【発明の詳細な説明】[Detailed description of the invention]
本発明は、水で希釈して使用する粉体化した農
薬乳剤に係るもので、その目的とするところは、
大気汚染、環境汚染等、特に大型散布により引き
起される農薬活性成分(以下原薬という)以外の
成分による悪影響をできうる限り僅少に止め、な
いしはこれを防止することを可能にする剤型の農
薬を提供し、併せて省資源、省エネルギーの社会
的要請に応えんとするものである。
農薬には、その使用目的、方法に応じて、乳
剤、水和剤、粉剤、フロアブル等種々の剤型があ
るが、近年大型防除が増加するに伴い、原薬以外
の成分によるいわゆる悪影響が社会問題としてク
ローズアツプされており、これら悪影響の低減
は、単に農薬従事者だけでなく、一般の生活者に
よつても渇望されているところである。また省資
源、省エネルギーの観点からも従来の農薬には、
それぞれ固有の欠点があり、その改良、改善に努
力が払われている。
従来、農薬乳剤は、多量のキシレン等の有機溶
剤に原薬を溶解せしめ、これに界面活性剤の補助
剤を均一に加えたものから構成され、すべて液体
で供されており、その使用に当つては任意の濃度
に簡単に水で希釈できること、使用者の取扱いが
容易なことから、大型防除にも多量に使用されて
いるが、有機溶剤を多量に含んでいるため、広範
な地域にわたる大気汚染又は建造物等の塗装被膜
汚染等が社会問題となるほか、省資源の見地から
も好ましいものとは言えない。また、可燃性の有
機溶剤を使用しているため、生産、輸送、保管の
面で危険物取締法の規制を受け、また溶剤の種類
によつてはその毒性のために劇毒物指定や、特定
化学物質指定等の対象ともなり、乳剤は生産者は
もとより消費者にとつても改良が強く要望されて
いるものである。更に、その主たる容器であるガ
ラス瓶は、使用後の処理に関してこれまた一種の
公害問題を孕んで来ている。以上の如く乳剤は、
その利用価値が高にも拘らず、特に大型防除の場
合には有機溶剤を含まない水和剤、粉剤、フロア
ブル等の散布が望ましいとされ、乳剤の散布は斬
減の傾向にある。
然しながら、水和剤、粉剤、フロアブル等の剤
型についても、また次のような欠点、問題点をそ
れぞれ含んでおりその改善が望まれている。
水和剤は、タルク、ベントナイト等の水不溶性
キヤリヤーを50%前後と多量に含んでおり、例え
ば空中散布の場合、附近地域に長期間にわたりキ
ヤリヤーが残留する等の環境汚染につながつてい
る。またキヤリヤー残留物は、特に蔬菜、花卉等
の商品価値に影響する原因にもなつている。更
に、水希釈によつてキヤリヤーが凝集し易く、散
布時にノズルの閉塞を起す等の使用上からも改善
すべき問題点がある。粉剤は、タルク等の水不溶
性キヤリヤーが90%を越える量から構成されてお
り、そのまま散布されるが、ドリフト性が大なる
ため環境汚染の度合は水和剤より遥かに広域にわ
たりかつ強度である。粉剤のかかる環境汚染の度
合を低減すべく粉粒剤等の剤型が考案、実用され
ているが、根本的な改善でないため、環境汚染を
顕著に改善するに至つていない。また粉剤は原薬
濃度が低いので、原薬当りの包装経費、輸送経費
は他の剤型に比べて遥かに高くつき、省資源、省
エネルギーの見地からも決して好ましいとは言え
ない。フロアブルなる剤型は、有機溶剤又は水不
溶性キヤリヤーを含まないので環境汚染の見地か
ら空中散布等の大型防除に適するものとして需要
が伸びている。しかし、原薬の水中分散安定性が
