JPS6339699A - Water treatment device equipped with microbe run-off prevention plates - Google Patents

Water treatment device equipped with microbe run-off prevention plates

Info

Publication number
JPS6339699A
JPS6339699A JP61182524A JP18252486A JPS6339699A JP S6339699 A JPS6339699 A JP S6339699A JP 61182524 A JP61182524 A JP 61182524A JP 18252486 A JP18252486 A JP 18252486A JP S6339699 A JPS6339699 A JP S6339699A
Authority
JP
Japan
Prior art keywords
microbe
run
microorganisms
water treatment
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61182524A
Other languages
Japanese (ja)
Other versions
JPH0218911B2 (en
Inventor
Shigeru Honda
繁 本田
Yukio Murakami
幸夫 村上
Tsutomu Tsuda
務 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toto Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP61182524A priority Critical patent/JPS6339699A/en
Publication of JPS6339699A publication Critical patent/JPS6339699A/en
Publication of JPH0218911B2 publication Critical patent/JPH0218911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent microbes from running off by dividing a fermentation tank with microbe run-off prevention plates formed by entangling a number of filaments. CONSTITUTION:A pair of microbe run-off prevention plates 5 and 6 are installed at an introduction section 3 and a drain section 4 of a fermentation tank 1 of a water treatment device W. Between microbe run-off prevention plates 5 and 6, a fermentation treatment space 7 is formed, in which a mixture of various anaerobic bacteria such as methane bacterium and the like or microbes are enclosed. A microbe run-off prevention plate 5 installed at the introduction section 3 is of three-layer structure, and formed by piling up lower layer materials 5 having communicating pores b of small pore diameters and a small void content formed between filaments (a), intermediate layer materials 5b having communicating pores (b) of medium size pore diameters and a medium void content, and upper layer materials 5c having communicating pores (b) of large pore diameters and a rough void content. By this arrangement, microbes of a high concentration can be used.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、微生物の流出を防止し、醗酵槽内の微生物濃
度を高めるとともに固液分離を容易にすることができる
水処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a water treatment device that can prevent the outflow of microorganisms, increase the concentration of microorganisms in a fermentation tank, and facilitate solid-liquid separation.

(ロ)従来の技術 外来物資を変換するための微生物の利用における可能性
の範囲は無限であるといわれており、その作用・機構は
完全に解明されていないが、工業システムよりもはるか
に優秀な能力を発揮しうろことから、バイオリアクター
として微生物は幅広い分野で利用されている。
(b) Conventional technology The range of possibilities in the use of microorganisms to transform foreign substances is said to be limitless, and although its action and mechanism have not been completely elucidated, it is far superior to industrial systems. Microorganisms are used as bioreactors in a wide range of fields because of their ability to produce bioreactors.

(ハ)発明が解決しようとする問題点 しかし、微生物を利用することは多くの利点を有する反
面、その最大の欠点として組織が非常に不安定であり、
化学反応と比較してかなり生産性が低く、しかも利用で
きる微生物量に上限がある。
(c) Problems to be solved by the invention However, while the use of microorganisms has many advantages, its biggest drawback is that the tissue is extremely unstable.
Compared to chemical reactions, productivity is considerably lower, and there is an upper limit to the amount of microorganisms that can be used.

通常、微生物は一回の反応に用いられるのみで、反応後
ないし処理後に微生物を回収して繰り返し使用すること
が困難なため使用微生物が散逸することが避けられない
。微生物の散逸は、特に、微生物を利用して嫌気醗酵処
理を行う水処理系にあっては、微生物の増殖速度が遅い
点とあいまって処理効率に重大な影響を与えている。こ
のため、従来においては、処理時間を長くするなどして
対応していた。
Normally, microorganisms are used for only one reaction, and it is difficult to collect the microorganisms after the reaction or treatment and use them repeatedly, so it is inevitable that the microorganisms used will be lost. Dissipation of microorganisms, especially in water treatment systems that perform anaerobic fermentation using microorganisms, has a significant impact on treatment efficiency, in combination with the slow growth rate of microorganisms. Conventionally, this has been dealt with by lengthening the processing time.

