JPS6339545B2 - - Google Patents

Info

Publication number
JPS6339545B2
JPS6339545B2 JP19304782A JP19304782A JPS6339545B2 JP S6339545 B2 JPS6339545 B2 JP S6339545B2 JP 19304782 A JP19304782 A JP 19304782A JP 19304782 A JP19304782 A JP 19304782A JP S6339545 B2 JPS6339545 B2 JP S6339545B2
Authority
JP
Japan
Prior art keywords
water
ceramic
ceramics
binder
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19304782A
Other languages
Japanese (ja)
Other versions
JPS5983972A (en
Inventor
Takashi Kato
Migiwa Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP19304782A priority Critical patent/JPS5983972A/en
Publication of JPS5983972A publication Critical patent/JPS5983972A/en
Publication of JPS6339545B2 publication Critical patent/JPS6339545B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツクス多光質体の製造方法に関
し、更に詳しくはフイルタ等に使用されるセラミ
ツクス多孔質体の溶媒抽出による製造方法の改良
に関するものである。 一般的に自動車用排ガスフイルタなどに使用さ
れるセラミツクス多孔質体の製造方法は、その中
に灼熱減量の大きい炭酸塩などを多量に配合し、
焼成中の熱分解により気泡を発生させ、その気泡
により多孔質に形成したり、その他、樹脂粉体を
多量に配合して同様に熱分解によりセラミツクス
中からガスとして除去し、その樹脂がガスとなつ
て抜けた跡により多孔質に形成していた。 ところが、これらの方法によると、気体発生が
熱分解によつているため、悪臭を発し、空気を汚
染し、作業上不安全不衛生であり、公害防止に特
別な配慮を必要とした。更にこれら分解物は全て
使い捨てになるわけであるから、省資源の上から
も好ましくなく、コスト高を招いた。又、この熱
分解用樹脂の粉砕はその可撓性、粘着性から困難
である。まして粒径のそろつた樹脂粉体は収率よ
く得ることはできない。その発泡工程においても
セラミツクスの材質あるいは大きさの違いによ
り、加熱の偏りや加熱速度に違いを生じ均一な気
泡の生成が困難となる。これらのことから品質管
理上の問題を生じ歩留低下の原因になつていた。 このため熱分解によらず、焼成前のセラミツク
ス中の樹脂を有機溶媒により抽出することによ
り、樹脂を溶出し、セラミツクス中に樹脂が抜け
出した気孔を形成する方法、例えば特開昭57−
42563号がある。しかしこの方法では、加熱によ
る分解発泡法よりも多量に用いる樹脂が完全に抜
け出さず、結局残留する樹脂を熱分解しなければ
ならず、前記と同様な問題が生じた。更に有機溶
媒を抽出処理時に多量に取り扱うため、作業上安
全衛生性が一層悪化した。 そこで本発明者等は鋭意研究の結果、有機溶媒
不溶性かつ水溶性の物質を用い、水による抽出を
行うことにより、上記問題点を解決できることを
見い出し、本発明を完成した。 即ち、本発明の要旨とするところは、水と相溶
性の有機溶媒に溶解されたバインダ及び該有機溶
媒に不溶な水溶性粒状物質をセラミツク原料粉末
と混練し、成形し、次いで水中にて上記有機溶媒
及び水溶性粒状物質を抽出処理し、焼成すること
を特徴とするセラミツクス多孔質体の製造方法に
ある。 ここで使用される、水と相溶性の有機溶媒とは
例えばジメチルホルムアミド、エチルアルコー
ル、メチルアルコール、プロピルアルコール、ア
セトン、メチルエチルケトン、ジメチルスルフオ
キシド等が挙げられる。バインダとしては有機溶
媒に可溶の各種ポリマーであり、例えばポリウレ
タン、ポリスチレン、ポリビニルブチラール、塩
化ビニル、ニトロセルロース、ポリアクリル、エ
チルセルロース等が挙げられる。このバインダは
上記有機溶媒に溶解して用いられるが、その濃度
は20〜35重量%が好ましく、20重量%未満である
と薄過ぎるので、バインダとしての性能を発揮さ
せるためには溶液に多量に配合しなければならな
い。しかし、このようにすると生のセラミツクス
の粘度が低下して流動性を持ち始め保形性が低下
するので、成形不可能となる。又、35重量%を越
えると、溶液自体粘度が高くなり過ぎ、生のセラ
ミツクスが堅くなり押出等の機械による成形が困
難となる。尚、バインダを溶液として配合する場
合、バインダを最初から全溶媒に溶解させず、一
部の溶媒に溶解させた溶液を他のセラミツクス原
料に配合した後、残りの溶媒を生のセラミツクス
の堅さ調整として加える方法を用いても良く、最
終的にバインダの濃度20〜35重量%のものを加え
たことになればよい。次にこの濃度のバインダ溶
液の配合量は、セラミツクス原料粉末100重量部
に対して25〜50重量部が好ましく、25重量部未満
であるとバインダの量が少なくなり過ぎて生のセ
ラミツクスの保形性が低下し、成形時あるいはそ
の後の水中での抽出処理時に生のセラミツクス成
形体がくずれてしまう。又、50重量部を越えると
バインダの量が多くなり過ぎて、セラミツクス焼
成時、その気孔径、気孔率に影響を与えると共
に、燃焼ガスが大量に発生し、安全衛生、公害上
の問題となり、本発明方法の目的に反してしま
う。 上記水と相溶性の有機溶媒に不溶な物質とは例
えば塩化アンモニウム、塩化ナトリウム、塩化カ
リウム、水酸化ナトリウム、水酸化カリウム、塩
素酸アンモニウム、クエン酸アンモニウム、クエ
ン酸ナトリウム、炭酸アンモニウム、炭酸ナトリ
ウム、炭酸カリウム、リン酸水素アンモニウム、
リン酸ナトリウム、リン酸カリウム、リン酸水素
ナトリウム、リン酸水素カリウム、グリコーゲ
ン、3−アミノサリチル酸、γ−アミノ酪酸、L
−オキシグルタミン酸等が挙げられ、これらは所
望の気孔径、気孔率に適合させて、所定量がその
設定された粒径に粉砕されて用いられる。上記物
質はこのように焼成後のセラミツクスの気孔径と
気孔率が所望の状態になる如く配合されるのであ
るが、その粒径があまり大き過ぎると気孔径が大
きくなつて、気孔内表面積が小さくなり、フイル
タ、酸素やイオン交換樹脂等の担体、吸光材等に
は好ましくなく、又、逆にその粒径があまりに小
さ過ぎると、空気中又は溶媒中の湿気や水分を吸
収しやすく、抽出処理前に溶け出したり、固まつ
たりするので、一般的には25〜300μの粒子が使
用される。又、その量は多過ぎると焼成されたセ
ラミツクスの強度が低下し、逆に少な過ぎると多
孔質体としての効果がなくなるので、一般に、他
の不揮発性原料100重量部に対して3〜50重量部
添加する。 粉砕方法は一般に用いられる粉砕方法を用い
て、実施でき、例えばボールミル、振動ミル、ロ
ツドミル、ロールクラツシヤ、ミクロパルベライ
ザ等の粉砕方法を使用し、必要に応じて、篩にか
けて粒子径をそろえて用いる。セラミツクスの原
料は通常セラミツクス焼成体を形成するために使
用されるものは全て適用可能であり、例えば、滑
石、粘土、アルミナ、珪石、マグネシア、長石、
石灰石、ジルコニア、ペタライト、ドロマイト等
が挙げられ、これらは必要に応じて適当な細度の
乾燥した粉体で用いられる。 上記原料を用いて、本発明の製造方法は次のよ
うになされる。 バインダ溶液、水溶性粒状物質及びセラミツク
ス原料の混練及び成形は一般にセラミツクス原材
料を混練又は成形する機器類が使用可能である。
