JPS6339450A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JPS6339450A
JPS6339450A JP18302186A JP18302186A JPS6339450A JP S6339450 A JPS6339450 A JP S6339450A JP 18302186 A JP18302186 A JP 18302186A JP 18302186 A JP18302186 A JP 18302186A JP S6339450 A JPS6339450 A JP S6339450A
Authority
JP
Japan
Prior art keywords
magnet
pattern
motor
yoke
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18302186A
Other languages
Japanese (ja)
Inventor
Shigeru Ogino
滋 荻野
Noritsugu Hirata
平田 教次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18302186A priority Critical patent/JPS6339450A/en
Priority to US07/079,211 priority patent/US4801830A/en
Publication of JPS6339450A publication Critical patent/JPS6339450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Abstract

PURPOSE:To flatten a motor and to reduce a diameter thereof by forming the thin-film of a pattern for detecting the number of revolution consisting of a magnetoresistance element onto a yoke or a base oppositely faced to a rotor magnet. CONSTITUTION:A yoke 12, a substrate 14 for holding an MR element and a magnetizing booster coil 16 are fixed integrally through an insulating material, thus shaping a stator for a motor. An output shaft 20 is fitted vertically to a magnet 18. A rotor for the motor is formed by the output shaft 20, the magnet 18 and a rotor yoke 22. The thin-film of the magnetoresistance element is shaped to the substrate 14 for holding the MR element, faced oppositely to the rotor magnet 18 as a means for detecting a positional signal.

Description

【発明の詳細な説明】 〈発明の分野〉 本発明はブラシレスモータの位置検出又は回転検出に関
し、特に、前記各検出を磁気抵抗素子(以下MR素子と
称する)で行なうことに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to position detection or rotation detection of a brushless motor, and particularly to performing each of the above detections using a magnetoresistive element (hereinafter referred to as an MR element).

〈従来技術〉 (従来の技術の説明) 従来、速度検出手段としては、磁気誘動によるコイル発
電式や光学式によるものがある。磁気抵抗素子によるも
のとしては、通常第7図のように構成される。2. 4
. 7. 8はロータを構成し、ロータの外周部分に信
号マクネット2.が取り付けられ信号マグネットは外周
部に多極着磁され、MR素素子−所定の位置に固定され
る。MR素素子−より信号マグネットからの信号磁界を
検出し、回転速度を検出する。
<Prior Art> (Description of Prior Art) Conventionally, speed detection means include a coil power generation type using magnetic induction and an optical type. A device using a magnetoresistive element is usually constructed as shown in FIG. 2. 4
.. 7. 8 constitutes a rotor, and a signal magnet 2.8 is provided on the outer periphery of the rotor. is attached, the signal magnet is magnetized with multiple poles on the outer periphery, and is fixed at a predetermined position relative to the MR element. The MR element detects the signal magnetic field from the signal magnet and detects the rotation speed.

(従来技術の問題点) このような単一点検出ては、信号波長が短(なるに伴い
、機械精度(軸振れ、外周面振れ等)の影響が顕著に検
出レベルの変動を生む。又、短波長化により信号磁界の
強さも小さくなり、従ってMR素子からの出力も小さく
なる。近年のモータの小型化に伴うロータイナーシャの
低減、及び低速化に対応するためにFG周波数を高くす
る必要がある。そのためには上記例では、外周の着磁数
を多くすることになる。すなわち短波長化することにな
る。ところが、短波長化にも限度があり、又、機械精度
も誤差を小さく抑えることには限りがある。
(Problems with the prior art) In such single-point detection, as the signal wavelength becomes shorter, the influence of machine precision (axial runout, outer peripheral surface runout, etc.) causes noticeable fluctuations in the detection level. As the wavelength becomes shorter, the strength of the signal magnetic field becomes smaller, and therefore the output from the MR element also becomes smaller.The FG frequency needs to be increased in order to cope with the reduction in rotor inertia and the reduction in speed due to the miniaturization of motors in recent years. To do this, in the above example, the number of magnetizations on the outer periphery must be increased.In other words, the wavelength must be shortened.However, there is a limit to shortening the wavelength, and mechanical precision must also be used to keep errors small. There are limits to what you can do.

