JPS6339008B2 - - Google Patents

Info

Publication number
JPS6339008B2
JPS6339008B2 JP57502399A JP50239982A JPS6339008B2 JP S6339008 B2 JPS6339008 B2 JP S6339008B2 JP 57502399 A JP57502399 A JP 57502399A JP 50239982 A JP50239982 A JP 50239982A JP S6339008 B2 JPS6339008 B2 JP S6339008B2
Authority
JP
Japan
Prior art keywords
vinyl ester
resin
viscosity
isocyanate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57502399A
Other languages
Japanese (ja)
Other versions
JPS59500969A (en
Inventor
Roorensu Buruusu Baaton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of JPS59500969A publication Critical patent/JPS59500969A/en
Publication of JPS6339008B2 publication Critical patent/JPS6339008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/6705Unsaturated polymers not provided for in the groups C08G18/671, C08G18/6795, C08G18/68 or C08G18/69
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

請求の範囲 1 ビニルエステル樹脂の第二級ヒドロキシル基
と第二級ヒドロキシルに基き0.05〜1当量のイソ
シアナトエチルメタクリレートとを反応させるこ
とからなる減少した粘度を有するビニルエステル
樹脂を製造する方法。 2 ビニルエステル樹脂がポリグリシジルエーテ
ルと不飽和モノカルボン酸とのジエステルであ
る、特許請求の範囲第1項記載の方法。 3 ビニルエステル樹脂がビスフエノールAのジ
グリシジルエーテルとモノカルボン酸とのジエス
テルである、特許請求の範囲第1項記載の方法。 4 モノカルボン酸がメタクリル酸である、特許
請求の範囲第2項かあるいは第3項のいずれか記
載の方法。 5 錫塩が触媒として使用される特許請求の範囲
第1項記載の方法。 明細書 本発明は減少した粘度を有するビニルエステル
樹脂の製造方法に関する。 数多くの樹脂の応用分野において、最小の加熱
キユア後に、粘度が低いことおよび物性が良好で
あることが必要である。しかし、これらの目的と
するところは全く相反することがしばしばであ
る。ビニルエステル樹脂のようなポリグリシジル
エーテルベースのポリマー系は、その分子構造に
ヒドロキシル基を有している。これらのヒドロキ
シル基はそのビニルエステル樹脂の粘度を相当な
程度にまで増加させる。一般にそのような高粘度
を持つたビニルエステル樹脂組成物を使用して樹
脂加工を行なう場合、又その樹脂組成物を使用し
て成形を実施しようとする場合、50%以下のスチ
レン又は他のモノビニルモノマー等で稀釈を必要
とする。このような稀釈剤の使用は製造コストの
上昇につながる。ビニルエステル樹脂組成物の粘
度を減少させるか又は、所望の粘度を得るために
必要な稀釈剤の量を減らし、そして同時にビニル
エステル樹脂本来の性質を保持することが特に望
ましい。 このようなビニルエステル樹脂が粘度が高いと
いう欠点は、第二級ヒドロキシル基を有するビニ
ルエステル樹脂とその第二級ヒドロキシル基に基
づいて0.05〜1当量のイソシアナトエチルメタク
リレートとを反応させることによつて解決できる
ことを本発明は発見した。本発明はこれらの発見
に基づいてなされた。本発明で得られた反応生成
物(粘度の減少したビニルエステル樹脂)は未硬
化の場合、相当する未改質樹脂より粘度が低い
が、硬化した場合、架橋密度が大きくなることに
より加熱ひずみ温度および硬度が向上し、更に水
および溶剤の吸収性が低下する。 反応生成物をつくる上で有用なビニルエステル
樹脂は、ポリマー鎖に一つより多くのセカンダリ
ーヒドロキシル基を有することが必要である。 アメリカ特許No.3066112およびNo.3179623で、
Bowenは、アクリル酸あるいはメタクリル酸を
ポリエポキシドとのエステル化による、ビニルエ
ステル樹脂の製造法について記載している。又、
その特許においてグリシジルアクリレートあるい
はメタクリレートをビスフエノールのナトリウム
塩と反応させる別な方法について記載されてい
る。エポキシノボラツクによるビニルエステル樹
脂については、アメリカ特許No.3301743で開示さ
れている。 ここで使用されるビニルエステル樹脂はいかな
るグリシジルポリエーテルからもつくることがで
きる。有用なグリシジルエーテルは多価のアルコ
ールおよびフエノールのグリシジルエーテルであ
る。このようなグリシジルポリエーテルは市販さ
れているが、また少くとも2モルのエピハロヒド
リンあるいは、グリセロールジハロヒドリンと、
1モルの多価アルコールあるいはフエノールと
を、ハロヒドリン中のハロゲンと反応するために
充分な量の苛性ソーダを用いて、反応させること
により容易につくることができる。この生成物の
特徴は分子あたり一つより多くのグリシジルエー
テル基を有するところにある。 ビニルエステル樹脂をつくるための有用な酸は
エチレン性不飽和モノカルボン酸であり、アクリ
ル酸、メタクリル酸、ケイ皮酸およびそれらのハ
ロゲン化異性体などである。またアメリカ特許No.
3367992に記載のようなジカルボン酸のヒドロキ
シアルキルアクリレートあるいはメタクリレート
のハーフエステルも含まれ、好ましくは、そのヒ
ドロキシアルキル基の炭素原子は2〜6である。 グリシジルエーテルと酸との反応は、一般に、
ほぼ化学量論当量で、例えば三塩化クロムのよう
な三価クロム塩あるいは、例えばトリス(N,N
−ジメチルアミノメチルフエノール)のようなタ
ーシヤリーアミンなどの、触媒の存在下、加熱す
ることによりおこなわれる。通常、急激な重合を
防止するためビニル重合禁止剤が添加されてい
る。 ビニルエステル樹脂を使用する場合、その液状
の未硬化樹脂の粘度を、反応性溶剤、通常は共重
合性モノマーで調整することは一般に行われてい
る。このために使用される適当なモノマーは、ス
チレンおよびビニルトルエンのようなビニル芳香
族モノマーおよび、低級アルカノールのアクリレ
ートあるいはメタクリレートエステルである。こ
の反応性溶剤の量は樹脂/モノマー全量につき60
重量%である。 イソシアネートエチルメタクリレートの使用量
は、ヒドロキシル当量あたり0.05〜1.00当量であ
る。0.05当量より少ない場合、硬化生成物にほと
んど変化が認められない。1.0当量より多い場合、
過剰のイソシアネートは反応せず、かえつてキユ
ア生成物の所望の性質を低下させる。 イソシアネートと第二級ヒドロキシルとの反応
は公知の方法により実施される。典型的な反応に
おいては、ポリマーあるいは、ポリマー先駆体、
反応性溶媒およびスズオクトエートのような触媒
を充分に混合した後、ゆつくりと、例えば50℃ま
で加温する。ついで撹拌しながらイソシアネート
を添加する。反応の完了を示す。すなわち赤外ス
ペクトールによりイソシアネートバンドがなくな
る迄、加熱しつづける。 イソシアネート生成物の架橋度は、いくつから
の方法により調整することができる。すなわちポ
リマーあるいは先駆体の不飽和度を変化させるこ
とができるし、また、原料のヒドロキシル数を変
えることもできる。不飽和イソシアネートの量を
所望の架橋度となるような量に調整することも可
能である。更にいくらかのヒドロキシル基を飽和
脂肪族イソシアネートと反応させることができ
る。 生成物は改良された特性、特に、加熱ひずみ温
度、硬度および低溶剤吸収性を有している。生成
物はストレート樹脂としての用途および強化プラ
スチツクとしての用途がある。特記すべき用途に
は、フアイバーグラス強化フイラメント曲げパイ
プ、電導性ラミネート、電気絶縁ワニスおよび被
覆物、バルクおよびシート状成形コンパウンド、
および耐食性の容器および容器用ラミネート等が
ある。 本発明の概念は以下の実施例により更に明確に
説明されるが文中のすべての部および%は重量に
よるものである。 実施例 1 トリス(4−グリシジルフエニル)メタンのト
