, and 70:30 were used. The sheath threads are heat-treated in advance, and both are dry heated at 180℃・5
The shrinkage rate in the free state was set at 6-9%.
The core yarn is fed by feed roller 1 with a surface speed of 204 m/min.
3, and the sheath yarn was directly supplied to the relaxation roller 15 with a surface speed of 212 m/min, and the rest was as in Example 1.
The fibers were mixed and entangled under the same conditions as above to obtain processed yarns of level 20. The characteristics of the obtained yarn are that the dry aberration between the core yarn and sheath yarn is 8-11%, the loosening rate of the core yarn is 1.97%, the loosening rate of the sheath yarn is 5.98%, and the degree of bulkiness of the processed yarn is approximately 39-11%. 43Ω/
The yarn was in the g range. These threads are made into 18G jersey/tube stitch, refined,
180℃ intermediate set, caustic soda reduction processing, dyeing,
When finishing and setting at 160℃, the weight loss rate of each level was changed from 0 to 35% by weight loss processing, and the wedge-shaped groove shape of the fiber cross section of the knitted fabric decomposition sheath yarn and the color development of the knitted fabric (black dyed knitted fabric ΔL) and the degree of squeak of the knitted fabric were investigated, and the results shown in FIGS. 11 and 12 were obtained. In other words, in order to maintain color development at a level higher than that of blank yarn (no caustic soda reduction treatment),
It is desirable that the groove width be 1.2μ or less and the groove depth 1.4μ or less. Furthermore, in order to obtain a silk-like squeak, it is desirable that the width of the groove be 0.9μ or more and the depth of the groove be 0.3μ or more. Therefore, for clothing fibers, it is necessary to satisfy both color development and squeaking characteristics at the same time, and after dissolving and removing part or all of the β component, the width of the wedge-shaped groove is 0.9 to 1.2μ, and the width of the groove is It is desirable that the fiber design and dyeing processing conditions be such that the depth is in the range of 0.3 to 1.4μ. The color development of knitted fabrics and textiles is determined by using Sumikaron Black S-BB (disperse dye manufactured by Sumitomo Chemical Co., Ltd.) as a dyeing condition during the processing process, using a bath ratio of 1:1 containing 14% owf.
The fabric was dyed for 60 minutes at 130°C in a dye bath of 30°C, washed by reduction, washed with water, dried, and dyed black. The L value of the dyed material was measured using a digital color measurement color difference calculator [manufactured by Suga Test Instruments Co., Ltd.] It was expressed as a value and judged as follows: Color development (△L) = [L value of each fabric] - [L value of fabric using comparison yarn without weight reduction processing]. The L value represents the visual density of a color, and the smaller the L value, the darker the color. Therefore, if ΔL is less than zero, it indicates that the wedge-shaped grooves contribute to enhancing the color development of the fabric. The squeak effect of knitted fabrics and woven fabrics can be determined by the finishing process of each knitted fabric or woven fabric, edited by the Textile Machinery Society, published by Maruzen Co., Ltd., Fiber Handbook (Processing Edition)
Using the same method as the plane friction coefficient measurement method used by the testing and inspection department, the friction surface was 36 cm 2 , the load was 2160 g, and the friction speed was 0.5 cm/
The average width (g) of 10 locations of the staple slip when fabric-to-fabric friction was applied at min was determined, and this value expressed the squeak effect. A higher value indicates a higher squeak effect, but in the case of knitted fabrics, when we investigated the relationship between the squeak feeling and the squeak feeling based on sensory tests for knitted fabrics containing silkworm silk, we found that a silk-like squeak effect was observed. To get the stag strip width is 350
It was found that it is sufficient if it is equal to or greater than g. In addition, as an example for obtaining the target groove width and groove depth from the results of Example 2, the α component as in Example 2 is ordinary polyethylene terephthalate, and the β component is ethylene 5, which is 4.8 mol% of the total structural units. - Polyethylene terephthalate copolymer, which is sodium sulfoisoflate, and ordinary polyethylene terephthalate are blended at a weight ratio of 30:70 to 20:80, and the composite ratio of α and β components is 85:15 to 85:15 by weight.
It was found that when the ratio is 80:20, the target groove width and groove depth can be maintained within the range of 35% or less, which is the weight loss rate of the normal caustic soda weight loss treatment of silky woven and knitted fabrics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明糸の糸特
性と織物特性の関係を示す図、第4図および第5
図は本発明で得られる糸とその糸を乾熱処理して
かさを発現させた状態を示すモデル図、第6図は
本発明糸の製造プロセスを例示する概略図、第7
図は本発明糸の芯糸と緩み率と加工糸の切断強度
の関係を示す図、第8図および第9図は本発明複
合糸の横断面形状の概略図、第10図は本発明の
複合糸の横断面形状の例を示す図、第11図およ
び第12図は本発明の複合糸断面形状と布帛特性
の関係を示す図である。 1……高収縮芯糸、2……低収縮部鞘糸、3…
…芯・鞘交絡部、4……高収縮した芯糸、5……
低収縮した鞘糸、6……通常低収縮部、7……極
低収縮部、8……通常低収縮した鞘糸部、9……
極低収縮した鞘糸部、10……鞘糸を構成する複
合繊維マルチフイラメント糸、11……芯糸を構
成するマルチフイラメント糸、12……フイード
ローラ、13……フイードローラ、14……加熱
体、15……リラツクスローラ、16……流体乱
流処理体、17……第2リラツクスローラ、18
……巻取機、19……巻取パツケージ。
Figures 1, 2 and 3 are diagrams showing the relationship between the yarn properties of the yarn of the present invention and the fabric properties, and Figures 4 and 5 are
The figure is a model diagram showing the yarn obtained by the present invention and the state in which the yarn is subjected to dry heat treatment to develop bulk. Figure 6 is a schematic diagram illustrating the manufacturing process of the yarn of the present invention. Figure 7
The figure shows the relationship between the core yarn, loosening rate, and cutting strength of the processed yarn of the yarn of the present invention. Figures 8 and 9 are schematic diagrams of the cross-sectional shape of the composite yarn of the present invention. Figures 11 and 12 showing examples of the cross-sectional shape of the composite yarn are diagrams showing the relationship between the cross-sectional shape of the composite yarn and the fabric properties of the present invention. 1...High shrinkage core yarn, 2...Low shrinkage sheath yarn, 3...
...Core-sheath intertwined part, 4...Highly contracted core thread, 5...
Low shrinkage sheath thread, 6... Normally low shrinkage part, 7... Extremely low shrinkage part, 8... Normally low shrinkage sheath thread part, 9...
Extremely low shrinkage sheath yarn portion, 10... Composite fiber multifilament yarn constituting the sheath yarn, 11... Multifilament yarn constituting the core yarn, 12... Feed roller, 13... Feed roller, 14... Heating body, 15...Relaxation roller, 16...Fluid turbulence processing body, 17...Second relaxation roller, 18
... Winding machine, 19... Winding package.