本発明は微生物を利用する分野、特に水処理分野におい
て、従来避けられなかった問題点、即ち微生物量を多く
できないこと、繰り返し利用が困難なこと等を解決する
ことができる水処理装置を提供することを目的とする。
The present invention provides a water treatment device that can solve problems that have hitherto been unavoidable in the field of utilizing microorganisms, particularly in the field of water treatment, such as the inability to increase the amount of microorganisms and the difficulty of repeated use. The purpose is to

(ニ)問題点を解決するための手段 本発明は、多数の線状体を互いに絡ませて形成した微生
物流出防止板により、醗酵槽内を区画してなる微生物流
出防止板を具備する水処理装置に係るものである。
(d) Means for Solving the Problems The present invention provides a water treatment device equipped with a microbial outflow prevention plate that partitions the inside of a fermentation tank by a microbial outflow prevention plate formed by intertwining a large number of linear bodies with each other. This is related to.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の微生物流出防止板は、好ましくは、線径0.1
mm〜数mmの多数の線条を相互に絡ませ、或いは交錯
させて平面的(二次元的)あるいは立体的(三次元的)
に成形されるものである。
The microorganism outflow prevention plate of the present invention preferably has a wire diameter of 0.1
A planar (two-dimensional) or three-dimensional (three-dimensional) structure is created by intertwining or intersecting a large number of filaments with a diameter of several mm to several mm.
It is molded into

かかる成形に際して、線条間に形成される多数の孔は、
二次元的或いは三次元的に隣接する孔と連通して微生物
流出防止板の内部に処理水を通過可能な連通状多孔を形
成する。
During such molding, a large number of holes are formed between the filaments,
A continuous pore is formed inside the microorganism outflow prevention plate that communicates with adjacent pores two-dimensionally or three-dimensionally and allows the treated water to pass therethrough.

微生物流出防止板は、醗酵槽内部を確実に区画するため
、その形状を、醗酵槽の内部空間の断面積と同一形状と
するのが好ましい。
In order to reliably partition the inside of the fermenter, the microorganism outflow prevention plate preferably has the same shape as the cross-sectional area of the internal space of the fermenter.

微生物流出防止板の厚さは、微生物の種類、処理時間、
醗酵槽の大きさ、種類等によって適宜選択することがで
きる。
The thickness of the microorganism leakage prevention board depends on the type of microorganism, processing time,
It can be selected appropriately depending on the size, type, etc. of the fermenter.

また、微生物流出防止板は、単一の板材からなる単層構
造とすることもできるが、好ましくは、少なくとも2枚
以上の層状部材を多段に積層して形成した多層構造とす
ることもできる。なお、多層構造とした場合は、各層状
部材の連通状多孔の孔径を層状部材毎に順次変えること
によって、最適の微生物流出防止効果を挙げることがで
きる。
Further, the microorganism outflow prevention plate can have a single layer structure made of a single plate material, but preferably can also have a multilayer structure formed by laminating at least two or more layered members in multiple stages. In addition, in the case of a multilayer structure, the optimal effect of preventing the outflow of microorganisms can be obtained by sequentially changing the pore diameter of the communicating pores of each layered member.

微生物流出防止板の成形に用いる線条は特に制限はなく
、従来公知のいずれのものでもよい。具体例としては、
プラスチック細線、ポリプロピレン細線、ポリウレタン
細線等の合成有機物細線、アルミナ、コージェライト、
ムライト、陶磁器質、ガラス等の無機質細線が挙げられ
る。
The filaments used for forming the microorganism outflow prevention plate are not particularly limited, and any conventionally known filaments may be used. As a specific example,
Synthetic organic thin wires such as plastic thin wires, polypropylene thin wires, polyurethane thin wires, alumina, cordierite,
Examples include inorganic fine wires such as mullite, ceramic, and glass.

また、上記線条を用いて形成した微生物流出板の空隙率
及び連通状多孔の孔径は、処理水の流出を阻害すること
なく微生物の流出を防止するために、それぞれ、50〜
80X及び0.5mm以下になるように設定する。
In addition, the porosity of the microorganism outflow plate formed using the above-mentioned filaments and the pore diameter of the continuous pores are set to 50 to 50, respectively, in order to prevent the outflow of microorganisms without inhibiting the outflow of treated water.
Set it so that it is 80X and 0.5mm or less.