したがって上述した検出レベル変動、測定誤差を生じる
Therefore, the above-mentioned detection level fluctuation and measurement error occur.

回転位置検出手段としては、第7図のメインマグネット
4の漏れ磁束をホール素子により拾い磁極の極性を判別
し、モータのコイル5へ流す電流の切り換えを行ってい
る。このホール素子による切り換えが最も一般的である
が、メインマグネット4からの漏れ磁束を拾うために例
えば、ステータヨーク6に穴、もしくは切り欠きを設け
て、そこにホール素子を配置する。ところがこの穴、又
は切り欠きがモータのトルク変動を生ずる原因となり、
コギンク成分になる。又、機械精度が要求され、ホール
素子配置の位置の誤差がコイル5へ流す電流の切り換え
誤差になりトルク変動を生じ、メインマクネツl−4の
対向面に穴、及び切り欠きを設けることは、モータの回
転ムラを悪化させる原因になり、好ましくない。そこで
、ヨーク6にホール素子用の穴も切り欠きも設けず、ホ
ール素子をマクネットとステータヨーク6の間に配置す
るとき、小径、偏平モータの場合、問題になるのは素子
の大きさ、厚みである。又、第7図に示ずモータは3相
全波駆動であるが、3相コイルの切り換えを行うには通
常ホール素子を3個必要とする。この場合ホール素子か
らの配線が計8本となり、配線基板上スペースを取る。
The rotational position detecting means uses a Hall element to pick up leakage magnetic flux from the main magnet 4 shown in FIG. 7, determines the polarity of the magnetic pole, and switches the current flowing to the coil 5 of the motor. This switching using a Hall element is most common, but in order to pick up leakage magnetic flux from the main magnet 4, for example, a hole or notch is provided in the stator yoke 6, and the Hall element is placed there. However, this hole or notch causes the motor torque to fluctuate.
Becomes a cogging ingredient. In addition, mechanical precision is required, and errors in the position of the Hall element arrangement result in switching errors in the current flowing to the coil 5, causing torque fluctuations. This is undesirable as it may worsen uneven rotation. Therefore, when the yoke 6 does not have a hole or notch for the Hall element, and the Hall element is placed between the Macnet and the stator yoke 6, in the case of a small diameter, flat motor, the problem is the size of the element, It is thick. Further, although the motor not shown in FIG. 7 is a three-phase full-wave drive, three Hall elements are normally required to switch the three-phase coils. In this case, there are a total of eight wires from the Hall element, which takes up space on the wiring board.

〈本発明の課題〉 本発明は位置信号検出のための手段として磁気抵抗素子
をローターマグネットに対して対向する平面基盤上に薄
膜形成することにより前述従来の問題点を解決する。
<Problems to be solved by the present invention> The present invention solves the above-mentioned conventional problems by forming a magnetoresistive element as a means for detecting a position signal as a thin film on a flat substrate facing the rotor magnet.

更に本発明はブラシレスモーフの駆動制御として必要な
位置信号検出とともに、ローターの回転速度検出も前記
位置信号検出用MR素子と同一平面」−に薄膜形成する
ことを可能としたブラシレスモーフを提供する。
Furthermore, the present invention provides a brushless morph in which a thin film can be formed on the same plane as the position signal detection MR element for detecting the rotational speed of the rotor as well as detecting the position signal necessary for drive control of the brushless morph.

く課題達成のための手段〉 本発明は前記課題達成のために、ローターマグネットと
対向する平面基盤又はヨーク上に出力軸の中心を径中心
とした内径Raと外径Rbの同心円で囲まれた放射線上
に長さRb−Raで所定幅寸法のMR素子を固定し、該
MR素子のよ・下端を隣り合うMR素子と導線で直列に
接続してジグザグ状の円弧パターンを形成し、該ジグサ
グ状円弧パターンの両端をローターマグネット位置信号
取出端子に導くように構成する。
Means for Achieving the Object> In order to achieve the above object, the present invention provides a structure that is provided on a flat base or yoke facing the rotor magnet and surrounded by a concentric circle of an inner diameter Ra and an outer diameter Rb, with the center of the output shaft as the radial center. An MR element having a length Rb-Ra and a predetermined width is fixed on the radiation line, and the lower end of the MR element is connected in series with an adjacent MR element using a conductive wire to form a zigzag arc pattern. The structure is such that both ends of the circular arc pattern are guided to the rotor magnet position signal output terminal.