リメタクリレート100部、スチレン25部およびス
ズオクトエートを混合し、50℃まで加熱した。つ
いで混合物へ撹拌しながらイソシアネートエチル
メタクリレート(IEM)47.02部をゆつくりと添
加した後、60℃まで加熱した。更に加熱、撹拌し
つづけIRスペクトルのイソシアネートバンド、
2280cm-1が消失することにより反応を終了した。
IEMの使用量はヒドロキシル当量あたり0.7当量
であつた。 この生成物へスチレン11.75gを添加した。この
樹脂を樹脂100部あたり1.5部のベンゾイルパーオ
キシドと共に、90℃×2時間、165℃×4時間、
200℃×16時間の温度スケジユールでキユアした。 比較のために、トリメタクリレートと20%のス
チレンとを同じ方法でキユアした。サンプルは標
準の方法によりテストした。その結果はつぎの通
りである。
Claim 1. A method for producing a vinyl ester resin with reduced viscosity comprising reacting the secondary hydroxyl groups of the vinyl ester resin with 0.05 to 1 equivalent of isocyanatoethyl methacrylate based on the secondary hydroxyl. 2. The method according to claim 1, wherein the vinyl ester resin is a diester of a polyglycidyl ether and an unsaturated monocarboxylic acid. 3. The method according to claim 1, wherein the vinyl ester resin is a diester of diglycidyl ether of bisphenol A and a monocarboxylic acid. 4. The method according to claim 2 or 3, wherein the monocarboxylic acid is methacrylic acid. 5. Process according to claim 1, in which a tin salt is used as a catalyst. Description The present invention relates to a method for producing vinyl ester resins having reduced viscosity. In many resin applications, low viscosity and good physical properties are required after minimal heat curing. However, these objectives are often completely contradictory. Polyglycidyl ether-based polymer systems, such as vinyl ester resins, have hydroxyl groups in their molecular structure. These hydroxyl groups increase the viscosity of the vinyl ester resin to a considerable extent. Generally, when performing resin processing using such a high viscosity vinyl ester resin composition, or when attempting to perform molding using such a resin composition, 50% or less of styrene or other monovinyl Requires dilution with monomer etc. The use of such diluents leads to increased manufacturing costs. It is particularly desirable to reduce the viscosity of vinyl ester resin compositions, or to reduce the amount of diluent needed to obtain a desired viscosity, while at the same time preserving the original properties of the vinyl ester resin. The drawback of high viscosity of such vinyl ester resins can be solved by reacting a vinyl ester resin with secondary hydroxyl groups with 0.05 to 1 equivalent of isocyanatoethyl methacrylate based on the secondary hydroxyl groups. The present invention has discovered that this problem can be solved. The present invention was made based on these discoveries. The reaction product (vinyl ester resin with reduced viscosity) obtained in the present invention has a lower viscosity than the corresponding unmodified resin when uncured, but when cured, the crosslinking density increases and the heat strain temperature increases. and hardness, as well as reduced water and solvent absorption. Vinyl ester resins useful in making reaction products need to have more than one secondary hydroxyl group on the polymer chain. In US Patent No.3066112 and No.3179623,
Bowen describes the production of vinyl ester resins by esterification of acrylic or methacrylic acid with polyepoxides. or,
In that patent, another method is described in which glycidyl acrylate or methacrylate is reacted with the sodium salt of bisphenol. Vinyl ester resins based on epoxy novolacs are disclosed in US Pat. No. 3,301,743. The vinyl ester resin used herein can be made from any glycidyl polyether. Useful glycidyl ethers are those of polyhydric alcohols and phenols. Such glycidyl polyethers are commercially available and may also contain at least 2 moles of epihalohydrin or glycerol dihalohydrin;
It can be easily prepared by reacting 1 mole of polyhydric alcohol or phenol with a sufficient amount of caustic soda to react with the halogen in the halohydrin. This product is characterized by more than one glycidyl ether group per molecule. Useful acids for making vinyl ester resins are ethylenically unsaturated monocarboxylic acids, such as acrylic acid, methacrylic acid, cinnamic acid and their halogenated isomers. Also, US Patent No.
