JPS6339258B2 - - Google Patents

Info

Publication number
JPS6339258B2
JPS6339258B2 JP54106200A JP10620079A JPS6339258B2 JP S6339258 B2 JPS6339258 B2 JP S6339258B2 JP 54106200 A JP54106200 A JP 54106200A JP 10620079 A JP10620079 A JP 10620079A JP S6339258 B2 JPS6339258 B2 JP S6339258B2
Authority
JP
Japan
Prior art keywords
container
heat
fep
inner layer
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106200A
Other languages
Japanese (ja)
Other versions
JPS5632262A (en
Inventor
Takeo Oohira
Shoji Yokokoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP10620079A priority Critical patent/JPS5632262A/en
Publication of JPS5632262A publication Critical patent/JPS5632262A/en
Publication of JPS6339258B2 publication Critical patent/JPS6339258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 この発明は約200℃の高温から液体窒素温度約
−196℃の極低温で使用可能な耐熱耐極低温性容
器に関し、特に赤血球、血小板、血漿等の血液成
分及び細菌、酵素その他の生理学的溶液又は食
品、薬品等の冷凍保存用等に適したプラスチツク
容器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant and cryogenic-resistant container that can be used at temperatures ranging from a high temperature of about 200°C to an extremely low temperature of liquid nitrogen temperature of about -196°C. This invention relates to plastic containers suitable for frozen storage of enzymes and other physiological solutions, foods, drugs, etc.

従来、血液の保存方法として、ACD抗凝固剤
による血液保存法(ACD溶液を収容したガラス
びん又は軟質塩化ビニール製容器中で保存する方
法)、緩速凍結法(−80〜−85℃で軟質塩化ビニ
ル製容器中で保存する方法)等が知られている
が、前者の方法は保存中に血液の代謝が進行し、
血液の使用可能期間が採血後21日間と短く、後者
の方法は高濃度グリセリン等の凍害防止剤を添加
するため、使用時その洗浄によつて赤血球回収率
が低くなり、赤血球の質も数年で低下してしまう
などの欠点があり、いずれの方法も長期間の血液
保存法としては適していない。
Conventional blood preservation methods include blood preservation using an ACD anticoagulant (preservation in a glass bottle or soft vinyl chloride container containing ACD solution), slow freezing method (preservation in a soft vinyl chloride container at -80 to -85℃), Methods such as storage in containers made of vinyl chloride are known, but in the former method, blood metabolism progresses during storage,
Blood has a short usable period of 21 days after blood collection, and the latter method adds cryoprotectants such as high-concentration glycerin, which lowers the recovery rate of red blood cells due to washing during use, and the quality of red blood cells may deteriorate for several years. Both methods are unsuitable for long-term blood preservation, as they have drawbacks such as a decrease in blood pressure.

そのため、血液成分等の生理学的溶液を液体窒
素中で瞬間凍結し、−150〜−200℃程度の極低温
下で保存する急速凍結保存法が開発されている。
しかし、この場合、このような極低温に耐え、か
つ高温滅菌処理が可能で、しかも使用上簡便な保
存用容器が必要となる。たとえば従来の血液保存
用に使用されている軟質塩化ビニル製容器は−
196℃の極低温においては耐性を有せず、凍結時
において、僅かな衝撃によつても亀裂が生じてし
まう。また、アルミニウム、ステンレススチール
等の金属製の容器は加工上、容器の注出入口の封
緘・開封が困難となり、容器内に液体窒素が流入
してしまうおそれもあり、又不透明な為保存液の
状態を外から見ることができず、取り出す前に保
存液の良否が確認できないという問題があると共
に、製造費が高価となる。
Therefore, a rapid cryopreservation method has been developed in which physiological solutions such as blood components are flash frozen in liquid nitrogen and stored at extremely low temperatures of about -150 to -200°C.
However, in this case, a storage container is required that can withstand such extremely low temperatures, can be sterilized at high temperatures, and is easy to use. For example, the soft vinyl chloride containers used for conventional blood storage are
It is not resistant to extremely low temperatures of 196°C, and even the slightest impact will cause cracks when frozen. Additionally, due to the processing of metal containers such as aluminum and stainless steel, it is difficult to seal and open the spout opening of the container, which may cause liquid nitrogen to flow into the container, and the condition of the storage solution may be affected due to the opaque nature of the container. There is a problem in that the storage solution cannot be seen from the outside and the quality of the storage solution cannot be confirmed before taking it out, and the manufacturing cost is high.

