JPS6339534B2 - - Google Patents

Info

Publication number
JPS6339534B2
JPS6339534B2 JP57159417A JP15941782A JPS6339534B2 JP S6339534 B2 JPS6339534 B2 JP S6339534B2 JP 57159417 A JP57159417 A JP 57159417A JP 15941782 A JP15941782 A JP 15941782A JP S6339534 B2 JPS6339534 B2 JP S6339534B2
Authority
JP
Japan
Prior art keywords
glass
ceramic
composition
dental
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57159417A
Other languages
Japanese (ja)
Other versions
JPS5950046A (en
Inventor
Geerii Gurosuman Debitsudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Glass Works
Original Assignee
Corning Glass Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Glass Works filed Critical Corning Glass Works
Priority to JP57159417A priority Critical patent/JPS5950046A/en
Publication of JPS5950046A publication Critical patent/JPS5950046A/en
Publication of JPS6339534B2 publication Critical patent/JPS6339534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、歯科甚品、歯科治療等に甚いられる
新芏な材料に関し、より詳现には、䜿甚䞭の汚染
に察する抵抗の優れた新芏なマむカ系歯科甚組成
物に関する。 歯科医療の䞻目的は、歯科甚構造物を補䜜し装
着するこずにより損傷を受けたり倉圢した歯を取
り換えたり修正するこずにある。そのような歯科
甚構造物ずしおよく甚いられるものには、歯床、
ブリツゞ、矯正甚ブラケツト等の歯科噚具、その
ような歯科噚具の付属品、補綎甚噚具、䟋えば、
むンレヌ、オンレヌ、郚分矩歯たたは総矩歯、歯
冠たたはキダツプなどがある。 それらの歯科甚構造物は、口の䞭で䞍掻性であ
り、咀しやく力に抗するこずができ、所望の解剖
孊的圢状を䟛するこずができ、䞔぀、生来の歯ず
同様の矎感を呈するものでなければならない。し
かしながら、これらの芁求の党おを同時に充足す
る材料は殆んど存しない。 珟圚入取できる歯科甚構造物は、䞀般に、合
金、磁土、アマルガム、アクリル系ポリマヌ、た
たはそれらを組合せたものから成る。合金やアマ
ルガムは、通垞の歯ず倖芳が顕著に異なるので、
矎感が特に重芁である堎合には望たしくない。磁
土やアクリル系ポリマヌは、匱くお咀しやくに耐
えないこずが倚い。 耇合構造物、䟋えば、䞋郚構造を金属補ずし䞔
぀倖芳を良くするために䞊郚構造を磁土から補し
たものも存するが、このような耇合構造物は高床
な技術を芁し、䞔぀、倚くの堎合嵩密床が倧きす
ぎる。かくしお、埓来からの歯科甚構造物は、各
皮の芁求を適圓に劥協したものである。 歯科治療の分野における最近の有望な研究ずし
お、歯科構造物を補造するのにマむカ系のガラス
セラミツクを甚いるこずが、C.H.Pameijer等に
よる「鋳造性セラミツク系歯科甚補匷材の物理的
性質Physical Properties of  Castable
Ceramic Dental Restorative Material」
AADR Abstract827、J.Dent.Res.、591980幎
月号、474頁に蚘茉されおいる。ガラスセラミ
ツクは適圓な熱凊理により、ガラスをその堎で
in site制埡結晶化するこずにより埗られる半
結晶材料であり、そのような材料を最初に開瀺し
たのは米囜特蚱第2920971号である。ガラスセラ
ミツクは、䞻ずしお結晶から成る50容量以䞊
が結晶であり、倚くは90容量以䞊が結晶であ
るので、該セラミツクが補された出発ガラスな
いしは前駆䜓ガラスよりも、前蚘の䞻構成分であ
るガラス盞の性質に極めお近䌌した性質を瀺す。
かくしお、ガラスセラミツクの性質は、その䞭に
存圚する特定の結晶盞に応じお広範囲に倉化し埗
る。 最近開発されたガラスセラミツク材の䞭に、米
囜特蚱第3689293号により最初に開瀺されたマむ