未だ充分でなく、貯蔵中の沈降或いは凝集が避け
難く、このため、増粘剤が添加されており必然的
に粘度が高くなり、取扱上種々の不便がある。更
に、フロアブルには、原薬が水中に長期間存在す
る剤型であるため、加水分解の恐れある原薬は使
用できない制約がある。また原薬を超微粉化する
必要があり、そのエネルギー消費も無視し得ぬ場
合が多い。
以上述べたように、大型防除にも多量使用され
ている種々の剤型につき、その環境汚染、公害及
びそれぞれ固有の問題点を考察し、各剤型の利害
得失を詳細に比較検討すれば、有機溶剤を含んで
いるために起因する悪影響又は法規制の問題を除
けば、乳剤が利用度の高い剤型である。乳剤に於
ける上記の様な種々の問題点を解決しようとする
検討は以前より続けられている。例えば常温で液
状の原薬であれば、これに、単に界面活性剤を加
えただけの乳剤、また吸着体として尿素を使用す
る乳剤が提案されているが、使用上無理があつた
り、吸湿性のため製造工程上に困難を伴つたりし
ていずれも実用化に至つていない。
本発明者等は、農薬によるかかる悪影響を低減
及び省資源、省エネルギーと云う社会の基本的要
請に応えるべく種々考案、検討の結果、本発明を
完成した。
すなわち、本発明の粉体化した農薬乳剤は、ブ
ドウ糖含有量(DE)3.5〜18の澱粉加水分解水溶
液のドラム・ドライヤーによる乾燥粉末(以下粉
末化基剤という)に原薬と界面活性剤の混合物を
均一に吸着せしめてなる。
本発明に於いて用いる粉末化基剤の原料となる
澱粉としては、例えばサツマイモ、ジヤガイモ、
トウモロコシ、ワキシー・トウモロコシ、タピオ
カ、キヤツサバ、コムギ、コメ等が挙げられる。
その加水分解は常法に従い適宜、酸、酵素もしく
はこれらの両者を用いて実施できる。例えば澱分
を20〜40%好ましくは30〜38%の懸濁液とし、こ
れに塩酸、硫酸等の酸又はαーアミラーゼ等の酵
素を加え、オートクレーブ、連続加水分解装置等
の適当な装置内で加熱し、所望のDEとなるまで
加水分解反応させる。特に、加水分解をまず酸に
より行ない所望のDEに達する前に反応を停止さ
せ、分解液を炭酸カルシウム等の中和剤にてPH5
〜7に中和し、次にα―アミラーゼを加え酵素に
よる加水分解反応を行ないこの反応を途中で加熱
蒸煮することにより一旦停止させα―アミラーゼ
を失活させると同時に未分解及び加水分解の困難
な澱粉を完全に糊化分解させ、引き続きα―アミ
ラーゼを新たに添加し酵素による加水分解を行な
ういわゆる二段液化法を採用するのが好ましい。
加水分解物のDEは3.5〜18にする必要があり、
DEが18を越える場合には吸湿性が顕著となり乾
燥粉末化が困難乃至不可能となる。DEが3.5未満
の場合には水への溶解性が悪くなり粉体化した農
薬乳剤として不適当となる。またDEは加水分解
物の粘度に影響を与え、DEが大きくなる程粘度
が低下する傾向がある。
加水分解物は、常法に従い濾過、脱色、脱塩等
の精製操作を行ない、更に必要に応じて予備濃縮
し、次にドラム・ドライヤーで乾燥することによ
り粉末化する。ドラム・ドライヤーで乾燥するに
際しては、澱粉加水分解物の水溶液を、通常粘度
を20〜800CP(30℃)好ましくは40〜200CPにす
る。ドラム・ドライヤーはシングル式及びダブル
式のドライヤーが使用できるがダブル式がより好
ましい。
乾燥条件は特に制約されず、通常の温度、圧
力、回転数が使用できるが通常ドラム内圧3〜6
Kg/cm2(140〜170℃)、ドラム回転数0.8〜1.33r.