さらに、微生物流出防止板による醗酵槽内部の区画は、
任意の個所及び任意の数取りつけることができるが、好
ましくは、醗酵槽の導入部及び排出部に設置し、両部間
に形成される中間部へ微生物を封入するようにする。
Furthermore, the internal compartment of the fermenter is divided by microorganism leakage prevention plates.
Although they can be installed at any location and in any number, they are preferably installed at the inlet and outlet of the fermentation tank, so that microorganisms are enclosed in the intermediate area formed between the two parts.

封入する微生物としては、特に制限はなく、変換反応に
用いられる微生物であればいずれも採用し得る。
There are no particular limitations on the microorganisms to be encapsulated, and any microorganisms that can be used in conversion reactions can be employed.

例えば、従来より嫌気醗酵等の分野で広く用いられてい
る各種の嫌気性菌、またはこれら各種微生物の混合物が
挙げられる。このような嫌気性菌の代表的なものとして
は、球形のメタノバクテリウム(Methano ba
cterium)属の菌、東条の大型球菌のメタノサル
シナ(Methano 5arcina)属の菌、単一
球菌で対をなすか、それとも塊状のメタノコツカス(M
ethano coccus)IffEの菌等である。
Examples include various anaerobic bacteria conventionally widely used in fields such as anaerobic fermentation, or mixtures of these various microorganisms. A typical example of such anaerobes is the spherical Methanobacterium (Methanobacterium).
cterium), Tojo's macrococcus Methanosarcina (Methano5arcina), single cocci in pairs, or clusters of Methanococcus (M
ethano coccus) IfE bacteria, etc.

封入する微生物の状態も特に指定されるものではないが
、リン酸カルシウムを核にし、ペレット状増殖させたく
あるいはグラニユール)菌体集合物が好ましい。
Although the condition of the microorganisms to be encapsulated is not particularly specified, it is preferable to use an aggregate of microorganisms grown in the form of pellets or granules with calcium phosphate as the nucleus.

本発明の水処理装置は、以上の構成によって、微生物を
流出防止板の間へ封入することにより微生物濃度を高め
るとともに、水理学的滞留時間と無関係に滞留させるこ
とが可能になり、高効率で生物処理することが可能とな
る。
With the above configuration, the water treatment device of the present invention increases the concentration of microorganisms by enclosing them between the outflow prevention plates, and makes it possible to retain the microorganisms regardless of the hydraulic retention time, resulting in highly efficient biological treatment. It becomes possible to do so.

(ホ)作用 本発明において、醗酵槽内部は、相互に絡み合った多数
の線状から形成される微生物流出防止板によって区画さ
れているので、微生物は、絡み合った線条でその流出を
防止され、醗酵槽内の微生物量を飛曜的に増加させるこ
とができる。この際、線条が微生物に対して毒性を及ぼ
すことは全(ない。
(e) Function In the present invention, the inside of the fermentation tank is divided by microbial outflow prevention plates formed from a large number of intertwined linear shapes, so that microorganisms are prevented from outflowing by the intertwined linear striations. The amount of microorganisms in the fermenter can be dramatically increased. At this time, the striae do not have any toxicity to microorganisms.

本発明によれば、水処理分野における嫌気性処理におい
て、微生物の高濃度化を達成することができ、基質(有
機物)の消化速度の゛増大、メタンガスの生成率を高め
ることにより、処理時間の短縮や処理装置の小型化等を
可能とする。更に、微生物流出防止板の作用により橿め
て容易に固液分離することができる。
According to the present invention, it is possible to achieve a high concentration of microorganisms in anaerobic treatment in the water treatment field, and by increasing the rate of digestion of substrates (organic substances) and the rate of production of methane gas, the treatment time can be reduced. This makes it possible to shorten the time and downsize the processing equipment. Furthermore, solid-liquid separation can be easily performed by twisting due to the action of the microorganism outflow prevention plate.