カ含有ガラスセラミツクがある。マむカ含有セラ
ミツクは、歯科甚噚具や構造物を補するのに特に
望たしいような比范的特殊な性質を有しおいる。
すなわち、該セラミツクは、脆性が無く、点衝撃
に察しお抗するこずができ砎壊を䌝播させるこず
もない。かくしお、マむカ系ガラスセラミツク䜓
は、埓来の磁土によるものでは砎壊するような点
硬床テストにおいおも抌蟌たれるこずができる。
このような挙動をするのは、䞻芁構成分であるマ
むカ結晶が、基瀎面ないしは劈開面に沿う遷移滑
動により、ある皋床塑性的に流動するこずができ
るためである。 米囜特蚱第3689293号のガラスセラミツクは、
埓来の金属加工装眮および加工法を甚いお切断さ
れ成圢されるこずができるため、機械加工性ガラ
スセラミツクずしお蚘茉されおいる。該セラミツ
クの䞻芁構成分である結晶盞は、フルオロフロゎ
パむトfluorphlogopite固溶䜓䟋えば、フ
ルオロフロゎパむト〔KMg3AlSi3O10F2〕および
たたはホり玠フルオロフルゎパむト
〔KMg3BSi3O10F2〕結晶から成るである。これ
らの材料は優れた機械加工性を有しおはいるが、
C.H.Pameijer等は前述の論文の䞭で歯科甚補匷
材を埗るために四珪化マむカガラスセラミツクを
䜿甚すべきこずを瀺唆しおいる。この皮のガラス
セラミツクは、米囜特蚱第3732087号に蚘茉され
おおり、䞻芁構成分である結晶盞ずしお四珪化フ
ルオロマむカtetrasilicic fluormica䟋えば、
KMg2.5Si4O10F2を含むこずを特城ずする。歯
科甚にこれらの材料を䜿甚するこずに関する他の
蚘茉は、既に公衚されおいるペヌロツパ特蚱出願
EP22655に芋出される。 四珪化フルオロマむカガラスセラミツクは、添
加されたケむSi4+成分のためにAl+3および
B+3の双方が結晶構造から陀かれる点においお、
フルオロフロゎパむトおよびホり玠フルオロフロ
ゎパむトを含有するガラスセラミツクず異なる。
このような眮換により、四珪化ガラスセラミツク
材は、䞀局優れた化孊的耐久性ず機械的匷床を瀺
す。本明现曞においおは䞊蚘の米囜特蚱第
3689293号および第3732087号を匕甚し、䞊述のご
ずき既知のマむカ系ガラスセラミツク材に぀いお
の説明の参考ずする。 さお、本発明は、歯科甚構造物の補造や他の甚
途に甚いられる四珪化マむカガラスセラミツクの
改良に関し、本発明に埓うセラミツクは、汚染に
察する抵抗が著しく向䞊しおいる。汚染抵抗は、
歯科補綎等においおは最も重芁であるが、汚染性
の媒䜓ずの接觊が頻繁であるこずが予期されるよ
うな他の甚途䟋えば、食噚においおも望たし
い。 本発明に埓えば、少量のAl2O3およびZrO2の添
加を制埡しお特定の四珪化フルオロマむカ組成物
ずするこずにより、汚染抵抗の著しく向䞊した四
珪化フルオロマむカガラスセラミツク甚の熱結晶
性ガラスが埗られる。すなわち、本発明は、熱結
晶性ガラス、および、該ガラスをその堎でin
site結晶化させるこずにより補される汚染抵抗
性の四珪化フルオロマむカ補品䟋えば、歯科甚
構造物に関する。本発明のガラスおよびガラス
セラミツク補品の奜たしい組成は、ガラスのバツ
チの組成ずしお、重量で、倧略、45〜70の
SiO2、〜20のMgO、〜15のMgF2、
〜35のR2OROから成り、ここで、R2Oは、
〜25の範囲にあり、䞔぀、〜20のK2O、
〜23のRb2Oおよび〜25のCS2Oから成る
矀より遞ばれる皮たたはそれ以䞊の酞化物から
成り、たたROは、〜20の範囲にあり、䞔
぀、SrO、BaOおよびCdOから成る矀より遞ばれ
る酞化物から成り、曎に、0.5〜のZrO2、
0.05〜のAl2O3を含み、ZrO2Al2O3の党量
が〜である。たた、歯科甚途に甚いられる
ず有利な任意成分ずしお、〜のTiO2およ
び〜10の埓来からのガラス着色剀が含たれ
る。勿論、䞊蚘の成分に加えお、四珪化フルオロ
マむカ組成物ず適合するものずしおよく知られお
いる他の成分を远有させおもよく、そのような成
分ずしおは、呚期埋衚第族の金属の酞化物およ
び遷移金属の酞化物が含たれるがそれらに限定さ
れるものではない。 䞊述の組成範囲に存するガラスは、ガラスセラ
ミツクを補造するために埓来より甚いられおいた
ような栞圢成および結晶化熱凊理により、その堎
でin site結晶化されおガラスセラミツク補
品ずされるこずができる。奜適な熱凊理は、ガラ
スを加熱しお、0.25〜10時間の範囲の時間に玄
650〜850℃の栞圢成枩床に䟛し、䞔぀、玄〜
100時間の範囲の時間に亘り800〜1200℃の範囲の
結晶化枩床に䟛するこずから成る。 本発明を以䞋に添付図面に沿぀お曎に詳述す
る。この図面は、本発明に埓぀お埗られるガラス
セラミツク材の汚染抵抗の高いこずを瀺すもので
ある。 歯および歯科甚構造物ずなり埗る候補材料の色
圩を客芳的に評䟡する手法は、最近D.G.