耐高低温性の良好な高分子材料として弗素系樹
脂及びポリイミドが知られており、内層4弗化エ
チレン−6弗化プロピレン共重合体、外層ポリピ
ロメリツトイミド積層体から成る袋状容器が血液
の冷凍保存に使用されている例もある。特にポリ
イミドはほとんど融点を示さない耐熱性と液体へ
リウム温度(4〓)においても柔軟性を有する極
低温耐性を有しており、すぐれた材料と言える
が、ポリイミドは透明ではあるが褐色に強く着色
している為に内容物によつては外部からの透視が
不可能である。又ポリイミドは高分子材料の中で
も最も熱伝導率が低いものの一つで、保存内容液
の回収率・性能に影響する凍結スピードが遅くな
る事や、ヒートシール等の条件がきびしくなりシ
ール不良等のトラブルの原因ともなつている。又
ポリイミドは価格の点で非常に高価である。
Fluorine-based resins and polyimides are known as polymeric materials with good high and low temperature resistance, and a bag-like container consisting of an inner layer of tetrafluoroethylene-hexafluoropropylene copolymer and an outer layer of a polypyromellitimide laminate is used to store blood. In some cases, it is used for frozen preservation. In particular, polyimide has heat resistance with almost no melting point and cryogenic resistance with flexibility even at liquid helium temperatures (4〓), making it an excellent material.Although polyimide is transparent, it is resistant to browning. Because it is colored, some contents cannot be seen through from the outside. In addition, polyimide has one of the lowest thermal conductivities among polymer materials, which slows down the freezing speed, which affects the recovery rate and performance of stored liquid contents, and makes heat sealing conditions more severe, resulting in poor sealing. It is also a cause of trouble. Polyimide is also very expensive in terms of price.

この本発明は上記事情に鑑みてなされたもので
あつて、200℃程度の高温および−200℃程度の極
低温での使用に耐えることができ、また急速凍
結、急速解凍における急激な温度変化にも耐える
ことができ、かつ製造上簡単であり、収容する生
理学的溶液に対し悪影響を及ぼすおそれのなく、
透明性が良好で比較的安価な容器を提供すること
を目的とする。
This invention was made in view of the above circumstances, and can withstand use at high temperatures of about 200°C and extremely low temperatures of about -200°C, and can withstand rapid temperature changes during rapid freezing and rapid thawing. be able to tolerate the
The purpose is to provide a relatively inexpensive container with good transparency.

すなわち、この発明はエチレン−4弗化エチレ
ン共重合体又は4弗化エチレン−6弗化プロピレ
ン共重合体からなる内層と該内層の外側に積層さ
れたポリパラバン酸樹脂層とによつて形成されて
いることを特徴とする耐熱・耐極低温性容器を提
供するものである。
That is, the present invention comprises an inner layer made of an ethylene-tetrafluoroethylene copolymer or a tetrafluoroethylene-hexafluoropropylene copolymer, and a polyparabanic acid resin layer laminated on the outside of the inner layer. The present invention provides a heat-resistant and cryogenic-resistant container characterized by:

本発明で用いるポリパラバン酸樹脂は熱伝導率
がポリイミド樹脂の2〜3倍と高くポリイミドの
持つ欠点が少く、又淡い黄色に着色しているが
Haze値は50μフイルムで1.3〜1.4%とすぐれた透
明性を有し、ガラス転移点も290℃で耐熱性も良
好である。更にポリイミドと異なつてポリパラバ
ン酸樹脂は熱可塑性であり、真空成型等で賦形す
ることが可能であり、従来チユーブ等の注出・入
用口部の取付けが困難であつた点も改良されるな
ど利点が大である。又耐低温性の点ではポリイミ
ドと比べても実用上遜色なく−200℃においても
柔軟性を有し、本発明の目的とする約200℃ない
し−200℃の範囲での使用上全く問題ない。
The polyparabanic acid resin used in the present invention has a high thermal conductivity of 2 to 3 times that of polyimide resin, and has few of the drawbacks of polyimide, and is colored pale yellow.
The haze value is 1.3-1.4% for a 50μ film, which shows excellent transparency, and the glass transition point is 290°C, which means it has good heat resistance. Furthermore, unlike polyimide, polyparabanic acid resin is thermoplastic and can be shaped by vacuum molding, etc., which also improves the difficulty of attaching pouring and inlet ports such as tubes. There are many advantages. In terms of low temperature resistance, it is practically comparable to polyimide and has flexibility even at -200°C, so there is no problem in using it in the range of about 200°C to -200°C, which is the object of the present invention.