更に回転速度検出用MR素子を上記位置信号検出用MR
素子の内径又は外径位置に薄膜形成し、該MR素子の両
端を出力端子に継ぐようにし信号検出を行なうようにす
る。
Furthermore, the MR element for detecting the rotational speed is connected to the MR element for detecting the position signal.
A thin film is formed on the inner or outer diameter of the element, and both ends of the MR element are connected to output terminals for signal detection.

〈実施例の説明〉 第1図は本発明のモータの断面図。第2図はMR素子を
固定した平板の平面図。第3図はMR素子のジグザグパ
ターンの部分拡大図を示す。
<Description of Examples> FIG. 1 is a sectional view of the motor of the present invention. FIG. 2 is a plan view of a flat plate to which an MR element is fixed. FIG. 3 shows a partially enlarged view of the zigzag pattern of the MR element.

図において、10はモータを示し、12は磁性体材料か
らなるヨークで円板状を成す。14はMRR子保持用基
盤を示し第3図に図示するMR素素子科料蒸着等により
固着している。16は界磁コイルを示し、該コイルI6
は絶縁基板上に固着した銅泊を渦巻コイル状にエツチン
グ成形したコイル等を用いる。前記ヨーク12・MRR
子保持用基盤14・昇磁コイル16は絶縁剤を介して一
体的に固定されてモータのステーターを形成する。18
は第4図に図示する如くに着磁したマグネット(Mg)
で、該マクネットには出力軸20を垂直に嵌合する。2
2はローターヨークを示す。出力軸20・マグネット1
8・ローターヨーク22てモータのロータを形成し、前
記ステータ一部分と出力軸20は不図示の軸受部材によ
って回転嵌合している。
In the figure, 10 indicates a motor, and 12 is a yoke made of a magnetic material and has a disk shape. Reference numeral 14 denotes a base for holding the MRR element, and the MR element is fixed by vapor deposition or the like as shown in FIG. 16 indicates a field coil, and the coil I6
A coil or the like is used, which is formed by etching a copper foil fixed onto an insulating substrate into a spiral coil shape. Said yoke 12・MRR
The child holding base 14 and the magnetizing coil 16 are integrally fixed via an insulating material to form a stator of the motor. 18
is a magnet (Mg) magnetized as shown in Figure 4.
Then, the output shaft 20 is vertically fitted into the mucknet. 2
2 indicates the rotor yoke. Output shaft 20/magnet 1
8. The rotor yoke 22 forms the rotor of the motor, and a portion of the stator and the output shaft 20 are rotationally fitted together by a bearing member (not shown).

次に第2図及び第3図のMR素子の説明を行なう。Next, the MR element shown in FIGS. 2 and 3 will be explained.

プリント配線板等の基盤14の平面に絶縁処理を施こし
、第3図示のようにMRR子材料を蒸着固定する。
An insulation treatment is performed on the plane of a substrate 14 such as a printed wiring board, and an MRR element material is deposited and fixed as shown in the third figure.

14A・14.B・14Dは出力軸の中心Oを中心に1
20゜の角度に振り分けらられており、該14A・14
B・14r)の各MR素子は位置検出用素子を形成する
14A・14. B・14D is 1 centered around the center O of the output shaft.
It is distributed at an angle of 20 degrees, and the 14A and 14
Each MR element of B.14r) forms a position detection element.

各MR素子14A・14B・14Dは第3図に示すよう
に形成する。
Each MR element 14A, 14B, 14D is formed as shown in FIG.

即ち、各MR素子は径中心Oを出力軸の軸芯とした内径
側半径Raと外径側半径Rbとした同心円弧を描き、内
径円弧部のピッチをDl、外径円弧部のピッチをD2と
した間隔にして各MR素子14a、・14a2・・・・
・・を蒸着又はスパッタリング等の薄膜成形技術によっ
て前記基盤上に固定する。各MR素子は内径側及び外径
側をそれぞれ導線24A・24Bで直列に結ぶ。
That is, each MR element draws a concentric arc with the radial center O as the axis of the output shaft, the inner radius Ra and the outer radius Rb, and the pitch of the inner arc part is Dl and the pitch of the outer arc part is D2. Each MR element 14a, 14a2...
... is fixed on the substrate by a thin film forming technique such as vapor deposition or sputtering. The inner and outer diameter sides of each MR element are connected in series by conducting wires 24A and 24B, respectively.