Grossman等により「鋳造セラミツク補匷材の色
圩の評䟡Evaluation of the Color of 
Cast Ceramic Restorative Material」AADR
Abstract 1094、J.Dent.Res.、591980幎月
号542頁に蚘述されおいる。この手法は、
Chromascanシ゚ヌドスキダナヌ米囜コネチ
カツト州スタンフオヌドのSterndent瀟から入取
できるのごずき光床蚈を甚いお、評䟡すべき材
料のサンプルによ぀お反射された光を分析するこ
ずから成る。このスキダンナヌを操䜜するこずに
より、評䟡すべき材料によ぀お反射した光の赀
色、緑色および青色スペクトル領域における匷さ
を枬定し、埗られた倀を甚いお、反射光の色盞
原色の割合、圩床色の飜和床および明床
癜色−黒色スケヌルにおける党䜓的な明るさ
を蚈算する。ある候補材料の汚染抵抗は、該材料
を汚染凊理に䟛した前埌に䞊蚘の色圩評䟡を行な
うこずにより客芳的に定められる。 䞊述のGrossman等による論文に蚘茉された手
法を甚いるず、人間の歯で通垞起こる着色範囲内
で、色盞は玄0.2から0.8、圩床は玄20〜180、た
た、明床は玄350〜800の範囲に存するこずが芋出
された。補綎材料を開発するに圓぀おは、その反
射光の特性がこの範囲にあるようにするこずが望
たれ、これは該材料に着色材を添加するこずによ
぀お達成されるのが通垞である。重芁なこずは、
材料が䜿甚䞭に色の倧きな倉化を瀺さず、構造物
を補造するための基瀎材料の開発が優れた汚染抵
抗を埗るこずに向けられるようにするこずであ
る。 歯科甚補綎材料を開発するに圓぀お特に泚目さ
れる汚染媒䜓はコヌヒヌである。歯科甚途および
たたは調理料理の分野に関する限り、コ
ヌヒヌは、極めお厳しい汚染媒䜓の䞀぀に属す
る。候補材料の汚染抵抗を評䟡し比范するために
珟圚信頌されおいる汚染テストの䞀぀は、特定の
材料のサンプルを日毎の露出間隔で80℃でコヌ
ヒヌに露すこずから成るコヌヒヌ汚染テストであ
る。このテストによれば、倚くのセラミツク材料
においお枬定可胜な皋床の色盞、明床および圩床
の倉化が生じる。 本発明に埓う最良の汚染抵抗は、Al2O3および
ZrO2の双方を含有する組成物によ぀お埗られる。
少量のアルミナおよびゞルコニアの添加がガラス
セラミツク補綎材料の汚染抵抗を䞎える効果を瀺
すために、皮類のガラスセラミツク材料に぀い
お䞊蚘のコヌヒヌ汚染テストを行な぀た堎合の挙
動を比范した。これらの材料の組成は、次の第
衚に蚘茉されおおり、該組成はバツチの組成を重
量基準で衚わしたものである。基本成分SiO2、
K2O、MgOおよびMgF2の合蚈量は100郚ずな぀
おおり、したが぀お、衚䞭に瀺すそれらの成分の
倀が基瀎ずなるガラスの重量パヌセントに察応す
る。残りの成分は、基瀎ずなるガラス組成を100
ずしたずきに、100を超えお加えられる添加
成分ず考えるこずができる。衚から芋られるよう
に、サンプル〜は、それぞれ、サンプル〜
に察応し、ただし、前者には少量のAl2O3が含
有されおいる。
The present invention relates to a new material used in dental supplies, dental treatment, etc., and more particularly to a new mica-based dental composition that has excellent resistance to contamination during use. The main purpose of dentistry is to replace or correct damaged or deformed teeth by fabricating and installing dental structures. Commonly used dental structures include tooth bases,
Dental appliances such as bridges and orthodontic brackets, accessories for such dental appliances, prosthetic appliances, e.g.
These include inlays, onlays, partial or complete dentures, and crowns or caps. These dental structures are inert in the mouth, can resist chewing forces, can provide a desired anatomical shape, and have an aesthetic appearance similar to that of natural teeth. It must be something that presents itself. However, there are few materials that simultaneously satisfy all of these requirements. Currently available dental structures are generally comprised of alloys, porcelain, amalgam, acrylic polymers, or combinations thereof. Alloys and amalgams look significantly different from regular teeth, so
This is undesirable when aesthetics are particularly important. Porcelain clay and acrylic polymers are often weak and cannot withstand chewing. There are composite structures, for example, those in which the lower structure is made of metal and the upper structure is made of porcelain clay to improve the appearance, but such composite structures require advanced technology and are often Bulk density is too high. Conventional dental structures thus represent a reasonable compromise between various requirements. As a recent promising research in the field of dental treatment, the use of mica-based glass-ceramics for manufacturing dental structures has been proposed by CHPameijer et al. a Castable
Ceramic Dental Restorative Material)
It is described in AADR Abstract 827, J.Dent.Res., 59 (March 1980 issue), p. 474. Glass-ceramic is a semi-crystalline material obtained by controlled crystallization of glass in situ with appropriate heat treatment; US Pat. No. 2,920,971 first disclosed such a material. Glass-ceramics consist primarily of crystals (over 50% by volume are crystals, often over 90% by volume are crystals) and therefore have a higher composition than the starting glass or precursor glass from which they are made. It exhibits properties very similar to those of the glass phase.