この混練の際、水は含まれていないので、水溶性
粒状物質はそのままの形で、混練成形された生の
セラミツクス中に存在する。 上記成形体を水中にて抽出処理する方法は、単
に成形体を水で満たされた容器に浸漬してもよい
が、抽出効率を上げるため、流水中に浸漬しても
よい。更に水の温度を上げて抽出するのも効果的
である。この抽出処理により、水との相溶性のた
め有機溶媒が水中へ移行し、そのあとへ水が侵入
する。この侵入水が水溶性粒状物質に達するとそ
の粒状物質が溶出し、そこが空孔となる。このこ
とにより生のセラミツクスの多孔質体が得られ
る。この水による抽出時、セラミツクス成形体が
分解しないのは、水溶性粒状物質が水に抽出され
るのと同時にセラミツクス成形体中のバインダを
溶解していた有機溶媒も水に抽出され、バインダ
が溶媒を失つて固化し、セラミツクスの形状を保
持するからである。この場合バインダがセラミツ
クス中に残り、焼成時分解するが、バインダ程度
の量では既に生成して気孔径に影響を与えたり、
悪臭、汚染の原因とはならない。 上記の如く、水により抽出され、多孔質体とな
つた生のセラミツクス成形体は、乾燥された後、
通常の焼成条件で焼成されて、所望の気孔径を有
するセラミツクス多孔質体となる。 以上、詳述した如く、本発明の製造方法によれ
ば水と相溶性の有機溶媒に溶解されたバインダ及
び該有機溶媒に不溶な水溶性粒状物質をセラミツ
クス原料粉末と混練し、成形し、次いで水中にて
上記有機溶媒及び水溶性粒状物質を抽出処理し、
焼成することにより、水溶性粒状物質の量によつ
て気孔量をコントロールし、更に、物質の粒度に
よつて気孔径をコントロールすることが極めて容
易となり、品質の向上に貢献する。更に、多量の
樹脂類の熱分解がなされないため、悪臭、大気汚
染の問題が生じることがない。その上、水中に溶
出した水溶性粒状物質は別途再結晶化等させて回
収できるため、省資源及びコストダウンにつなが
る。このようにして製造されたセラミツクス多孔
質体は、自動車用排ガスフイルタ、各種工業用フ
イルタ、軽量耐熱構造材、吸音材、吸光材、ヒー
トパイプのウイツク、酵素の担体あるいはイオン
交換樹脂の担体等に用いて有益である。 次に本発明をその実施例に基づき具体的に説明
する。 実施例 1 セラミツクス原料 滑 石 200重量部 粘 土 222 〃 アルミナ 78 〃 バインダ溶液 ポリウレタン樹脂 30重量% ジメチルホルムアミド 70 〃 の原料素地500gに対して水溶性粒状物質と
して塩化アンモニウム(試薬1級)又はサツカロ
ースを所定量配合し、乾式混合した後、を素地
全体に対して35重量%加え、土練機で15分土練し
た後、成形機にてハニカム状に押し出した。これ
を流水槽中に約6時間保持した後乾燥させ、多孔
質ハニカム成形体を得た。これを電気炉にて、酸
化雰囲気中1400℃で6時間焼成し、コーデイエラ
イト質の多孔質ハニカム状セラミツクスを得た。 実施例 2 セラミツクス原料 実施例1と同じ バインダ溶液 ポリビニルブチラール(積水化学社製エスレツ
クBMS) 25重量% エチルアルコール 75 〃 水溶性粒状物質として炭酸アンモニウム(試薬
1級)、グリコーゲン又はγ−アミノ酪酸を用い
た以外は、実施例1と同様にして多孔質ハニカム
状セラミツクスを得た。 実施例 3 セラミツクス原料 実施例1と同じ バインダ溶液 メタクリル酸エステル樹脂 35重量% アセトン 65 〃 水溶性粒状物質としてクエン酸アンモニウムを
用いた以外は、実施例1と同様にして多孔質ハニ
カム状セラミツクスを得た。 上記実施例1において水溶性粒状物質を何も配
合しないものを比較例として、同様な方法でハニ
カム状セラミツクスを得た。 各実施例、比較例で得られた多孔質ハニカム状
セラミツクスの吸水率及び平均気孔径の測定デー
タを第1表に示す。ただし平均気孔径は水銀圧入
法で行ない、吸水率の測定は次のように行つた。 吸水率測定方法 完全に乾燥した際の重量と水中で飽水させた際
の重量とから次の式により導いた。 吸水率=飽水重量−乾燥重量/乾燥重量
The present invention relates to a method for producing a ceramic porous body, and more particularly to an improvement in the method for producing a ceramic porous body used in filters and the like by solvent extraction. Generally, the manufacturing method of porous ceramics used for automobile exhaust gas filters, etc. is to mix a large amount of carbonate, etc., which has a large loss on ignition, into it.
Bubbles are generated by thermal decomposition during firing, and the bubbles form a porous structure.In addition, a large amount of resin powder is blended and similarly removed as gas from the ceramic by thermal decomposition, and the resin becomes a gas. It had become porous due to the traces that had fallen out. However, according to these methods, since the gas generation is due to thermal decomposition, they emit a foul odor, pollute the air, are unsafe and unsanitary to work with, and require special consideration to prevent pollution. Furthermore, all of these decomposed products are disposable, which is not desirable from the standpoint of resource conservation, leading to increased costs. Furthermore, it is difficult to crush this pyrolytic resin due to its flexibility and stickiness. Moreover, resin powder with uniform particle size cannot be obtained in good yield. Even in the foaming process, differences in the material or size of the ceramics cause uneven heating and differences in heating speed, making it difficult to generate uniform bubbles. These problems have caused problems in quality control and caused a decrease in yield. Therefore, instead of using thermal decomposition, there are methods in which the resin in the ceramics before firing is extracted with an organic solvent to elute the resin and form pores in the ceramics through which the resin escapes.