他のMR素子14B及び14Dも前述14Aと同様に形
成する。14Pは円形基盤14より突出した信号取出端
子部を示し、上記端子部14Pには信号取出し用の端子
A−B−C−D−Eを設ける。端子Aは基盤上の最外側
の導体部26と継り、導体部26の他端は前述MR素子
14Aの内径側又は外径側の一部と接続する。MR素子
14Aの他端側は導線28と接続し、該導線28は接地
端子Eと継る。MR素子14Bの一端は取出端子Bと接
続し、MR素子14Bの他端は導線28及び接地端子E
と継る。MR素子14Dの一端14D、は導線28と接
続し、MR素子14Dの他端は取出用端子りと継る。
Other MR elements 14B and 14D are also formed in the same manner as 14A. Reference numeral 14P indicates a signal extraction terminal portion protruding from the circular base 14, and the terminal portion 14P is provided with terminals A-B-C-D-E for signal extraction. The terminal A is connected to the outermost conductor section 26 on the base, and the other end of the conductor section 26 is connected to a part of the inner diameter side or the outer diameter side of the MR element 14A. The other end of the MR element 14A is connected to a conductor 28, and the conductor 28 is connected to a ground terminal E. One end of the MR element 14B is connected to the extraction terminal B, and the other end of the MR element 14B is connected to the conductor 28 and the ground terminal E.
Continued. One end 14D of the MR element 14D is connected to the conducting wire 28, and the other end of the MR element 14D is connected to the extraction terminal.

以上の結線により各MR素子14A・14B・14Dは
それぞれ取出端子A−B−Dと接地端子E間に接続され
る。30は回転数検出用パターンを示し、該パターン2
8は前述位置検出用MR素子と同様に形成する。即ち、
径中心Oを中心として内径側半径RC1外径側半径RD
とし半径Rc−RDの同心円で囲まれた部分に円Oの中
心からの放射線上に長さくRD−Rc)て幅一定のパタ
ーンで各MR素子を固定し各MR素子の上端及び下端を
導線で直列に結ぶ。回転数検出用MR素子の一端は取出
用端子Cに接続し、他端は接地用端子Eに接続する。
Through the above wiring connections, each of the MR elements 14A, 14B, and 14D is connected between the output terminal A-B-D and the ground terminal E, respectively. 30 indicates a rotation speed detection pattern, and the pattern 2
Reference numeral 8 is formed in the same manner as the MR element for position detection described above. That is,
Centered on the radial center O, the inner radius RC1 and the outer radius RD
Then, fix each MR element in a pattern with a constant width in the area surrounded by concentric circles with a radius Rc-RD along the radial line from the center of the circle O, and connect the upper and lower ends of each MR element with conductive wires. Connect in series. One end of the rotational speed detection MR element is connected to a take-out terminal C, and the other end is connected to a grounding terminal E.

MRパターンの直列に接続された各々の素子の各抵抗を
MRkとここで呼ぶことにする。kは始点にある素子か
ら終点にある素子まで順に1. 2. 3゜・・・・・
とする。すなわち、始点から終点まで素子がβ個直列に
つながっているとき、順にMR,、MR2゜−・・・・
MRk、  MR、fl’とそれぞれの素子の抵抗値を
表わす。
Here, each resistance of each element connected in series in the MR pattern will be referred to as MRk. k is 1.k in order from the element at the start point to the element at the end point. 2. 3゜・・・・・・
shall be. In other words, when β elements are connected in series from the starting point to the ending point, MR,, MR2゜-...
MRk, MR, fl' represent the resistance value of each element.

第4図は本実施例のメインマグネット4のMRパターン
と対向する面を表わす図で、8極に着磁されN極、S極
が交互に配列される。マグネットの内径及び外径の中心
点Oは同じてあり、またMRパターンの中心点Oに一致
しているものとする。又、着磁数は8極に限定するもの
でない。
FIG. 4 is a diagram showing the surface of the main magnet 4 of this embodiment that faces the MR pattern, and is magnetized into eight poles, with N and S poles arranged alternately. It is assumed that the center point O of the inner diameter and outer diameter of the magnet is the same and coincides with the center point O of the MR pattern. Further, the number of magnetized poles is not limited to eight.