内層材としてのエチレン−4弗化エチレン共重
合体(ETFE)及び4弗化エチレン−6弗化プロ
ピレン共重合体(FEP)はそれぞれ265〜270℃
及び260〜280℃という適度な融点を有し、200℃
までの高温滅菌操作に充分適合すると共に、融点
以上300℃以下の条件で比較的容易に熱融着が可
能で、外層にポリパラバン酸フイルムを積層する
ことによつてバーシール法等通常の方法でシール
可能である。ETFE、FEPはそれぞれ−196℃の
極低温において柔軟で良好な物理的性質を保持
し、又毒性も少く衛生性も良く、化学的にも安定
で長期間赤血球等を保存したとしても内容物の変
質等悪影響はほとんど問題とならない。
Ethylene-tetrafluoroethylene copolymer (ETFE) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) as inner layer materials are heated at 265 to 270°C, respectively.
and has a moderate melting point of 260-280℃, 200℃
In addition to being fully compatible with high-temperature sterilization operations up to Can be sealed. ETFE and FEP are flexible and maintain good physical properties at extremely low temperatures of -196°C, are less toxic, have good hygiene, and are chemically stable, so even if red blood cells are stored for a long period of time, the contents will remain Adverse effects such as deterioration are hardly a problem.

この発明で用いられる内層ETFE又はFEPの厚
みはシール強度、耐ピンホール性の点から0.025
mm以上が好ましく、また、急速凍結を容易にする
ための観点から0.075mm以下とすることが好まし
い。又外層のポリパラバン酸は0.012〜0.075mmの
範囲で用いることが好ましいが、容器シール部の
安定性、強度および熱伝導性から内層ETFE又は
FEPは比較的厚くし、ポリパラバン酸樹脂外層
は比較的薄くするようにして積層し、かつ全体の
厚みが0.125mm以下が好ましく、0.100mm以下とす
ることが更に好ましい。
The thickness of the inner layer ETFE or FEP used in this invention is 0.025 from the viewpoint of seal strength and pinhole resistance.
mm or more, and from the viewpoint of facilitating quick freezing, it is preferably 0.075 mm or less. In addition, it is preferable to use polyparabanic acid in the outer layer in a range of 0.012 to 0.075 mm, but from the viewpoint of stability, strength, and thermal conductivity of the container seal, the inner layer is ETFE or
The FEP is preferably relatively thick and the polyparabanic acid resin outer layer is relatively thin, and the total thickness is preferably 0.125 mm or less, more preferably 0.100 mm or less.

ETFE及びFEPは単層のフイルムとして袋状に
することも可能であるが、急速冷凍に適する
0.100mm以下の厚みでは、ヒートシール又はイン
パルスシール時の熱と圧力によつてシール部分が
薄くなつて、この部分が切れ易くなりシール強度
が得られないおそれがあり、またシール時にフイ
ルムがシールバーへ付着して連続的に安定したシ
ール作業が困難となり、シール面も汚れるおそれ
がある。その為、この発明においてはこのETFE
又はFEPの外側にポリパラバン酸樹脂を積層す
ることによつて、これらの問題の解決した。
ETFE and FEP can be made into bags as a single layer film, but they are suitable for quick freezing.
If the thickness is less than 0.100 mm, the heat and pressure during heat sealing or impulse sealing will cause the sealing part to become thinner, making it easier to break and sealing strength may not be achieved.Also, the film may not touch the seal bar during sealing. This may make it difficult to perform a continuous and stable sealing operation, and the sealing surface may become dirty. Therefore, in this invention, this ETFE
Alternatively, these problems were solved by laminating polyparabanic acid resin on the outside of FEP.

ポリパラバン酸樹脂は本質的には熱可塑性樹脂
であるがポリイミドと大差ない著しい耐熱性を有
し、かつ非常に強じんな物性を有するから、シー
ル時にシールバーへ付着することなく、内層
ETFE又はFEPフイルムのシール部分の薄膜化を
最小限に抑えることが可能となり、さらにポリパ
ラバン酸樹脂は同じ厚さのETFE又はFEPフイル
ムの2〜8倍の引張降伏強度を有しているから、
容器全体の強度を著しく増大させることができ、
低温での手荒な扱いによつても容器は破損しない
ようにすることができる。
Although polyparabanic acid resin is essentially a thermoplastic resin, it has remarkable heat resistance comparable to that of polyimide, and has extremely strong physical properties, so it can be used without adhering to the seal bar during sealing, and can be used as an inner layer.
It is possible to minimize the thinning of the sealing part of ETFE or FEP film, and furthermore, polyparabanic acid resin has a tensile yield strength 2 to 8 times that of ETFE or FEP film of the same thickness.
The strength of the entire container can be significantly increased,
The container can be prevented from being damaged even by rough handling at low temperatures.