このような本発明の水処理装置は、都市下水、各種工場
排水、特に畜肉加工工場、食品加工工場、醗酵工場、製
紙工場等の他、畜産廃水、し尿処理に著しく優れた効果
を奏しえるものであり、水処理対策、産業廃棄物処理対
策、環境保全等に多大の貢献をするものである。
The water treatment device of the present invention can exhibit remarkable effects in treating urban sewage, various industrial wastewater, especially meat processing plants, food processing plants, fermentation plants, paper factories, etc., as well as livestock wastewater and human waste. This will greatly contribute to water treatment measures, industrial waste treatment measures, environmental conservation, etc.

(へ)効果 本発明に係る水処理装置は、上記した構成を有すること
により、以下の効果を奏することができる。
(f) Effects The water treatment device according to the present invention having the above-described configuration can achieve the following effects.

■微生物流出防止板により醗酵槽内を区画したので、被
処理水の浴中に分散させた微生物の流出を防止でき、反
応系内の微生物量を増加させ、微生物の高濃度使用が可
能である。
■Since the inside of the fermentation tank is divided by microorganism leakage prevention plates, it is possible to prevent the microorganisms dispersed in the water bath from flowing out, increasing the amount of microorganisms in the reaction system and allowing the use of high concentrations of microorganisms. .

■処理後の微生物と処理水との分離が掘めて容易である
■It is easy to separate microorganisms and treated water after treatment.

■嫌気性消化温度を低くすることができる。■Anaerobic digestion temperature can be lowered.

■以上の効果■〜■より、極めて効率よく、かつ経済的
に水処理を行うことができる。
(2) From the above effects (2) to (2), water treatment can be carried out extremely efficiently and economically.

(ト)実施例 以下、添付図に示す実施例に基づいて、本発明を具体的
に詳説する。
(g) Examples Hereinafter, the present invention will be specifically explained in detail based on examples shown in the attached drawings.

〔第1実施例〕 本実施例は、本発明に係る微生物流出防止板を具備する
水処理装置の具体的構成を説明する。
[First Example] This example describes a specific configuration of a water treatment device equipped with a microorganism outflow prevention plate according to the present invention.

第1図に、本発明に係る微生物流出防止板を具備する水
処理装置Wの全体構成を示す。
FIG. 1 shows the overall configuration of a water treatment device W equipped with a microorganism outflow prevention plate according to the present invention.

図中、1は中空筒状体を形成する醗酵槽であり、同醗酵
槽lは、その下部に被処理液を給液ポンプ2によって醗
酵槽1の内部に導入するための導入部3を形成するとと
もに、その上部に処理水を気液分離器(図示せず)に向
けて排出するための排出部4を有している。
In the figure, 1 is a fermentation tank forming a hollow cylindrical body, and the fermentation tank 1 has an introduction part 3 in its lower part for introducing the liquid to be treated into the inside of the fermentation tank 1 by means of a liquid supply pump 2. At the same time, it has a discharge section 4 at its upper part for discharging treated water toward a gas-liquid separator (not shown).

かかる水処理装置Wにおいて、一対の微生物流出防止板
5,6が、それぞれ、醗酵槽lの導入部3と排出部4に
装着されており、両微生物流出防止板5,6間には、醗
酵処理空間7が形成され、同醗酵処理空間7内には、メ
タノバクテリウム等の各種の嫌気性菌または各種の微生
物の混合物が封入される。
In this water treatment device W, a pair of microorganism outflow prevention plates 5 and 6 are respectively attached to the inlet part 3 and the discharge part 4 of the fermentation tank l, and between the two microorganism outflow prevention plates 5 and 6, there is a A processing space 7 is formed, and various anaerobic bacteria such as Methanobacterium or a mixture of various microorganisms are enclosed within the fermentation processing space 7.

第2図及び第3図に、微生物流出防止板5.6の詳細な
内部構造が示されており、ともに多層構造を有している
2 and 3 show the detailed internal structure of the microorganism outflow prevention plate 5.6, both of which have a multilayer structure.