Thus, the properties of glass-ceramics can vary widely depending on the particular crystalline phase present therein. Among the more recently developed glass-ceramic materials are mica-containing glass-ceramics, first disclosed by U.S. Pat. No. 3,689,293. Mica-containing ceramics have relatively special properties that make them particularly desirable for making dental instruments and structures.
That is, the ceramic is not brittle, can withstand point impact, and does not propagate fracture. Thus, mica-based glass-ceramic bodies can be pushed through point hardness tests that would destroy conventional porcelain clay bodies.
This behavior occurs because the mica crystal, which is the main component, can flow plastically to some extent by transition sliding along the base plane or cleavage plane. The glass ceramic of U.S. Patent No. 3,689,293 is
It is described as a machinable glass ceramic because it can be cut and formed using conventional metal processing equipment and processing methods. The crystalline phase which is the main constituent of the ceramic is a fluorophlogopite solid solution (e.g. fluorophlogopite [KMg 3 AlSi 3 O 10 F 2 ] and/or boron fluorophlogopite [KMg 3 BSi 3 O 10 F 2 ] (consisting of crystals). Although these materials have excellent machinability,
CHPameijer et al. in the above-mentioned paper suggest that tetrasilicide mica glass ceramics should be used to obtain dental reinforcements. Glass ceramics of this type are described in U.S. Pat. No. 3,732,087 and contain tetrasilicic fluormica (e.g.
KMg 2.5 Si 4 O 10 F 2 ). Further descriptions of the use of these materials for dentistry can be found in previously published European patent applications
Found in EP22655. Fluoromica tetrasilicide glass ceramics contain Al +3 and
In that both B +3 are removed from the crystal structure,
Different from glass ceramics containing fluorophlogopite and boron fluorophlogopite.
Due to such substitution, the tetrasilicide glass ceramic material exhibits better chemical durability and mechanical strength. This specification refers to the above-mentioned U.S. patent no.
Nos. 3,689,293 and 3,732,087 are cited and used as reference for the explanation of the known mica-based glass ceramic materials mentioned above. The present invention now relates to improvements in mica tetrasilicide glass ceramics used in the manufacture of dental structures and other applications, and the ceramics according to the present invention have significantly improved resistance to contamination. Pollution resistance is
Although most important in applications such as dental prosthetics, it is also desirable in other applications where frequent contact with contaminating media is expected (eg tableware). In accordance with the present invention, thermal crystallization for tetrasilicated fluoromica glass ceramics with significantly improved contamination resistance is achieved by controlling the addition of small amounts of Al 2 O 3 and ZrO 2 to a specific tetrasilicated fluoromica composition. A synthetic glass is obtained. That is, the present invention provides thermocrystalline glass and in-situ processing of the glass.
site) Contains stain-resistant tetrasilicated fluoromica products (e.g. dental structures) made by crystallization. The preferred composition of the glass and glass-ceramic products of the present invention is approximately 45-70% by weight as the composition of the batch of glass.
SiO2 , 8-20% MgO, 8-15% MgF2 , 5
~35% R 2 O + RO, where R 2 O is
in the range of 5-25% and 0-20% K2O ,
consisting of one or more oxides selected from the group consisting of 0-23% Rb 2 O and 0-25% CS 2 O, and RO is in the range 0-20%, and SrO , an oxide selected from the group consisting of BaO and CdO, further comprising 0.5 to 7% ZrO 2 ,
It contains 0.05-2% Al2O3 , and the total amount of ZrO2 + Al2O3 is 1-9%. Optional ingredients that are also advantageous for use in dental applications include 0-7% TiO2 and 0-10% conventional glass colorants. Of course, in addition to the above-mentioned components, other components that are well known to be compatible with tetrasilicated fluoromica compositions may also be added, such as metals from Groups of the Periodic Table. and oxides of transition metals. Glasses in the above composition range may be crystallized in situ into glass-ceramic products by nucleation and crystallization heat treatments conventionally used to produce glass-ceramics. Can be done. A preferred heat treatment involves heating the glass for a period of time ranging from 0.25 to 10 hours for approximately
Subjected to a nucleation temperature of 650-850°C, and about 1-850°C
It consists of subjecting to a crystallization temperature ranging from 800 to 1200° C. for a time ranging from 100 hours. The present invention will be described in further detail below with reference to the accompanying drawings. This figure shows the high stain resistance of the glass-ceramic material obtained according to the invention. A method for objectively evaluating the color of candidate materials for teeth and dental structures has recently been developed by DG.