この様な積層体シートを作るにはETFE又は
FEPフイルム内層1と外層のポリパラバン酸フ
イルム2とをまず耐熱性、耐極低温性の反応硬化
型接着剤3たとえばポリエステル系、ポリウレタ
ン系あるいはエポキシ系接着剤を用いて接着すれ
ば良い。
To make such a laminate sheet, ETFE or
The FEP film inner layer 1 and the outer polyparabanic acid film 2 may be bonded together using a heat-resistant, cryogenic-resistant, reaction-curing adhesive 3, such as a polyester, polyurethane, or epoxy adhesive.

この積層体を用いて袋状容器とする場合、第1
図に示すように、この積層体のETFE又はFEPフ
イルム1面が相接するように重ね合わせ、かつ、
その間の適当個所に液体注入口、注出口4を介在
させた条件で周囲をヒートシールすれば袋状の容
器とすることができる。又第2図に示すように本
積層体を真空成型法又は圧空成形法を用いて10mm
程度の浅絞りを行いかつシール部の注入口、注出
口をチユーブ状に成形した後、ETFE又はFEPフ
イルム1面が相接するように重ね合わせて周囲を
ヒートシールすることにより、特別の注入口・注
出口なしで、液体の収納に便利な容器とすること
ができる。この容器は血液等を収容する場合、あ
らかじめ蒸気滅菌あるいは乾熱滅菌処理して使用
に供せられる。
When making a bag-like container using this laminate, the first
As shown in the figure, the ETFE or FEP films of this laminate are stacked so that one side is in contact with each other, and
A bag-like container can be obtained by heat-sealing the periphery with a liquid inlet and a spout 4 interposed at appropriate locations between them. In addition, as shown in Figure 2, this laminate is molded into a 10mm film using vacuum forming or pressure forming.
After performing shallow drawing and forming the inlet and outlet of the seal part into a tube shape, the ETFE or FEP film is stacked so that one side is in contact with the other and the surrounding area is heat-sealed to create a special inlet. - Can be used as a convenient container for storing liquids without a spout. When this container contains blood or the like, it is subjected to steam sterilization or dry heat sterilization before use.

実施例 1 片面をコロナ放電処理した厚さ0.05mmのエチレ
ン−4弗化エチレンコーポリマーフイルム(旭硝
子(株)製アフレツクス、4弗化エチレンがモル比で
40〜60%のもの)とポリエステルイソシアネート
系接着剤を3.5g/m2塗布した厚さ0.025mmのポリ
パラバン酸フイルム(Exxon Chemical社製
TRADLON)を貼り合せ、2層の積層フイルム
を得た。これにエチレン−4弗化エチレンコーポ
リマー製のチユーブ状注出・注入用口部を取りつ
け、ETFE層を内側にして熱封緘し、400ml用袋
状容器(実容量1000ml)を得た。この袋を180℃
−1時間乾熱滅菌した後、赤血球濃厚液400mlを
入れ、さらに29%グリセリン液400mlを加えた後、
口部を熱封緘し、激しく震盪して混合した後、ア
ルミ製ホルダーで袋体の厚みを20mmに規制しつつ
液体窒素槽に垂直に投入し、瞬間凍結させた。凍
結は約2分で完了した。凍結した血液バツグをホ
ルダーからはずして液体窒素保存槽に移し換え2
日間−150℃以下で保存した後、+40℃の温水中で
震蘯しつつ解凍した。これらの工程中急激な温度
変化及び衝撃を受けたにもかかわらず本発明によ
る袋体は破損、シール部の剥離、内容物の流出等
の問題はなく良好であつた。また−150℃で6ケ
月間保存後解凍したところ赤血球回収率も問題は
なかつた。さらに、この実施例で得た袋体につい
て急性毒性試験溶出物試験、発熱性物質試験、微
生物透過試験を所定の方法でおこなつた結果、全
く異常は認められなかつた。
Example 1 An ethylene-tetrafluoroethylene copolymer film with a thickness of 0.05 mm that had been subjected to corona discharge treatment on one side (Afrex manufactured by Asahi Glass Co., Ltd., with a molar ratio of tetrafluoroethylene
0.025 mm thick polyparabanic acid film coated with 3.5 g/ m2 of polyester isocyanate adhesive (manufactured by Exxon Chemical)
TRADLON) to obtain a two-layer laminated film. A tube-shaped spout/injection spout made of ethylene-tetrafluoroethylene copolymer was attached to this, and the container was heat-sealed with the ETFE layer inside to obtain a 400 ml bag-like container (actual volume: 1000 ml). This bag at 180℃
- After dry heat sterilization for 1 hour, add 400 ml of concentrated red blood cell solution, and then add 400 ml of 29% glycerin solution.
After heat-sealing the mouth and stirring vigorously to mix, the bag was placed vertically into a liquid nitrogen tank while regulating the thickness of the bag to 20 mm with an aluminum holder, and was flash frozen. Freezing was completed in about 2 minutes. Remove the frozen blood bag from the holder and transfer it to the liquid nitrogen storage tank 2
After being stored at -150°C or lower for several days, it was thawed in warm water at +40°C with shaking. Despite being subjected to rapid temperature changes and shocks during these steps, the bags according to the present invention were in good condition without any problems such as breakage, peeling of the seal, or leakage of the contents. Furthermore, when the sample was thawed after being stored at -150°C for 6 months, there was no problem in the recovery rate of red blood cells. Further, the bag obtained in this example was subjected to an acute toxicity test, a pyrogenic substance test, and a microbial permeation test using prescribed methods, and no abnormalities were observed.