即ち、導入部3に装着される微生物流出防止板5は3層
構造を有しており、線条a間に形成した連通状多孔すの
孔径が小径で空隙率の小さい下層部材5aと、連通状多
孔すの孔径が中程度で空隙率も中程度の中間層部材5b
と、連通状多孔すの孔径が大径で空隙率の粗い上層部材
5cとを層状に積み重ねることによって形成されている
That is, the microorganism outflow prevention plate 5 attached to the introduction part 3 has a three-layer structure, and the communicating pores formed between the filaments a are in communication with the lower layer member 5a, which has a small diameter and a small porosity. An intermediate layer member 5b having a medium pore size and a medium porosity.
and an upper layer member 5c having a large pore size and a coarse porosity are stacked in layers.

一方、排出部4に装着される微生物流出防止板6も下層
部材6a、中間層部材6b及び上層部材6cとからなる
3層構造を有しているが、導入部3に設けた微生物流出
防止板5とは逆に、連通状多孔すの口径及び空隙率を、
上層に向けて順次小径かつ小さくしている。
On the other hand, the microorganism outflow prevention plate 6 attached to the discharge section 4 also has a three-layer structure consisting of a lower layer member 6a, an intermediate layer member 6b, and an upper layer member 6c. Contrary to 5, the diameter and porosity of the continuous pores are
The diameter becomes smaller and smaller toward the upper layer.

かかる構成によって、本実施例にかかる水処理装置は、
被処理液が醗酵槽1内を通過しても、醗酵処理空間7内
に封入した微生物等の流出を効果的に防止できるので、
微生物の増殖を促進でき、醗酵処理を効率よく行うこと
ができる。
With this configuration, the water treatment device according to this embodiment has the following features:
Even if the liquid to be treated passes through the fermentation tank 1, the microorganisms etc. sealed in the fermentation treatment space 7 can be effectively prevented from flowing out.
The growth of microorganisms can be promoted and fermentation processing can be performed efficiently.

なお、上記実施例において、導入部3へvjt置した微
生物流出防止板5は、菌体の排出を防止するとともに反
応中間物である微m懸濁物を捕捉し菌の働きによりさら
に反応を行い完全分解させ、メタンガスの生成を効率的
に行う役目も兼ね備えている。
In the above example, the microorganism outflow prevention plate 5 placed in the introduction section 3 prevents the discharge of microbial cells, and also captures the minute suspensions, which are reaction intermediates, to further carry out the reaction by the action of the microorganisms. It also has the role of completely decomposing it and efficiently producing methane gas.

なお、以上の実施例(第1図〜第3図)に示す水処理装
置Wは、本発明の一実施例を示すに過ぎず、本発明は何
ら図示の構成に限定されるものではない。例えば醗酵槽
1は円筒状、角柱状、罪状のものであってもよく、微生
物流出防止板5,6は単層構造とすることもでき、さら
に、その設置位置及び設置数も醗酵槽1の形状等によっ
て自在に選択することができる。
In addition, the water treatment apparatus W shown in the above embodiment (FIGS. 1 to 3) merely shows one embodiment of the present invention, and the present invention is not limited to the configuration shown in the drawings. For example, the fermentation tank 1 may be cylindrical, prismatic, or cylindrical, and the microorganism outflow prevention plates 5 and 6 may have a single-layer structure. It can be freely selected depending on the shape etc.

〔第2実施例〕 本実施例は、上記第1実施例における水処理装置Wを用
いて行った醗酵処理実験及びその結果について説明する
[Second Example] This example describes a fermentation treatment experiment conducted using the water treatment apparatus W in the first example and its results.

なお、本発明は、以下の実施例に限定されるものではな
い。
Note that the present invention is not limited to the following examples.

先ず、本実施例において用いた微生物流出防止坂の性状
を第1表に示す。また、(故生物として、下水処理場の
消化汚泥を種菌とし、第2表に示す人工下水で1ケ月間
中温醗酵法で馴養した後、ベレット状増殖させたものを
用いた。
First, Table 1 shows the properties of the microorganism outflow prevention slope used in this example. In addition, (as a dead organism), digested sludge from a sewage treatment plant was used as a starter, and after being acclimatized for one month in the artificial sewage shown in Table 2 by a medium-temperature fermentation method, it was grown in a pellet form.