“Evaluation of the Color of a Cast Ceramic Reinforcement Material” by Grossman et al.
Cast Ceramic Restorative Material)”AADR
Abstract 1094, J.Dent.Res., 59 (March 1980 issue), page 542. This method is
It consists of analyzing the light reflected by a sample of the material to be evaluated using a photometer such as a Chromascan shaded scanner (available from Sterndent, Stanford, Conn., USA). By operating this scanner, the intensity in the red, green and blue spectral regions of the light reflected by the material to be evaluated is measured, and the obtained values are used to calculate the hue of the reflected light (the proportion of the three primary colors). ), saturation (color saturation) and lightness (overall brightness on the white-black scale)
Calculate. The stain resistance of a certain candidate material can be determined objectively by performing the above color evaluation before and after subjecting the material to a stain treatment. Using the method described in the above-mentioned paper by Grossman et al., the hue is approximately 0.2 to 0.8, the saturation is approximately 20 to 180, and the lightness is approximately 350 to 800, within the coloration range that normally occurs in human teeth. It was found that the When developing prosthetic materials, it is desirable to have the reflected light properties within this range, and this is usually achieved by adding a coloring agent to the material. . the important thing is,
The aim is for the material not to show significant changes in color during use, so that the development of the basic materials for manufacturing the structures can be directed towards obtaining good pollution resistance. Coffee is a contaminating medium that attracts particular attention when developing dental prosthetic materials. As far as the field of dental applications and/or cooking is concerned, coffee belongs to one of the most severe polluting media. One of the currently relied upon contamination tests to evaluate and compare the contamination resistance of candidate materials is the coffee contamination test, which consists of exposing a sample of a particular material to coffee at 80°C with an exposure interval of every 7 days. be. This test results in measurable changes in hue, brightness, and saturation in many ceramic materials. The best pollution resistance according to the invention is Al 2 O 3 and
obtained by a composition containing both ZrO2 .
To demonstrate the effect of the addition of small amounts of alumina and zirconia on the stain resistance of glass-ceramic prosthetic materials, the behavior of six glass-ceramic materials in the coffee stain test described above was compared. The compositions of these materials are set forth in the following table, which is the batch composition expressed on a weight basis. Basic component SiO 2 ,
The total amount of K 2 O, MgO and MgF 2 is 100 parts, so the values of these components shown in the table correspond to the weight percentages of the underlying glass. The remaining ingredients are 100% the base glass composition.
When expressed as %, it can be considered as an additive component added in excess of 100%. As can be seen from the table, samples 4 to 6 are samples 1 to 6, respectively.
3, except that the former contains a small amount of Al 2 O 3 .

【衚】 第衚に瀺す材料は、すべお、四珪化フルオロ
マむカガラスセラミツク組成物であり、基本的な
結晶圢成成分ずしおSiO2、K2O、MgF2および
MgOを含有し、曎に、幟぀かの堎合に぀いおは、
TiO2および着色剀反射光の色を調節するを
含有する。それぞれの組成の溶融ガラスからガラ
スパツテむヌを圢成し、次いで、該ガラスパツテ
むヌを熱凊理を介しお高結晶化床のガラスセラミ
ツクに倉化させるこずにより、各組成物からガラ
スセラミツクが補された。最高結晶化枩床は1075
〜1090℃の範囲にあり、結晶化時間は時間であ
぀た。ガラスセラミツクのパツテむヌを切断しお
厚さが玄0.25むンチのプレヌトを埗、テストの前
に研磚した。 汚染テストにおいおは、先ず各サンプルの色圩
を調べ、次いで、80℃においお日間コヌヒヌ䞭
に浞挬し、しかる埌、サンプルを取出し、脱むオ
ン氎で掗滌し、再床色圩を調べ、最埌に、垂販の
歯みがきで分間磚いた埌に第回目の色圩怜査
を行な぀た。これらのテストで埗られたデヌタを
次の第衚に瀺す。この第衚には、皮類のサ
ンプルのそれぞれに぀き、汚染前の色圩最初の
色圩、汚染および掗滌埌の色圩汚染掗滌埌
の色圩、䞊びに汚染および歯みがきで磚いた埌
の色圩汚染研磚埌の色圩の色盞(H)、明床
および圩床(C)が蚘されおいる。
[Table] The materials shown in the table are all tetrasilicated fluoromica glass ceramic compositions, and the basic crystal forming components are SiO 2 , K 2 O, MgF 2 and
containing MgO and, in some cases,
Contains TiO 2 and a colorant (adjusts the color of reflected light). Glass ceramics were made from each composition by forming a glass assembly from molten glass of each composition and then converting the glass assembly into a high crystallinity glass ceramic through heat treatment. Maximum crystallization temperature is 1075
~1090°C, and the crystallization time was 6 hours. Glass ceramic pieces were cut into plates approximately 0.25 inch thick and polished prior to testing. In the contamination test, each sample was first checked for color, then soaked in coffee for 7 days at 80°C, after which the samples were removed, rinsed with deionized water, checked for color again, and finally, commercially available After brushing the teeth for 1 minute, a third color test was performed. The data obtained from these tests are shown in the table below. This table shows, for each of the six samples, the color before staining (initial color), the color after staining and washing (color after staining/washing), and the color after staining and brushing (color after toothbrushing). The hue (H), brightness (V) and saturation (C) of the color after staining/polishing are recorded.