実施例 2 片面を接着処理した厚さ0.051mmの4弗化エチ
レン−6弗化プロピレン共重合体フイルム
(DuPont社製テフロンFEP−Cタイプ)とポリ
エステルイソシアネート系接着剤を3.8g/m2
布した厚さ0.050mmのポリパラバン酸フイルムを
貼り合わせ2層の積層シートを得た。これを深さ
5mmでシール部を全周につば状に有し、シール部
の一部が半円状に絞られたトレイ状型を用いて
FEPを内側として圧空成形成し、得られたトレ
イ状成形シートをFEP面が相接するように重ね
合わせて周囲を熱封緘し容量400mlの容器を得た。
これに水:グリセリン=1:1の溶液を380ml充
填したのち、シール部に設けられていたチユーブ
状注入・出口部を熱緘し、これを液体窒素中での
瞬間凍結、40℃温水中での解凍を3回繰返し、サ
ーマルシヨツクテストをおこない、シール部の剥
離の発生及び破損の有無を調べた。
Example 2 A polyester isocyanate adhesive was applied at 3.8 g/m 2 to a 0.051 mm thick tetrafluoroethylene-hexafluoropropylene copolymer film (Teflon FEP-C type manufactured by DuPont) that had been adhesively treated on one side. A two-layer laminate sheet was obtained by laminating polyparabanic acid films with a thickness of 0.050 mm. This was made using a tray-shaped mold with a sealing part around the entire circumference in a brim shape with a depth of 5 mm, and a part of the sealing part being squeezed into a semicircular shape.
Pressure molding was performed with FEP on the inside, and the resulting tray-shaped molded sheets were stacked so that the FEP surfaces were in contact with each other, and the periphery was heat-sealed to obtain a container with a capacity of 400 ml.
After filling this with 380 ml of a solution of water:glycerin = 1:1, heat the tube-shaped injection/outlet part provided in the seal part, flash-freeze it in liquid nitrogen, and then immerse it in hot water at 40℃. Thawing was repeated three times and a thermal shock test was conducted to check for peeling and damage of the seal.

その結果凍結に至る時間はいずれも3分以内で
良好であり、かつシール部の剥離、容器の破損は
なく良好であつた。
As a result, the time required for freezing was within 3 minutes in all cases, and there was no peeling of the seal or damage to the container.