第1表 微生物流出防止板の性状 第2表 下水組成(下水1 eに含まれる成分量)(実
験1) 微生物流出防止板Aを第1図に示す水処理装置Wに装着
し、前記第2表に示す下水を二倍希釈したものを被処理
液として連続供給し、嫌気消化処理をおこなった。
Table 1 Properties of the microbial outflow prevention plate Table 2 Sewage composition (amount of components contained in sewage 1e) (Experiment 1) The microbial outflow prevention board A was attached to the water treatment equipment W shown in FIG. The sewage shown in the table was diluted twice and continuously supplied as the liquid to be treated, and anaerobic digestion was performed.

なお、処理条件等は以下に示す通りである。Note that the processing conditions are as shown below.

中間部封入微生物濃度     40,000mg /
β被処理水供給速度        11/4時間槽内
滞留時間          4時間処理温度    
        37°C嫌気性消化により分解された
有機物量を、被処理水と得られた処理水中の全有機炭素
(TOC) Iを測定することにより調べた。その結果
を第4図に示す。
Microorganism concentration in the middle part: 40,000mg/
β Treated water supply rate 11/4 hours Residence time in tank 4 hours Treatment temperature
The amount of organic matter decomposed by 37°C anaerobic digestion was investigated by measuring total organic carbon (TOC) I in the treated water and the resulting treated water. The results are shown in FIG.

第4図において縦軸はTOC(lI1g/l)、横軸は
経過日数(日)を示す、図中、線11は被処理水、線1
2は本実施例において得られた処理水を示す。第4図よ
り、本発明で得られる処理水のTOC濃度は低く、極め
て良好な処理が従来法に比べて短時間に行われたことが
認められる。なお、微生物流出防止板B、C,Dを用い
上記と同様に嫌気性消化を行ったところ、微生物流出防
止板Aと同様優れた処理効果が得られることが認められ
た。また、生成したメタンガス量を測定し、従来法の嫌
気性消化(被処理水、処理温度、被処理水供給速度等は
本実施例と同一条件とする。)で生成するメタンガス9
と比較した結果を第5図に示す。
In Fig. 4, the vertical axis shows TOC (lI1g/l) and the horizontal axis shows the number of elapsed days (days). In the figure, line 11 is the water to be treated, line 1
2 shows the treated water obtained in this example. From FIG. 4, it can be seen that the TOC concentration of the treated water obtained by the present invention was low, and extremely good treatment was performed in a shorter time than in the conventional method. In addition, when anaerobic digestion was performed in the same manner as above using the microbial outflow prevention plates B, C, and D, it was found that the same excellent treatment effect as the microbial outflow prevention plate A was obtained. In addition, the amount of methane gas generated was measured, and the methane gas 9 generated by conventional anaerobic digestion (the conditions for treated water, treatment temperature, treated water supply rate, etc. are the same as in this example).
Figure 5 shows the results of the comparison.

第5図において縦軸は発生したメタンガス量(1)、横
軸は経過日数を示し、図中、線14は従来法の嫌気性消
化、線13は本実施例を示す。
In FIG. 5, the vertical axis shows the amount of methane gas generated (1), and the horizontal axis shows the number of days elapsed. In the figure, line 14 shows the conventional anaerobic digestion, and line 13 shows the present example.

(実験2) 実験1と同様にし、前記第2表に示す下水を被処理液と
して連続供給し、嫌気性消化処理を行った結果を第6図
に示す。なお、処理条件等は以下に示す通りである。
(Experiment 2) In the same manner as in Experiment 1, the sewage shown in Table 2 was continuously supplied as the liquid to be treated, and anaerobic digestion was performed. The results are shown in FIG. Note that the processing conditions are as shown below.