There is No. 42563. However, in this method, the resin used in a larger amount than in the decomposition foaming method by heating does not come out completely, and the remaining resin must be thermally decomposed, resulting in the same problem as described above. Furthermore, since a large amount of organic solvent is handled during the extraction process, operational safety and hygiene are further deteriorated. As a result of intensive research, the present inventors have found that the above-mentioned problems can be solved by using a substance that is insoluble in organic solvents and soluble in water and performing extraction with water, and have completed the present invention. That is, the gist of the present invention is that a binder dissolved in an organic solvent that is compatible with water and a water-soluble particulate material that is insoluble in the organic solvent are kneaded with a ceramic raw material powder, molded, and then the above-described mixture is mixed in water. A method for producing a porous ceramic body, which comprises extracting an organic solvent and a water-soluble particulate material and firing the same. Examples of the water-compatible organic solvent used here include dimethylformamide, ethyl alcohol, methyl alcohol, propyl alcohol, acetone, methyl ethyl ketone, and dimethyl sulfoxide. The binder includes various polymers soluble in organic solvents, such as polyurethane, polystyrene, polyvinyl butyral, vinyl chloride, nitrocellulose, polyacrylic, and ethylcellulose. This binder is used by dissolving it in the above-mentioned organic solvent, but its concentration is preferably 20 to 35% by weight. If it is less than 20% by weight, it is too thin, so in order to exhibit its performance as a binder, a large amount is added to the solution. Must be blended. However, if this is done, the viscosity of the raw ceramics decreases, and the ceramics begin to have fluidity and shape retention, which makes it impossible to mold them. Moreover, if it exceeds 35% by weight, the viscosity of the solution itself becomes too high, and the raw ceramic becomes hard, making it difficult to mold it by extrusion or other machines. In addition, when blending the binder as a solution, the binder is not dissolved in all the solvent from the beginning, but after blending the solution dissolved in a part of the solvent with other ceramic raw materials, the remaining solvent is added to the hardness of the raw ceramics. A method of adding the binder as an adjustment may be used, as long as the final binder concentration is 20 to 35% by weight. Next, the amount of the binder solution with this concentration is preferably 25 to 50 parts by weight per 100 parts by weight of the ceramic raw material powder.If it is less than 25 parts by weight, the amount of binder will be too small and the shape retention of the raw ceramics will be difficult. The raw ceramic molded body will collapse during molding or during subsequent extraction treatment in water. In addition, if the amount exceeds 50 parts by weight, the amount of binder becomes too large, which affects the pore size and porosity of ceramics during firing, and generates a large amount of combustion gas, which poses safety, health, and pollution problems. This is contrary to the purpose of the method of the present invention. The water-compatible organic solvent-insoluble substances include, for example, ammonium chloride, sodium chloride, potassium chloride, sodium hydroxide, potassium hydroxide, ammonium chlorate, ammonium citrate, sodium citrate, ammonium carbonate, sodium carbonate, potassium carbonate, ammonium hydrogen phosphate,