【衚】 第衚に瀺すデヌタ、䞊びに、第衚に瀺す組
成を有するが別の熱凊理およびたたは異なる
衚面仕䞊げをしたガラスセラミツク補品に぀いお
埗た同様のデヌタを調べるず、ZrO2のみを含有
する〜の組成を有するものの汚染抵抗もある
皋床蚱容できるものではあるが、〜の組成で
瀺されるようなアルミナを添加させたものは、ガ
ラスセラミツクの熱履歎たたはその衚面仕䞊の劂
䜕にかかわらず、䞀局汚染抵抗が向䞊しおいるこ
ずが認められる。第衚のデヌタが瀺すように、
そのような添加は、明床およびたたは圩床の
倉化を枛少させるのに最も効果的であるが、曎
に、倚くの堎合、色圩を安定化させるこずも認め
られる。 アルミナの添加によ぀お色圩が安定化される効
果を添付図面に瀺す。この図は、第衚のうちサ
ンプルおよびに぀いおのデヌタ、䞊びに、そ
れらのサンプルず同じ組成のものに぀いお最高枩
床においお時間でなく12時間で結晶化させたサ
ンプルに぀いおのコヌヒヌ汚染テストによる色圩
デヌタヌを瀺すものである。同図のグラフは、汚
染テストを行な぀た段階を暪軞ずし、瞊軞に、色
盞、明床および圩床をプロツトしおいる。テスト
を行な぀た段階ずは、汚染前(I)、汚染および掗滌
埌、䞊びに汚染および研磚埌
である。瀺されおいるデヌタは、第衚の䟋お
よびの組成物を、時間−HR HTず瀺
すおよび12時間12−HR HTず瀺すに亘り
その堎でin site結晶化させたものに぀いお
の倀である。 本発明に埓えば、Al2O3およびZrO2の双方を含
有する組成物に぀いお最良の汚染抵抗が埗られる
が、ZrO2のみを甚いおも汚染抵抗はかなり向䞊
する。䟋えば、重量で、玄60.5のSiO2、13.5
のK2O、14.5のMgOおよび11.5のMgF2から
成る組成物を第の組成物ずし、これらの成分を
同䞀比率で含み曎に2.5重量のZrO2から成る組
成物を第の組成物ずし、これらの組成物に同䞀
の熱凊理を斜した埌、コヌヒヌ汚染テストを䟛し
たずころ、第の組成物は軜い汚染を瀺したが、
第の組成物は䜕らの汚染を瀺さなか぀た。この
事実は、第の組成物の酞に察する耐久性95℃
でHCl溶液䞭に24時間浞した埌のサンプルの
重量損倱を枬定したが第の組成物のそれより
も僅かに䜎いこずにもかかわらず認められた。 䞊述のデヌタ等に基づき、熱結晶性ガラスおよ
び汚染抵抗を有する四珪化マむカガラスセラミツ
ク補品の奜たしい組成範囲が定められた。それら
は、特に歯科甚構造物を埗るのに奜適であり汚染
抵抗を増すためにZrO2およびAl2O3を含有するマ
むカ系の組成を基準ずするものである。すなわ
ち、該ガラスおよび該補品の組成は、バツチの成
分ずしお蚈算するず、重量パヌセントで、SiO2
箄45〜70、MgO8〜20、MgF28〜15、
K2O55〜20、Al2O30.05〜、ZrO20.5〜
、ZrO2Al2O3の党量〜、TiO20〜
、および、埓来から甚いられおいるガラス着色
剀の党量〜10から成る。着色剀ずしおは、酞
化マンガン、酞化鉄、酞化ニツケル、たたは、ガ
ラス着色に甚いられおいる埓来から既知の任意の
化合物もしくは元玠が含たれる。これらの組成物
䞭にゞルコニアを存圚させるこずは、酞に察する
耐久性を増すためのみならず、ガラスセラミツク
補品の半透明性を制埡し、たた、高い結晶化枩床
においおガラスセラミツクに再結晶が生じないよ
うにするために特に重芁である。 コヌヒヌおよび他の汚染媒䜓が四珪化マむカガ
ラスセラミツクに氞久的な汚染を䞎える機構は充
分には解぀おいないが、ガラスセラミツクの熱履
歎およびガラスセラミツクの結晶の性質や皋床の
ごずき組成以倖の因子もたた、材料の最終的な汚
染抵抗にある皋床圱響するものず考えられる。し
かしながら、そのような他の因子を䞀定にしお、
ある所定の組成に少量のゞルコニアおよびアルミ
ナを添加しおその耐久性を高めるこずにより、歯
科甚構造物および他の甚途に甚いられる四珪化フ
ルオロマむカ組成物を有意に改良するこずができ
る。
[Table] Examination of the data shown in the table, as well as similar data obtained for glass-ceramic products having the composition shown in the table, but with a different heat treatment and/or a different surface finish, shows that they contain only ZrO 2 Although the contamination resistance of compositions 1 to 3 is tolerable to some extent, those with alumina added as shown in compositions 4 to 6 have a high resistance to contamination, regardless of the thermal history of the glass ceramic or its surface finish. First, it is recognized that the contamination resistance is further improved. As the data in table shows,
Such additions are most effective in reducing variations in brightness and/or saturation, but are also often found to stabilize color. The color stabilizing effect of the addition of alumina is shown in the accompanying drawings. This figure shows the data for samples 1 and 4 in the table, as well as the color data from the coffee contamination test for samples of the same composition as those samples but crystallized for 12 hours instead of 6 hours at the highest temperature. This shows that. In the graph of the same figure, the horizontal axis represents the stage at which the contamination test was conducted, and the vertical axis plots hue, brightness, and saturation. The stages tested were: before contamination (I), after contamination and cleaning (S/R), and after contamination and polishing (S/B).