Claims (1)

【特許請求の範囲】 1 2糸条以上のマルチフイラメント糸からなる
芯・鞘型の混繊交絡糸において、芯糸の熱収縮率
が鞘糸の熱収縮率に比べて乾熱180℃・5分・自
由状態で6%以上高く、かつ芯糸の緩み率が4%
以下であると共に、鞘糸の緩み率が前記芯糸の緩
み率以上でかつ9%以下であり、前記鞘糸は、同
一溶剤に対して溶解性を異にする少なくとも2種
のポリマーにより構成された複合繊維糸を含むこ
とを特徴とする絹風合を有する紡績糸様フイラメ
ント糸。 2 同一の溶剤に対して溶解性の大なるポリマー
が、他のポリマーから構成される繊維の表面に配
置されている複合繊維を使用することを特徴とす
る特許請求の範囲第1項記載の絹風合を有する紡
績糸様フイラメント糸。 3 溶解性の大なるポリマーが、他のポリマーか
ら構成される繊維の表面から内部に向かつて先細
り状のくさび型に配置されている複合繊維を使用
することを特徴とする特許請求の範囲第2項記載
の絹風合を有する紡績糸様フイラメント糸。
[Scope of Claims] 1. In a core-sheath type interwoven interwoven yarn made of multifilament yarn with two or more yarns, the heat shrinkage rate of the core yarn is higher than that of the sheath yarn at 180°C.5 in dry heat. 6% higher in free state and 4% loosening rate of core yarn
and the loosening rate of the sheath yarn is greater than or equal to the loosening rate of the core yarn and 9% or less, and the sheath yarn is composed of at least two types of polymers having different solubility in the same solvent. A spun yarn-like filament yarn having a silk texture, characterized by containing a composite fiber yarn. 2. Silk according to claim 1, characterized in that a composite fiber is used in which a highly soluble polymer in the same solvent is arranged on the surface of a fiber composed of another polymer. Spun yarn-like filament yarn with texture. 3. Claim 2, characterized in that a composite fiber is used in which a highly soluble polymer is arranged in a tapered wedge shape from the surface of the fiber composed of another polymer toward the inside. A spun yarn-like filament yarn having a silk texture as described in 1.
JP19822883A 1983-10-25 1983-10-25 Spun like filament yarn having silk feeling Granted JPS6094636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19822883A JPS6094636A (en) 1983-10-25 1983-10-25 Spun like filament yarn having silk feeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19822883A JPS6094636A (en) 1983-10-25 1983-10-25 Spun like filament yarn having silk feeling