Sodium phosphate, potassium phosphate, sodium hydrogen phosphate, potassium hydrogen phosphate, glycogen, 3-aminosalicylic acid, γ-aminobutyric acid, L
-Oxyglutamic acid, etc., which are used after being ground to a predetermined particle size in a predetermined amount in accordance with the desired pore size and porosity. The above substances are blended so that the pore size and porosity of the ceramic after firing are in the desired state, but if the particle size is too large, the pore size becomes large and the inner surface area of the pores becomes small. On the other hand, if the particle size is too small, it will easily absorb moisture or water in the air or solvent, making it difficult to extract. Particles of 25 to 300μ are generally used because they dissolve or harden beforehand. In addition, if the amount is too large, the strength of the fired ceramic will decrease, and if it is too small, it will lose its effectiveness as a porous body. Add part. The pulverization method can be carried out using a commonly used pulverization method, for example, a pulverization method such as a ball mill, vibration mill, rod mill, roll crusher, or micropulverizer is used, and if necessary, the particles are sieved to make the particle size uniform. . As raw materials for ceramics, all those normally used to form fired ceramic bodies are applicable, such as talc, clay, alumina, silica, magnesia, feldspar,
Limestone, zirconia, petalite, dolomite, etc. may be mentioned, and these may be used in the form of dry powder of appropriate fineness, if necessary. Using the above raw materials, the manufacturing method of the present invention is carried out as follows. For kneading and molding the binder solution, water-soluble granular material, and ceramic raw material, equipment that generally kneads or molds ceramic raw materials can be used.
During this kneading, water is not included, so the water-soluble particulate matter exists in the kneaded and molded raw ceramic as it is. In the method of extracting the molded body in water, the molded body may be simply immersed in a container filled with water, but in order to increase the extraction efficiency, it may be immersed in running water. It is also effective to raise the temperature of the water for extraction. Due to this extraction process, the organic solvent moves into water due to its compatibility with water, and water then enters into the water. When this invading water reaches the water-soluble particulate matter, the particulate matter is eluted, forming pores. This results in a raw ceramic porous body. The reason why the ceramic molded body does not decompose during extraction with water is that at the same time as the water-soluble particulate matter is extracted with water, the organic solvent that had dissolved the binder in the ceramic molded body is also extracted with water, and the binder is dissolved in the solvent. This is because the ceramic loses its properties and solidifies, retaining the shape of the ceramic. In this case, the binder remains in the ceramic and decomposes during firing, but if the binder is present in a small amount, it may already be formed and affect the pore size.
Does not cause odor or pollution. As mentioned above, after the raw ceramic molded body extracted with water and turned into a porous body is dried,