Also included are half esters of hydroxyalkyl acrylates or methacrylates of dicarboxylic acids such as those described in US Pat. The reaction between glycidyl ether and acid is generally
Trivalent chromium salts, such as chromium trichloride, or trivalent chromium salts, such as trichloride, or trivalent chromium salts, such as tris(N,N
-dimethylaminomethylphenol) by heating in the presence of a catalyst, such as a tertiary amine such as -dimethylaminomethylphenol). Usually, a vinyl polymerization inhibitor is added to prevent rapid polymerization. When using vinyl ester resins, it is common practice to adjust the viscosity of the liquid uncured resin with a reactive solvent, usually a copolymerizable monomer. Suitable monomers used for this purpose are vinyl aromatic monomers, such as styrene and vinyltoluene, and acrylate or methacrylate esters of lower alkanols. The amount of this reactive solvent is 60% of the total amount of resin/monomer.
Weight%. The amount of isocyanate ethyl methacrylate used is 0.05 to 1.00 equivalents per hydroxyl equivalent. When the amount is less than 0.05 equivalent, almost no change is observed in the cured product. If it is more than 1.0 equivalent,
Excess isocyanate does not react and instead reduces the desired properties of the cured product. The reaction between isocyanate and secondary hydroxyl is carried out by known methods. In a typical reaction, a polymer or polymer precursor,
After the reactive solvent and catalyst such as tin octoate are thoroughly mixed, the mixture is slowly warmed to, for example, 50°C. The isocyanate is then added while stirring. Indicates completion of the reaction. That is, heating is continued until the isocyanate band disappears from the infrared spectrum. The degree of crosslinking of the isocyanate product can be adjusted in several ways. That is, the degree of unsaturation of the polymer or precursor can be varied, and the number of hydroxyls in the raw material can also be varied. It is also possible to adjust the amount of unsaturated isocyanate to provide the desired degree of crosslinking. Additionally, some of the hydroxyl groups can be reacted with saturated aliphatic isocyanates. The products have improved properties, in particular heat strain temperature, hardness and low solvent absorption. The products have applications as straight resins and as reinforced plastics. Notable applications include fiberglass reinforced filament bent pipes, electrically conductive laminates, electrically insulating varnishes and coatings, bulk and sheet molding compounds,
and corrosion-resistant containers and container laminates. The concept of the invention is more clearly illustrated by the following examples, in which all parts and percentages are by weight. Example 1 100 parts of trimethacrylate of tris(4-glycidylphenyl)methane, 25 parts of styrene and tin octoate were mixed and heated to 50°C. Then, 47.02 parts of isocyanate ethyl methacrylate (IEM) was slowly added to the mixture while stirring, and the mixture was heated to 60°C. Further heating and stirring continue to detect the isocyanate band in the IR spectrum.
The reaction was terminated when 2280 cm -1 disappeared.
The amount of IEM used was 0.7 equivalents per hydroxyl equivalent. To this product was added 11.75 g of styrene. This resin was mixed with 1.5 parts of benzoyl peroxide per 100 parts of resin at 90°C for 2 hours and at 165°C for 4 hours.
Curing was carried out using a temperature schedule of 200°C for 16 hours. For comparison, trimethacrylate and 20% styrene were cured in the same manner. Samples were tested using standard methods. The results are as follows.