MR素子の比抵抗値をρとし、磁界Hによる変化率を1
00γ%とする。いま、メインマグネットからの信号磁
界Hを H(θ)=H(、sinθ (θはメインマグネットの電気角、Hoは定数)・・・
(1)と表わしたとき、ρをθの関数として、ρ(θ)
 −P、)−7Po” H,2* 5in2θ   ・
−(2)(’、’H,,Poは定数) で定義する。(2)を変形する。
The specific resistance value of the MR element is ρ, and the rate of change due to the magnetic field H is 1.
00γ%. Now, the signal magnetic field H from the main magnet is H(θ)=H(, sinθ (θ is the electrical angle of the main magnet, Ho is a constant)...
(1), where ρ is a function of θ, ρ(θ)
-P, )-7Po” H,2* 5in2θ ・
−(2) (', 'H,, Po are constants) Defined as follows. Transform (2).

/:1(0)”Po [(1−7H1”/2)+(7H
1”/2) CO32θ)= Pl + P2 cos
2θ        ・・・(3)(°p、−p。(1
7H1”/2)、P2=POγH1”/2)ここてMR
素子を各々!間隔で並べたとき、(3)よりθの関数と
して MRk(θ)=R,+R2cos2  io+(k−1
)A+  −(4)(’−’R1,R2は定数) と表わせる。
/:1(0)”Po [(1-7H1”/2)+(7H
1”/2) CO32θ) = Pl + P2 cos
2θ...(3)(°p, -p.(1
7H1”/2), P2=POγH1”/2) Here MR
Each element! When arranged at intervals, MRk(θ)=R,+R2cos2 io+(k-1
)A+ -(4) ('-'R1 and R2 are constants).

MRパターン30について説明する。The MR pattern 30 will be explained.

パターン30は全周にわたっている。メインマグネット
の着磁数を2Nとする。いま、0≦θくπて間隔lでm
個、MR素子を直列に接続する。この区間の総抵抗M 
R[o、 yrコ(θ)は(4)よりMR[oπ](θ
)=ΣiR、十R2cos2 (θ+(k−1) f)
]k=1 ・・・・・(5) (ただしm!≠nπ (n=0.1.2・・・・・・)
)と表わせる。区間[0,2Nπ)にわたり繰り返され
るものとすれば、 と表わせる。
The pattern 30 extends all the way around. The number of magnetized main magnets is 2N. Now, 0≦θkuπ and m with interval l
MR elements are connected in series. Total resistance M in this section
From (4), R[o, yr co(θ) is MR[oπ](θ
)=ΣiR, 1R2cos2 (θ+(k-1) f)
]k=1 ・・・・・・(5) (However, m!≠nπ (n=0.1.2・・・・・・)
) can be expressed as If it is repeated over the interval [0, 2Nπ), it can be expressed as follows.

以」−より、MRパターンの直列に接続された始点と終
点の間の抵抗値は、周期関数となり、この変化を調べる
ことにより回転位置検出できる。
Therefore, the resistance value between the series-connected starting point and ending point of the MR pattern becomes a periodic function, and the rotational position can be detected by examining this change.

MRパターン14 A 、  14 B 、  1.4
 Dについて説明する。
MR pattern 14A, 14B, 1.4
D will be explained.

MRパターンは(2n+])個直列に接続され14A。(2n+] MR patterns are connected in series and have a capacity of 14A.