It is fired under normal firing conditions to form a porous ceramic body having a desired pore size. As detailed above, according to the manufacturing method of the present invention, a binder dissolved in an organic solvent compatible with water and a water-soluble particulate material insoluble in the organic solvent are kneaded with ceramic raw material powder, molded, and then Extracting the organic solvent and water-soluble particulate matter in water,
By firing, it becomes extremely easy to control the amount of pores by controlling the amount of water-soluble particulate material, and further to control the pore diameter by controlling the particle size of the material, contributing to improved quality. Furthermore, since a large amount of resin is not thermally decomposed, problems such as bad odor and air pollution do not occur. Furthermore, the water-soluble particulate matter eluted into the water can be recovered by recrystallization separately, leading to resource saving and cost reduction. The ceramic porous bodies produced in this way can be used as automobile exhaust gas filters, various industrial filters, lightweight heat-resistant structural materials, sound-absorbing materials, light-absorbing materials, heat pipe wicks, enzyme carriers, ion exchange resin carriers, etc. It is beneficial to use. Next, the present invention will be specifically explained based on examples thereof. Example 1 Ceramics raw materials Talc 200 parts by weight Clay 222 Alumina 78 Binder solution Polyurethane resin 30% by weight Dimethylformamide 70 Ammonium chloride (1st grade reagent) or sutucarose was added as a water-soluble granular material to 500 g of the raw material. After blending and dry-mixing in a predetermined amount, 35% by weight of the entire base was added, kneaded for 15 minutes in a clay kneader, and then extruded into a honeycomb shape in a molding machine. This was kept in a running water tank for about 6 hours and then dried to obtain a porous honeycomb molded body. This was fired in an electric furnace at 1400° C. for 6 hours in an oxidizing atmosphere to obtain cordierite porous honeycomb ceramics. Example 2 Ceramics raw material Same as Example 1 Binder solution Polyvinyl butyral (Sekisui Chemical Co., Ltd. Eslec BMS) 25% by weight Ethyl alcohol 75 Ammonium carbonate (1st class reagent), glycogen or γ-aminobutyric acid was used as the water-soluble particulate material A porous honeycomb-shaped ceramic was obtained in the same manner as in Example 1, except for the following. Example 3 Ceramics raw material Same as Example 1 Binder solution Methacrylic acid ester resin 35% by weight Acetone 65 Porous honeycomb ceramics were obtained in the same manner as in Example 1 except that ammonium citrate was used as the water-soluble particulate material. Ta. A honeycomb-shaped ceramic was obtained in the same manner as in Example 1, except that no water-soluble particulate material was added as a comparative example. Table 1 shows the measurement data of the water absorption rate and average pore diameter of the porous honeycomb ceramics obtained in each Example and Comparative Example. However, the average pore diameter was measured by mercury intrusion method, and the water absorption rate was measured as follows. Method for measuring water absorption The following equation was used to determine the weight when completely dried and the weight when saturated in water. Water absorption rate = saturated water weight - dry weight / dry weight