【表】 上述の樹脂の他のサンプルをベンゾイルパーオ
キシド1.5部と、90℃×2時間、165℃×4時間で
キユアした。未改質樹脂の加熱ひずみ温度は203
℃であり、IEM改質樹脂のそれは230℃より高か
つた。バルコール硬度は、前者が42、後者が50で
あつた。 実施例 2 ポリマーとしてビスフエノールAのジグリシジ
ルエーテルのジメタクリレート、および反応性溶
剤として、ビニルトルエンを用いて、実施例1と
同じ方法および化学量論量により、樹脂をつくつ
た。 樹脂をその樹脂100部あたり1.5部のベンゾイル
パーオキシドと150℃×30分間キユアした。サン
プルを標準方法によりテストした結果をつぎに示
す。
[Table] Other samples of the above resins were cured with 1.5 parts of benzoyl peroxide at 90°C for 2 hours and 165°C for 4 hours. The heating strain temperature of unmodified resin is 203
℃, and that of the IEM modified resin was higher than 230℃. The Valcor hardness was 42 for the former and 50 for the latter. Example 2 A resin was prepared by the same method and stoichiometry as in Example 1 using dimethacrylate of the diglycidyl ether of bisphenol A as the polymer and vinyltoluene as the reactive solvent. The resin was cured with 1.5 parts of benzoyl peroxide per 100 parts of resin at 150°C for 30 minutes. The samples were tested using standard methods and the results are shown below.