It is. The data shown shows that the compositions of Examples 1 and 4 of the table were crystallized in situ for 6 hours (designated 6-HR HT) and 12 hours (designated 12-HR HT). This is the value for the converted item. According to the present invention, the best stain resistance is obtained for compositions containing both Al 2 O 3 and ZrO 2 , although the stain resistance is significantly improved using only ZrO 2 . For example, by weight, approximately 60.5% SiO 2 , 13.5%
of K 2 O, 14.5% MgO and 11.5% MgF 2 as the first composition, and a composition containing these components in the same proportions and further comprising 2.5% by weight of ZrO 2 as the second composition. When these compositions were subjected to the same heat treatment and then subjected to a coffee stain test, the first composition showed light staining;
The second composition did not show any contamination. This fact reflects the acid resistance of the second composition (95°C
The weight loss of the sample after 24 hours of immersion in a 5% HCl solution was measured, albeit slightly lower than that of the first composition. Based on the above data and the like, preferred composition ranges for thermocrystalline glass and stain-resistant mica tetrasilicide glass ceramic products have been established. They are particularly suitable for obtaining dental structures and are based on mica-based compositions containing ZrO 2 and Al 2 O 3 to increase stain resistance. That is, the composition of the glass and the product, calculated as a batch component, is SiO 2
About 45-70%, MgO8-20%, MgF2 8-15%,
K2O5 5 ~20%, Al2O3 0.05 ~2%, ZrO2 0.5 ~7
%, total amount of ZrO 2 + Al 2 O 3 1-9%, TiO 2 0-7
% and the total amount of conventionally used glass colorants from 0 to 10%. Coloring agents include manganese oxide, iron oxide, nickel oxide, or any conventionally known compound or element used to color glass. The presence of zirconia in these compositions not only increases resistance to acids, but also controls the translucency of the glass-ceramic product and prevents recrystallization of the glass-ceramic at high crystallization temperatures. It is especially important to ensure that The mechanism by which coffee and other contaminating agents permanently stain tetrasilicated mica glass ceramics is not fully understood, but is dependent on factors other than composition, such as the thermal history of the glass ceramic and the nature and degree of crystallization of the glass ceramic. is also believed to have some influence on the final contamination resistance of the material. However, holding such other factors constant,
Tetrasilicated fluoromica compositions used in dental structures and other applications can be significantly improved by adding small amounts of zirconia and alumina to certain given compositions to increase their durability.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に埓うガラスセラミツク材の汚
染抵抗を瀺すグラフである。
The figure is a graph showing the stain resistance of a glass-ceramic material according to the invention.