【表】 第1表における水溶性粒状物質の粒径(μ)を
横軸で対数目盛、セラミツクスの平均気孔径
(μ)を縦軸で普通目盛とすると第1図の如くの
直線のグラフとなる。又、水溶性粒状物質の配合
割合(重量%)を横軸で対数目盛、気孔量に該当
する吸水率(%)を縦軸で普通目盛とすると第2
図の如くの直線のグラフとなる。 この結果から、次のことがわかつた。セラミツ
クスの焼成時ほとんど燃焼ガスが発生せず安全衛
生上問題を生じなかつた。又、抽出に使用した水
から水溶性粒状物質を再結晶することにより、配
合量の65〜70℃が回収できた。発泡状態も所望通
りで、均一性も良好であつた。
[Table] If the particle size (μ) of the water-soluble particulate material in Table 1 is plotted on a logarithmic scale on the horizontal axis, and the average pore diameter (μ) of ceramics is plotted on a normal scale on the vertical axis, a straight line graph as shown in Figure 1 is obtained. Become. In addition, if the proportion (weight %) of water-soluble particulate matter is plotted on a logarithmic scale on the horizontal axis, and the water absorption rate (%) corresponding to the amount of pores is plotted on a normal scale on the vertical axis, the second
The graph will be a straight line as shown in the figure. From this result, we found the following. Almost no combustion gas was generated during firing of ceramics, and no health and safety problems were caused. Furthermore, by recrystallizing the water-soluble particulate matter from the water used for extraction, the blended amount of 65 to 70°C could be recovered. The foaming state was as desired and the uniformity was also good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水溶性粒状物質の粒径と焼成されたセ
ラミツクスの平均気孔径とをプロツトしたグラ
フ、第2図は水溶性粒状物質の配合割合と焼成さ
れたセラミツクスの吸水率とをプロツトしたグラ
フを表わす。
Figure 1 is a graph plotting the particle size of water-soluble particulate matter and the average pore diameter of fired ceramics, and Figure 2 is a graph plotting the blending ratio of water-soluble particulate matter and the water absorption rate of fired ceramics. represents.