Publications (2)

Publication Number Publication Date
JPS6094636A JPS6094636A (en) 1985-05-27
JPS633975B2 true JPS633975B2 (en) 1988-01-27

Family

ID=16387633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19822883A Granted JPS6094636A (en) 1983-10-25 1983-10-25 Spun like filament yarn having silk feeling

Country Status (1)

Country Link
JP (1) JPS6094636A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063272A (en) * 1973-10-11 1975-05-29
JPS5545868A (en) * 1978-09-27 1980-03-31 Kanebo Ltd Blended fiber yarn
JPS5551842A (en) * 1978-10-05 1980-04-15 Teijin Ltd Production of fabric with bulge softness and improded drapability
JPS575912A (en) * 1980-06-04 1982-01-12 Toray Ind Inc Modified cross-section yarn and its production
JPS5876537A (en) * 1981-10-28 1983-05-09 帝人株式会社 Stretchable crimped processed yarn
JPS5876536A (en) * 1981-10-28 1983-05-09 帝人株式会社 Stretchable spun like yarn
JPS58169533A (en) * 1982-03-29 1983-10-06 帝人株式会社 Shrinkable spun like processed yarn

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063272A (en) * 1973-10-11 1975-05-29
JPS5545868A (en) * 1978-09-27 1980-03-31 Kanebo Ltd Blended fiber yarn
JPS5551842A (en) * 1978-10-05 1980-04-15 Teijin Ltd Production of fabric with bulge softness and improded drapability
JPS575912A (en) * 1980-06-04 1982-01-12 Toray Ind Inc Modified cross-section yarn and its production
JPS5876537A (en) * 1981-10-28 1983-05-09 帝人株式会社 Stretchable crimped processed yarn
JPS5876536A (en) * 1981-10-28 1983-05-09 帝人株式会社 Stretchable spun like yarn
JPS58169533A (en) * 1982-03-29 1983-10-06 帝人株式会社 Shrinkable spun like processed yarn

Also Published As

Publication number Publication date
JPS6094636A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
US4136221A (en) Suede-like raised woven fabric and process for the preparation thereof
US6244031B1 (en) Process for production of a composite textured yarn, woven or knitted fabrics made therefrom
GB2222838A (en) Composite polyester yarn for woven or knitted fabric
JP4497648B2 (en) Composite elastic yarn and method for producing the same
EP0349651A1 (en) Level-dyeing, blended false-twisted yarn
JPS5927409B2 (en) Interlaced composite yarn and its manufacturing method
JPS633975B2 (en)
JP2895490B2 (en) Method for producing silk-spun bulky processed yarn
JPS5949337B2 (en) Synthetic fiber multifilament yarn and its manufacturing method
JP2816846B2 (en) Interlaced multifilament multifilament composite yarn and method for producing bulky fabric using the yarn
JPS6152253B2 (en)
JP2019073807A (en) False twisted yarn and woven or knitted fabric
JP4056356B2 (en) Fluid composite processed yarn, method for producing the same, and woven / knitted fabric including the processed yarn
JPS60104543A (en) Spun yarn-like filament yarn
JPS6246656B2 (en)
JP4073578B2 (en) Method for producing polyester composite false twisted yarn
JP2530729B2 (en) Mixed fiber entangled yarn and method for producing the same
JP2003119640A (en) Polyester combined filament yarn and method for producing the same
JPS59179836A (en) Special filament processed yarn
JPS6151052B2 (en)
JP2530721B2 (en) Mixed fiber entangled yarn
JP3761908B2 (en) Crimped yarn and method for producing the same
JP2804076B2 (en) Manufacturing method of super soft special mixed yarn exhibiting water absorption
JPS63196732A (en) Composite interlaced yarn
JP3401373B2 (en) Method for producing cut pile fabric