中間部封入微生物濃度     40.000mg /
 1被処理水供給速度        1174時間槽
内滞留時間           4時間処理温度  
           37℃第6図において縦軸はT
OC(mg/ I)、横軸は経過日数(日)を示し、図
中、15は被処理水、線16は本実施例において得られ
た処理水を示す。第5図より、本発明で得られる処理水
中のTOC4度は、被処理水中のTOCa度が高くても
安定した低TOC濃度を示し、極めて効率よく処理がお
こなわれたことが認めらる。
Concentration of microorganisms enclosed in the middle part: 40.000mg/
1 Water supply rate to be treated 1174 hours Residence time in tank 4 hours Treatment temperature
In Figure 6 at 37℃, the vertical axis is T.
OC (mg/I), the horizontal axis indicates the number of elapsed days (days); in the figure, 15 indicates the water to be treated, and line 16 indicates the treated water obtained in this example. From FIG. 5, it can be seen that the TOC level of 4 degrees in the treated water obtained by the present invention shows a stable low TOC concentration even if the TOCa level in the water to be treated is high, and it is recognized that the treatment was carried out extremely efficiently.

(実験3) 実験1と同様にし、前記第2表に示す下水を2倍に希釈
したものを被処理水として連続供給し、嫌気性消化の消
化濃度を変えて処理を行った結果を第7図に示す。なお
、処理条件等は処理温度を除いて実施u111と同一で
ある。図中、17は被処理水、線18は本実施例におい
て得られた処理水を示す。
(Experiment 3) In the same manner as in Experiment 1, the sewage shown in Table 2 was diluted twice and continuously supplied as water to be treated, and the anaerobic digestion concentration was changed to perform the treatment. As shown in the figure. Note that the processing conditions and the like are the same as those of implementation u111 except for the processing temperature. In the figure, 17 indicates the water to be treated, and line 18 indicates the treated water obtained in this example.

第7図より、本発明の処理装置で得られる処理水中のT
OC1度は嫌気性消化温度が20’Cがら37゛cの開
では殆ど変化しないことが認められ、公害防止の技術と
法規・水質編(通商産業省公害保安局監修)に述べられ
ている従来法では、嫌気性消化温度が30℃以下になる
と有機物の分解速度が低下するので、一定の処理時間、
即ち槽内滞留時間が同一であれば処理水中のTOCm度
が高くなるのに比べて、極めて安定した処理が行われた
ことが認められる。
From FIG. 7, T in the treated water obtained by the treatment apparatus of the present invention
It is recognized that OC 1 degree does not change much when the anaerobic digestion temperature increases from 20 degrees Celsius to 37 degrees Celsius. In the method, the decomposition rate of organic matter decreases when the anaerobic digestion temperature falls below 30°C, so a certain processing time,
That is, it is recognized that the treatment was extremely stable compared to the case where the TOCm degree in the treated water would be higher if the residence time in the tank was the same.

以上の結果より、本発明の水処理装置によれば、極めて
良好な処理水が長期にわたり安定して得られ、嫌気性消
化温度も37℃を必要とせず、25°C前後の低温でも
可能であることが明らがである。
From the above results, according to the water treatment device of the present invention, extremely good treated water can be stably obtained over a long period of time, and anaerobic digestion does not require a temperature of 37°C, but can be performed at a low temperature of around 25°C. One thing is clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る微生物流出防止)反を具備する水
処理装置の全体説明図、第2図及び第3又は微生物流出
防止板の断面説明図、第4図及び第5図は実験1におけ
る嫌気性消化処理結果を示すグラフ、第6図は実験2に
おける嫌気性消化処理結果を示すグラフ、第7図は実験
3における嫌気性消化処理結果を示すグラフである。 図中、 W:水処理装置 l:醗酵槽 2:給液ポンプ 3二導入部 4:排出部 5:微生物流出防止板 6:微生物流出防止板 7:醗酵処理空間 特許出願人  工業技術院長(化1名)復代理人   
松 尾 憲一部 フ 第1図 合 ニ く:
FIG. 1 is an overall explanatory diagram of a water treatment device equipped with a microorganism leak prevention plate according to the present invention, FIGS. 2 and 3 are cross-sectional explanatory diagrams of a microorganism leak prevention plate, and FIGS. 6 is a graph showing the results of anaerobic digestion in Experiment 2, and FIG. 7 is a graph showing the results of anaerobic digestion in Experiment 3. In the figure, W: Water treatment device 1: Fermentation tank 2: Liquid supply pump 32 Inlet section 4: Discharge section 5: Microorganism outflow prevention plate 6: Microorganism outflow prevention plate 7: Fermentation processing space Patent applicant Director of the Agency of Industrial Science and Technology 1 person) Sub-agent
Kenichi Matsuo Figure 1:

Claims (1)

【特許請求の範囲】[Claims] 1、多数の線条を互いに絡ませて形成した微生物流出防
止板により、醗酵槽内を区画してなる微生物流出防止板
を具備する水処理装置。
1. A water treatment device equipped with a microbial outflow prevention plate that partitions the inside of a fermentation tank using a microbial outflow prevention plate formed by intertwining a large number of filaments.
JP61182524A 1986-08-01 1986-08-01 Water treatment device equipped with microbe run-off prevention plates Granted JPS6339699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182524A JPS6339699A (en) 1986-08-01 1986-08-01 Water treatment device equipped with microbe run-off prevention plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182524A JPS6339699A (en) 1986-08-01 1986-08-01 Water treatment device equipped with microbe run-off prevention plates

Publications (2)

Publication Number Publication Date
JPS6339699A true JPS6339699A (en) 1988-02-20
JPH0218911B2 JPH0218911B2 (en) 1990-04-27

Family

ID=16119809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182524A Granted JPS6339699A (en) 1986-08-01 1986-08-01 Water treatment device equipped with microbe run-off prevention plates

Country Status (1)

Country Link
JP (1) JPS6339699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509737A (en) * 2003-10-29 2007-04-19 ヘルディング ゲゼルシャフト ミット ベシュレンクテル ハフツング フィルターテヒニク Anaerobic wastewater treatment reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509737A (en) * 2003-10-29 2007-04-19 ヘルディング ゲゼルシャフト ミット ベシュレンクテル ハフツング フィルターテヒニク Anaerobic wastewater treatment reactor

Also Published As

Publication number Publication date
JPH0218911B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
CN107002004B (en) Biofilm media, treatment system, and treatment method
US4165281A (en) Method and unit for wastewater treatment by microorganisms
CN102259980B (en) Biological aerated filter and sewage treatment process thereof
WO2005026052A2 (en) Bionest reactor for the application of anaerobic wastewater treatment and bioenergy recovery
JPS6223497A (en) Sewage treatment apparatus by activated sludge bed
Zulkifli et al. A review of ammonia removal using a biofilm-based reactor and its challenges
JPWO2006109715A1 (en) Biological treatment method and biological treatment apparatus for organic wastewater
CN106430845A (en) Kitchen garbage wastewater treatment apparatus
CN1424265A (en) Process and apparatus for wastewater by batched membrane-bioreactor
Osmani et al. Upgradation of conventional MBBR into Aerobic/Anoxic/Aerobic configuration: A case study of carbon and nitrogen removal based sewage treatment plant
Aygun et al. Application of sequencing batch biofilm reactor for treatment of sewage wastewater treatment: effect of power failure
CN106430528B (en) A kind of method of moving bed biofilm reactor quick start under cryogenic conditions
CN102336476A (en) Combined type reactor for realizing synchronous biodegradation of wastewater and sludge
CN204529596U (en) A kind of three-dimensional electrocatalysis coupling anaerobic processing device
JPS6339699A (en) Water treatment device equipped with microbe run-off prevention plates
JPS59127693A (en) Treatment of waste water
CN201614334U (en) Baffled aeration biological filter treatment system
CN207567066U (en) Sewage disposal device based on catalytic oxidation combination complex media filtration system
KR101903044B1 (en) Artificial wetland system for control of micropollutants in wastewater
CN106946354B (en) Septic tank sewage end treatment device
CN101279809B (en) Biological filler shimmying-bed
KR19980054441A (en) High efficiency combined purification tank
CN114590955B (en) Integrated rural sewage treatment station and treatment method thereof
Gupta et al. A review on advanced biological systems for modular wastewater treatment plants: process, application, and future in developing countries
CN218539423U (en) Aeration and microaerobic combined denitrification biological filter device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term