14B、]、4Dの各パターンの(n+1)番目のMR
素子は互いに(−+mπ)だけメインマグネット(m=
o、I、2・) の電気角で位相がずれている。又、各パターンの各素子
は互いにメインマクネットの電気角でdの等間隔て直列
に接続する。したがって各パターンの総抵抗MRaEl
は MRall(θ)=(2n+1)R++R2cos2θ
+R2Σcos2 (θ+(k−1)d)k=1 ・・・・・・(7) 以」−より14A、]4B、+4Dのパターンは得られ
る波形の電気角て%πずれた信号波形となり(第5図参
照)メインマクネットの回転位置検出のための信号を得
られ、モータのコイル相の切り換えの信号に利用できる
14B, ], (n+1)th MR of each pattern of 4D
The elements are connected to each other by (-+mπ) the main magnet (m=
The phase is shifted by an electrical angle of o, I, 2・). Further, the elements of each pattern are connected in series to each other at equal intervals of d, which is the electrical angle of the main magnet. Therefore, the total resistance MRaEl of each pattern
is MRall(θ)=(2n+1)R++R2cos2θ
+R2Σcos2 (θ+(k-1)d)k=1 ......(7) Hence, the patterns of 14A, ]4B, +4D are signal waveforms that are shifted by %π in electrical angle from the obtained waveforms ( (See Figure 5) A signal for detecting the rotational position of the main magnet can be obtained and can be used as a signal for switching the motor coil phase.

第6図は本発明の他の実施例である。パターンの考え方
は全く同じて、特に回転速度検出用のパターンを使って
高い周波数の信号が必要である場合メインマクネットと
は別に出力軸20にマグネット32を固定し必要に応じ
た多極着磁をしてやり、回転速度検出用の信号を得るも
のである。
FIG. 6 shows another embodiment of the invention. The concept of the pattern is exactly the same, especially when a high frequency signal is required using a pattern for rotational speed detection, the magnet 32 is fixed to the output shaft 20 separately from the main magnet, and multi-pole magnetization is performed as necessary. This is done to obtain a signal for detecting the rotational speed.

34は出力軸20に固定した基盤、36は基盤34−ヒ
に蒸着固定した回転速度検出用パターンを示す。
Reference numeral 34 indicates a substrate fixed to the output shaft 20, and 36 indicates a rotational speed detection pattern fixed to the substrate 34-A by vapor deposition.

(6)以−に説明したように、パターンは単一の素子で
なくある範囲にわたり配列される積分型であるため、こ
れにより得られる信号はマグネットの着磁ムラや偏心、
外乱の影響を受けにくい高精度な信号を得ることがてき
る。特に本発明はヨーク又は平板上にMR素子を蒸着等
により薄膜形成することができるのてモータの偏平化、
小径化が実現でき、部品点数の削減にもつながりコスト
ダウンの可能性をもつ。
(6) As explained above, the pattern is not a single element but an integral type arranged over a certain range, so the signal obtained from this pattern is caused by uneven magnetization and eccentricity of the magnet.
It is possible to obtain highly accurate signals that are less susceptible to disturbances. In particular, the present invention allows the MR element to be formed as a thin film on the yoke or flat plate by vapor deposition, etc., so that the motor can be flattened.
It is possible to achieve smaller diameters, reduce the number of parts, and potentially reduce costs.

又、位置検出信号は3相で出力されるためモータの正転
・逆転の判別ができる。
Furthermore, since the position detection signal is output in three phases, it is possible to determine whether the motor is rotating forward or reverse.

なお、本実施例ではMRパターンの基盤はマグネットと
面対向の構成であったが、原理的には周対向のものであ
ってもよい。
In this embodiment, the base of the MR pattern was configured to face the magnet in a plane, but in principle, it may be in a configuration that faces the magnet in the circumferential direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の一実施例を示し、第1図は
本発明に係るMR素子を組み込んだモータ断面図。 第2図は基盤14. 、J:に配したMR素子のパター
ン平面図。 第3図は第2図のMR素子14A、  ]、4B、  
14D及び30の部分拡大図。 第4図はマグネット14の着磁方向を示す図。 第7図は従来技術の構成のモータ断面図。
1 to 5 show an embodiment of the present invention, and FIG. 1 is a sectional view of a motor incorporating an MR element according to the present invention. Figure 2 shows the base 14. , J: is a pattern plan view of an MR element arranged in. FIG. 3 shows the MR elements 14A, ], 4B, and
14D and 30 partially enlarged views. FIG. 4 is a diagram showing the magnetization direction of the magnet 14. FIG. 7 is a sectional view of a motor with a prior art configuration.