Claims (1)

【特許請求の範囲】[Claims] 1 水と相溶性の有機溶媒に溶解されたバインダ
及び該有機溶媒に不溶な水溶性粒状物質をセラミ
ツクス原料粉末と混練し、成形し、次いで水中に
て上記有機溶媒及び水溶性粒状物質を抽出処理
し、焼成することを特徴とするセラミツクス多孔
質体の製造方法。
1. A binder dissolved in an organic solvent that is compatible with water and a water-soluble particulate material that is insoluble in the organic solvent are kneaded with ceramic raw material powder, molded, and then the organic solvent and water-soluble particulate material are extracted in water. 1. A method for producing a porous ceramic body, comprising: heating and firing the porous ceramic body;
JP19304782A 1982-11-02 1982-11-02 Manufacture of ceramic porous body Granted JPS5983972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19304782A JPS5983972A (en) 1982-11-02 1982-11-02 Manufacture of ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19304782A JPS5983972A (en) 1982-11-02 1982-11-02 Manufacture of ceramic porous body

Publications (2)

Publication Number Publication Date
JPS5983972A JPS5983972A (en) 1984-05-15
JPS6339545B2 true JPS6339545B2 (en) 1988-08-05

Family

ID=16301289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19304782A Granted JPS5983972A (en) 1982-11-02 1982-11-02 Manufacture of ceramic porous body

Country Status (1)

Country Link
JP (1) JPS5983972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503188A (en) * 2002-10-18 2006-01-26 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Near net shape metal and / or ceramic member manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270368A (en) * 1987-04-30 1988-11-08 Okura Ind Co Ltd Production of porous ceramic
GB9615373D0 (en) 1996-07-22 1996-09-04 Dow Benelux Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom
US5998523A (en) * 1997-07-18 1999-12-07 The Dow Chemical Company Composition comprising a metal salt and metal powder therefrom by the calcining thereof
EP1382408B1 (en) 2002-07-15 2010-06-23 Hitachi Metals, Ltd. Method for producing porous sintered metals for filters
GB2426975B (en) * 2005-06-10 2010-09-29 John William Carson Improved building construction
JPWO2008078779A1 (en) * 2006-12-26 2010-04-30 日本板硝子株式会社 Method for producing porous ceramic article
US9085091B2 (en) 2010-08-19 2015-07-21 Hitachi Metals, Ltd. Production method of ceramic honeycomb structure
CN108689722B (en) * 2018-06-13 2021-04-06 绍兴市梓昂新材料有限公司 Preparation method of porous ceramic with adjustable pore diameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503188A (en) * 2002-10-18 2006-01-26 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Near net shape metal and / or ceramic member manufacturing method

Also Published As

Publication number Publication date
JPS5983972A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
JP2001524451A5 (en)
CN102173852B (en) Method for preparing alumina porous ceramics by emulsion/gel-combined die casting technique
DE3001640C2 (en) Process for the production of thermal shock-resistant ceramic honeycomb bodies made of cordierite
JPS6339545B2 (en)
DE2322593A1 (en) FIRE RESISTANT LIGHT MATERIAL
KR20130097146A (en) Production method of ceramic honeycomb structure
CN1269772C (en) Process for producing cellular forming body and cellular structure
CN1262517C (en) Porous ceramic matrices suitable as catalysts support
US1944007A (en) Light weight ceramic material and method of making the same
JP3227039B2 (en) Method for manufacturing cordierite honeycomb structure
US2921357A (en) Method for making insulating refractories
JPH07762B2 (en) Pencil lead manufacturing method
US20100117272A1 (en) Method Of Increasing Ceramic Paste Stiffening/Gelation Temperature By Using Organic Additive Urea
DE2342948A1 (en) Hollow ceramic bodies - produced by coating combustible organic body with ceramic-binder combination and firing
JP3074169B1 (en) Method for manufacturing cordierite-based ceramic honeycomb structure
US1992916A (en) Permeable ceramic material and process of making the same
US3960798A (en) Process for regulating hardening speed of self-hardening mold
GB1586337A (en) Method of making a ceramic article and articles made by the method
JPS6384638A (en) Catalyst carrier and catalyst for oxychlorination
JPS6048234B2 (en) Solidification treatment method for municipal waste dust
CN1143618A (en) Process for preparation of porous components made of ceramic including monocrystalline platelets of alpha alumina
CN111377746B (en) Low-cost environment-friendly composite auxiliary agent for honeycomb ceramic molding and application method thereof
CN115959926A (en) Phase-transition pore-forming agent and pore-forming method of fly ash ceramic flat membrane support
JPS6114105B2 (en)
JP2694900B2 (en) Method for producing zeolite from clayey raw material