【表】【table】
JP57502399A 1982-07-02 1982-07-02 Method for producing vinyl ester resin with reduced viscosity Granted JPS59500969A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1982/000895 WO1984000173A1 (en) 1982-07-02 1982-07-02 Urethane modified vinyl ester resins having secondary hydroxyl groups

Publications (2)

Publication Number Publication Date
JPS59500969A JPS59500969A (en) 1984-05-31
JPS6339008B2 true JPS6339008B2 (en) 1988-08-03

Family

ID=22168074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57502399A Granted JPS59500969A (en) 1982-07-02 1982-07-02 Method for producing vinyl ester resin with reduced viscosity

Country Status (4)

Country Link
EP (1) EP0112824A4 (en)
JP (1) JPS59500969A (en)
BR (1) BR8208087A (en)
WO (1) WO1984000173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459405A (en) * 1990-06-29 1992-02-26 Nissan Motor Co Ltd Suspension device for vehicle
WO2017195607A1 (en) * 2016-05-13 2017-11-16 三菱ケミカル株式会社 Molding material, sheet molding compound and fiber-reinforced composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872705B2 (en) * 2007-07-29 2011-01-18 Cree, Inc. LED backlight system for LCD displays
EP3441409B1 (en) * 2016-04-06 2020-06-03 Mitsubishi Chemical Corporation Thermosetting resin composition, sheet-molding compound and production method therefor, and fiber-reinforced composite material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503209A (en) * 1948-01-30 1950-04-04 American Cyanamid Co Unsaturated alkyd reacted with unsaturated isocyanate
US2958704A (en) * 1958-09-02 1960-11-01 Goodrich Co B F Alkenyl isocyanate-substituted carbamates
US3118922A (en) * 1959-03-03 1964-01-21 Bayer Ag Method of preparing organic isocyanates
US3373221A (en) * 1964-11-04 1968-03-12 Shell Oil Co Reaction products of unsaturated esters of polyepoxides and unsaturated carboxylic acids, and polyisocyanates
US3509234A (en) * 1965-08-13 1970-04-28 Ford Motor Co Radiation curable paint binders containing vinyl monomers and a hydroxylated polymer reacted with a polyisocyanate and an hydroxyl alkyl acrylate
GB1143754A (en) * 1965-11-19
US3478126A (en) * 1967-05-26 1969-11-11 Scm Corp Urethane modified epoxy ester resin compositions and products
JPS4831742B1 (en) * 1968-03-01 1973-10-01
NL7117831A (en) * 1970-12-31 1972-07-04 Basf Ag
AU451354B2 (en) * 1971-01-06 1974-08-08 Inmont Corp. "actinic radiation curing compositions and method of coating and printing using same"
US3776889A (en) * 1971-01-07 1973-12-04 Powers Chemco Inc Allyl carbamate esters of hydroxy-containing polymers
US4004997A (en) * 1972-01-30 1977-01-25 Seiko Shimada Process of curing a polymerizable composition containing a magnetized powered ferromagnetic material with radioactive rays
JPS5422124B2 (en) * 1975-01-22 1979-08-04
AT336148B (en) * 1975-05-07 1977-04-25 Vianova Kunstharz Ag PROCESS FOR THE PRODUCTION OF IMPROVED ELECTRON RADIATION HARDENABLE COATING COMPOUNDS
DE2557408C2 (en) * 1975-12-19 1983-08-25 Bayer Ag, 5090 Leverkusen Process for the production of a crosslinkable urethane resin containing acryloyl and / or methacryloyl groups and carboxyl groups which is soluble in organic solvents and its use
FR2361450A1 (en) * 1976-08-13 1978-03-10 Basf Ag HARDENABLE COATING MATERIAL
US4233425A (en) * 1978-11-15 1980-11-11 The Dow Chemical Company Addition polymerizable polyethers having pendant ethylenically unsaturated urethane groups
US4320221A (en) * 1980-12-12 1982-03-16 The Dow Chemical Company Addition polymerizable isocyanate-polyol anaerobic adhesives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459405A (en) * 1990-06-29 1992-02-26 Nissan Motor Co Ltd Suspension device for vehicle
WO2017195607A1 (en) * 2016-05-13 2017-11-16 三菱ケミカル株式会社 Molding material, sheet molding compound and fiber-reinforced composite material
JPWO2017195607A1 (en) * 2016-05-13 2018-06-21 三菱ケミカル株式会社 Molding materials, sheet molding compounds and fiber reinforced composite materials