Claims (2)

【特許請求の範囲】[Claims] (1)ローターマグネットと昇磁コイルを出力軸に対し
て略垂直方向に向けて対向配置したブラシレスモータに
おいて、 前記ローターマグネットと対向するヨーク又は基盤上に
磁気抵抗素子からなる回転数検出用パターンを薄膜形成
したことを特徴とするブラシレスモータ。
(1) In a brushless motor in which a rotor magnet and a magnetizing coil are arranged facing each other in a direction substantially perpendicular to the output shaft, a rotation speed detection pattern made of a magnetoresistive element is provided on a yoke or a base that faces the rotor magnet. A brushless motor characterized by thin film formation.
(2)前記磁気抵抗素子は前記出力軸の中心を径中心と
して内径Ra、外径Rbとした同心円で囲まれた放射線
上の長さRb−Raとし、該磁気抵抗素子の内径側及び
外径側の端部をそれぞれ内径Ra及び外径Rbの導線で
接続したことを特徴とする特許請求の範囲第(1)項記
載のブラシレスモータ。
(2) The magnetoresistive element has a radial length Rb-Ra surrounded by a concentric circle with an inner diameter Ra and an outer diameter Rb with the center of the output shaft as the radial center, and the inner diameter side and the outer diameter of the magnetoresistive element are The brushless motor according to claim 1, wherein the side ends are connected by conductive wires having an inner diameter Ra and an outer diameter Rb, respectively.
JP18302186A 1986-08-04 1986-08-04 Brushless motor Pending JPS6339450A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18302186A JPS6339450A (en) 1986-08-04 1986-08-04 Brushless motor
US07/079,211 US4801830A (en) 1986-08-04 1987-07-29 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18302186A JPS6339450A (en) 1986-08-04 1986-08-04 Brushless motor

Publications (1)

Publication Number Publication Date
JPS6339450A true JPS6339450A (en) 1988-02-19

Family

ID=16128352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18302186A Pending JPS6339450A (en) 1986-08-04 1986-08-04 Brushless motor

Country Status (1)

Country Link
JP (1) JPS6339450A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044215A (en) * 1990-02-28 1991-09-03 Suzuki Motor Corporation Transmission with an ultra low speed range
JPH04117259U (en) * 1991-03-30 1992-10-20 スズキ株式会社 transmission shift lever
US5176040A (en) * 1990-01-31 1993-01-05 Suzuki Motor Corporation Transmission for 4-wheel driving
JPH0571595A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Transmission for vehicles
JPH0571596A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Transmission for vehicles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176040A (en) * 1990-01-31 1993-01-05 Suzuki Motor Corporation Transmission for 4-wheel driving
US5044215A (en) * 1990-02-28 1991-09-03 Suzuki Motor Corporation Transmission with an ultra low speed range
JPH04117259U (en) * 1991-03-30 1992-10-20 スズキ株式会社 transmission shift lever
JPH0571595A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Transmission for vehicles
JPH0571596A (en) * 1991-09-11 1993-03-23 Honda Motor Co Ltd Transmission for vehicles

Similar Documents

Publication Publication Date Title
US4763053A (en) Electronically commutated DC machine and use thereof
US4677332A (en) Electric motor having auxiliary portions distributed at a pitch which is an odd number sub-multiple of the pitch of active portions
US4801830A (en) Brushless motor
JP3458916B2 (en) Rotary transformer type resolver
EP0781980B1 (en) Pulse generator
KR19990077339A (en) Axial pole motor
JP2552824B2 (en) Motor
JP4269330B2 (en) Sheet coil type resolver
JPS6339450A (en) Brushless motor
JP2546636B2 (en) Motor
KR900005759B1 (en) Electrical motor with improved tachometer generator
JPH0515045B2 (en)
JP2950905B2 (en) Motor stator and motor
EP0184418B1 (en) D.c. rotary electrical machine
JPS583558A (en) Brushless motor
JPH08154352A (en) Small size motor
JP3314452B2 (en) Axial gap resolver
JPH0416613Y2 (en)
JPH0956131A (en) Coreless brushless motor
JPS60219952A (en) Motor
JPH0837770A (en) Two-phase motor
JPH0632780Y2 (en) Brushless motor parts
CA1256152A (en) Three-phase brushless motor
JP2002119022A (en) Brushless motor
JP6512936B2 (en) Brushless motor