Claims (1)

【特蚱請求の範囲】  バツチずしお蚈算するず重量パヌセントで、
SiO245〜70、MgO8〜20、MgF28〜15、
R2ORO5〜35、Al2O30.05〜、ZrO20.5〜
、Al2O3ZrO21〜、TiO20〜、お
よびガラス着色剀の党量〜10から成り、䜆
し、R2Oが〜25の範囲にあり䞔぀K2O0〜20
、Rb2O0〜23およびCs2O0〜25から成る矀
から遞ばれ、たた、ROが〜20の範囲にあり
䞔぀SrO、BaOおよびCdOから成る矀から遞ばれ
るようにしたガラスであ぀お、熱によ぀お結晶化
しお汚染抵抗の優れた四珪化フルオロマむカガラ
スセラミツク材に成り埗る熱結晶性ガラス。  バツチずしお蚈算するず重量パヌセントで、
SiO245〜70、MgO8〜20、MgF28〜15、
R2ORO5〜35、Al2O30.05〜、ZrO20.5〜
、Al2O3ZrO2の党量〜、TiO20〜
、およびガラス着色剀〜10から成り、䜆
し、R2Oが〜25の範囲にあり䞔぀K2O0〜20
、Rb2O0〜23およびCs2O0〜25から成る矀
から遞ばれ、たた、ROが〜20の範囲にあり
䞔぀SrO、BaOおよびCdOから成る矀から遞ばれ
るようにした組成を有し汚染抵抗の優れた四珪化
フルオロマむカガラスセラミツク補品。  歯科甚構造物の圢状を成す特蚱請求の範囲第
項蚘茉のガラスセラミツク補品。
[Claims] In weight percent when calculated as 1 batch,
SiO2 45-70%, MgO8-20%, MgF2 8-15%,
R2O +RO5~35%, Al2O3 0.05 ~2%, ZrO2 0.5 ~
7%, Al2O3 + ZrO2 1-9%, TiO2 0-7%, and a total amount of glass colorant 0-10%, provided that R2O is in the range of 5-25% and K 2 O0~20
%, Rb 2 O from 0 to 23% and Cs 2 O from 0 to 25%, and having an RO in the range from 0 to 20% and selected from the group consisting of SrO, BaO and CdO. Thermocrystalline glass which can be crystallized by heat to form a tetrasilicated fluoromica glass ceramic material having excellent contamination resistance. 2 When calculated as a batch, it is a weight percentage,
SiO2 45-70%, MgO8-20%, MgF2 8-15%,
R2O +RO5~35%, Al2O3 0.05 ~2%, ZrO2 0.5 ~
7%, total amount of Al 2 O 3 + ZrO 2 1-9%, TiO 2 0-7
%, and a glass colorant from 0 to 10%, provided that R2O is in the range of 5 to 25% and K2O is in the range of 0 to 20%.
%, Rb 2 O 0-23% and Cs 2 O 0-25%, with RO in the range 0-20% and selected from the group consisting of SrO, BaO and CdO. A tetrasilicified fluoromica glass ceramic product with excellent stain resistance. 3. The glass-ceramic product according to claim 2, which forms a dental structure.
JP57159417A 1982-09-13 1982-09-13 High foul resistance mica composition for dental goods, dental treatment or like Granted JPS5950046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159417A JPS5950046A (en) 1982-09-13 1982-09-13 High foul resistance mica composition for dental goods, dental treatment or like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159417A JPS5950046A (en) 1982-09-13 1982-09-13 High foul resistance mica composition for dental goods, dental treatment or like

Publications (2)

Publication Number Publication Date
JPS5950046A JPS5950046A (en) 1984-03-22
JPS6339534B2 true JPS6339534B2 (en) 1988-08-05

Family

ID=15693287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159417A Granted JPS5950046A (en) 1982-09-13 1982-09-13 High foul resistance mica composition for dental goods, dental treatment or like

Country Status (1)

Country Link
JP (1) JPS5950046A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306141A (en) * 1991-03-07 1993-11-19 Hoya Corp Glass ceramics and artificial crown using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573739A (en) * 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573739A (en) * 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic

Also Published As

Publication number Publication date
JPS5950046A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US11744685B2 (en) Lithium silicate materials
McLean The Science and Art of Dental Ceramics-Volume I: The Nature of Dental Ceramics and their Clinical Use
US7816291B2 (en) Lithium silicate materials
Yılmaz et al. The effect of repeated firings on the color change of dental ceramics using different glazing methods
CA2725854C (en) Integrated porcelain system for a dental prosthesis
US20190038387A1 (en) Integrated porcelain system for a dental prosthesis
US4652312A (en) Glass-ceramic compositions for dental constructs
Anusavice et al. Influence of framework design, contraction mismatch, and thermal history on porcelain checking in fixed partial dentures
US10603144B2 (en) Translucent veneering for a dental prosthesis formed by a press to metal process
US5127835A (en) Process for preparation of dental crown restoration and kit for use in carrying out said process
EP0083828B1 (en) Stain-resistant mica compositions and articles thereof in particular dental constructs
JPS6339534B2 (en)
JP6602966B2 (en) Manufacturing method of work piece with low translucency
CA1193619A (en) Stain-resistant mica compositions for dental products and processes or the like
JP5180547B2 (en) Glass for dental applications
JP2847084B2 (en) Low temperature baking stain material
RU2057492C1 (en) Metal ceramics dental prostheses
JPH05194130A (en) Coating material for dental prosthesis
JPH02231406A (en) Calcium phosphate stain material