以上詳述した様に本発明に係わる耐熱耐極低温
性容器はヒートシール性が良好で製造上も簡単で
あり、しかも200℃の高温滅菌操作に耐えさらに
−200℃の極低温下でも柔軟性および十分な機械
的強度を有し、さらに毒性等の問題もないなど
種々の利点を有し、更に従来のポリイミド積層体
ではなし得なかつたアンプル状の成形等も可能に
なるなど生理学的溶液類の低温保存用容器として
好適なものである。
As detailed above, the heat-resistant and cryogenic-resistant container according to the present invention has good heat-sealability, is easy to manufacture, can withstand high-temperature sterilization operations at 200°C, and is flexible even at cryogenic temperatures of -200°C. It has various advantages such as sufficient mechanical strength and no problems such as toxicity, and it is also possible to form ampoules, which was not possible with conventional polyimide laminates. It is suitable as a container for low temperature storage.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は袋状容
器の断面図、第2図aは圧空成型した積層シート
の斜視図、bはaのシートを重ねてヒートシール
して得た容器の平面図、cはその断面図である。 1……内層、2……外層、3……接着剤、4…
…液体注出入口。
The drawings show embodiments of the present invention; FIG. 1 is a cross-sectional view of a bag-like container, FIG. 2 a is a perspective view of a pressure-molded laminated sheet, and FIG. is a plan view, and c is a cross-sectional view thereof. 1...Inner layer, 2...Outer layer, 3...Adhesive, 4...
...Liquid pouring inlet.

Claims (1)

【特許請求の範囲】 1 エチレン−4弗化エチレン共重合体又は4弗
化エチレン−6弗化プロピレン共重合体からなる
内層と、該内層の外側に積層されたポリパラバン
酸樹脂層とによつて形成されていることを特徴と
する耐熱耐極低温性容器。 2 内層が0.025〜0.075mmの厚みを有することを
特長とする前記第1項記載の容器。 3 外層が0.012〜0.075mmの厚みを有することを
特長とする前記第1項又は第2項記載の容器。
[Claims] 1. An inner layer made of an ethylene-tetrafluoroethylene copolymer or a tetrafluoroethylene-hexafluoropropylene copolymer, and a polyparabanic acid resin layer laminated on the outside of the inner layer. A heat-resistant and cryogenic-resistant container characterized by being formed. 2. The container according to item 1 above, wherein the inner layer has a thickness of 0.025 to 0.075 mm. 3. The container according to item 1 or 2 above, wherein the outer layer has a thickness of 0.012 to 0.075 mm.
JP10620079A 1979-08-21 1979-08-21 Heat resisting extremely low temperature resisting vessel Granted JPS5632262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10620079A JPS5632262A (en) 1979-08-21 1979-08-21 Heat resisting extremely low temperature resisting vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10620079A JPS5632262A (en) 1979-08-21 1979-08-21 Heat resisting extremely low temperature resisting vessel

Publications (2)

Publication Number Publication Date
JPS5632262A JPS5632262A (en) 1981-04-01
JPS6339258B2 true JPS6339258B2 (en) 1988-08-04

Family

ID=14427517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10620079A Granted JPS5632262A (en) 1979-08-21 1979-08-21 Heat resisting extremely low temperature resisting vessel

Country Status (1)

Country Link
JP (1) JPS5632262A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161956A (en) * 1982-03-15 1983-09-26 日本セメント株式会社 Manufacture of glassy fiber reinforced cement hardened body

Also Published As

Publication number Publication date
JPS5632262A (en) 1981-04-01

Similar Documents

Publication Publication Date Title
EP0098312B1 (en) A container resistant to extremely low temperatures
US4654240A (en) Laminate film for flexible containers
US4131200A (en) Thermoplastic blood bag
EP1864641B1 (en) Package of freeze storage container and process for producing the same
EP0920850B1 (en) Cryopreservation bag and method of forming such a bag
JPS58192551A (en) Package container for preserving medical container
JP4848755B2 (en) Cryopreservation container, its production method and biological sample cryopreservation method
BE898469A (en) Heat sterilizable polyolefin compositions and articles made therefrom.
FR2537981A1 (en) HEAT STERILIZABLE POLYOLEFIN COMPOSITIONS AND ARTICLES MADE THEREFROM
DE1611928C3 (en) Packaging for freezing blood
JPS6339258B2 (en)
JPS6159738B2 (en)
JP2008195443A (en) Frozen storage container
JP3716878B2 (en) Plastic film for medical liquid containers
JPS5950342B2 (en) Freezer storage bag
JPS6049429B2 (en) Cryogenic containers
JPS6039385B2 (en) Infusion/blood transfusion bag
JPH074407B2 (en) Bag-shaped container with cryogenic resistance
JPS6136941B2 (en)
JPS6226784B2 (en)
JP3941091B2 (en) Cryopreservation method
JPS6136942B2 (en)
JPH01256962A (en) Manufacture of baggy vessel with low-temperature resistance and blood gas as well as laminated material
JPS644465B2 (en)
JPS643500B2 (en)