Also Published As

Publication number Publication date
WO1984000173A1 (en) 1984-01-19
EP0112824A4 (en) 1984-11-05
JPS59500969A (en) 1984-05-31
BR8208087A (en) 1984-07-17
EP0112824A1 (en) 1984-07-11

Similar Documents

Publication Publication Date Title
US3377406A (en) Process of esterification of polyepoxides with ethylenically unsaturated monocarboxylic acids in the presence of onium salts of inorganic acids
EP0015029B1 (en) Vinyl ester resin composition thickened by a group ii metal oxide or hydroxide
US2691007A (en) Unsaturated acidic polyester ethoxyline resinous compositions
US4383091A (en) Urethane modified polymers having hydroxyl groups
JPS60197719A (en) Production of curable resin
US2503726A (en) Polymeric polyhydric alcohols
US4347343A (en) Thickened vinyl ester resin compositions
CN1218484A (en) Process for making high-performance polytherester resins and thermosets
JPS6339008B2 (en)
US3836492A (en) Polymerizable unsaturated reaction product of a diisocyanate and an unsaturated product of a dicarboxylic acid anhydride and an unsaturated monoglycidyl monomer
US3957906A (en) Chemically resistant polyester resins compositions
US3583955A (en) Saturated linear polymers having pendant functionality
Jaswal et al. Curing and decomposition behaviour of cresol novolac based vinyl ester resin
US4684695A (en) Flame-retardant, unsaturated polyester resin and composition therefor
US4338242A (en) Urethane modified polymers having hydroxyl groups
US3305601A (en) Thermoset compositions based on carboxy polymers and epoxide resins
EP0156262B1 (en) Process for the fabrication of unsaturated polyester resins
EP0355892B1 (en) Coating composition
US6515166B1 (en) Vinyl esters with high cross-linkage density
CA1192340A (en) Urethane modified polymers having hydroxyl groups
DE60106113T2 (en) Unsaturated polyester resin compositions
CN111320746A (en) Low-temperature curing polyester resin
JPS62195002A (en) Production of curable resin
CN114479009B (en) Modified epoxy acrylate resin and preparation method thereof
SU640556A1 (en) Photosolidified epoxy composition