p.mとするのが好ましい。一般にドラム内蒸気温
度が高い程粉末化基剤として好ましい嵩高いもの
が得られる。得られた粉末は常法に従い、所望の
粒度に篩別し使用する。粒度は特に制限されない
が通常20〜60メツシユ程度とするのがよい。また
粉末の比容積は6〜20ml/g(嵩密度0.05〜0.17
g/c.c.)の嵩高いものが好適である。粉末化基剤
は重量当りにしておよそ等量の原薬を含む液体を
吸着することができる。
本発明で云うDEとは固形分中の還元糖の比で
あり還元糖はウイルシユツテツター・シユーテル
(Wilstatter Schudel)法により測定した。
すなわち、次の試薬を調製した。
(a) N/10ヨウ素溶液:
ヨウ化カリウム(特級試薬)約20gを水150
mlに溶かし、また別にヨウ素(特級試薬)12.7
gを溶解して1のメスフラスコに入れ、前記
のヨウ素酸カリウム溶液を加えて定容し、褐色
ビンで保存する。
(b) N/10水酸化ナトリウム溶液:
その濃度を正しくN/10にするために、N/
10蓚酸標準液または他の酸の規定液を用いてそ
れを標定し、過不足があれば水または既知濃度
の水酸化ナトリウム溶液を加えて調製する。
(c) 塩酸(1:5)溶液:
市販濃塩酸1部を5部の水で薄める。
(d) 澱粉指示薬:
可溶性澱粉約1gに約20mlの水を加えてよく
かきまぜておき、約80mlの沸騰水中にまぜなが
ら加え、2〜3分加熱したのち放冷し、塩化ナ
トリウム約20gを加えて溶かす。混濁があれば
濾過して、滴ビンに入れて保存する。
(e) N/10チオ硫酸ナトリウム溶液:
結晶チオ硫酸ナトリウム(特級試薬)約25g
を水に溶かして全量を1000mlとし、2〜3日間
放置したのち、次のように標定する。重クロム
酸カリ(特級試薬)の結晶を粉砕し、140〜150
℃で1時間乾燥してデシケーター中でさました
ものの約4.9gを小数位4桁まで正確に秤量し、
1のメスフラスコに定容する。次に200ml共
栓三角フラスコにヨウ素酸カリウム約0.5gを
とり、水約5ml加えて溶かしこれに上記の重ク
ロム酸液10mlをピペツトで加え、さらに塩酸
(1:5)3mlを加え、栓をして混和し、5分
間静置したのち約100mlの水を加え、上記チオ
硫酸ナトリウム液で滴定する。滴定の終点近く
で、液の色が微黄色になつたとき、前記の澱粉
指示薬2〜3滴を加え、さらに滴定を続けて、
ヨウ素澱粉の青色が消えた点を終点とする。こ
のとき滴定量をamlとし、秤量した重クロム酸
カリウムの重量をWgとすれば、チオ硫酸ナト
リウムの規定度はW/4.9037×aNである。定
量の日ごとに標定してN/10への換算係数を求
めるようにする。
試料溶液の調製:
試料中の還元糖がブドウ糖無水物として約10g
になるように秤量して、1000mlメスフラスコに定
容する。
これらの試薬を用い次の操作で定量を行つた。
操作:
N/10ヨウ素溶液20mlを、ピペツト200ml共栓
三角フラスコにとり、試料溶液10mlをピペツトで
加え、次にフラスコを振り動かしながらN/10水
酸化ナトリウム溶液30mlをビユレツトから2〜3
分間で滴下し、よく混和したのち栓をして暗所に
20分間放置する。次にそれに塩酸(1:5)約3
mlをコマゴメピペツトで急速に加え、よく混合し
たのちN/10チオ硫酸ナトリウム溶液で滴定す
る。滴定の末期に液の色が微黄色になつたら滴定
を止め、澱粉指示薬2滴を加えてさらに滴定を止
め、澱粉指示薬2滴を加えてさらに滴定を続け、
液の青い色がまさに半滴で消失した点を滴定値a
mlの終点とし、このとき同時に試料溶液の代わり
に水を用いて、上記とまつたく同様の処理を行
い、このとき得た滴定量をプランク値bmlとす
る。
試料無水物中の還元糖DEは次式
DE(%)=9.005×103×f(b−a)/s(100−
m)
ただし、s:試料採取量(g)、m:試料の水
分(%)、f:N/10チオ硫酸ナトリウム溶液
の係数。
で計算する。
また、本発明に用いる原薬は、常温で液体のも
のであればそのまま所定量の界面活性剤を加えて
高濃度乳剤をつくり粉末化基剤に吸着させること
ができる。また固体の原薬では少量の溶剤に溶か
し使用することができる。少量の溶剤で容易に溶
解するこことが出来ない原薬は、本発明に適用で
きない。しかし2種以上の原薬の混合剤の場合一
部の原薬が固体であつても他の液体原薬に容易に
溶解し均一な液体になるもの及びこれら二以上の
原薬に少量の溶剤を添加することにより容易に液
化するものは適用できる。これらの原薬として
は、殺虫剤、殺菌剤及び除草剤等がある。例示す
ると次のようなものが挙げられる。
2―セコンダリーブチルフエニル N―メチル
カーバメート
0,0―ジメチル 2,2―ジクロロビニルホ
スフエート
0,0―ジイソプロピル S―ベンジルチオホ
スフエート
0,0―ジメチル 0―(3―メチル―4―ニ
トロフエニル)ホスホロチオエート
0,0―ジメチル S―(フエニルエトキシカ
ルバモイルメチル)ホスホロジチオエート
S―(4―クロロベンジル) N,N―ジエチ
ルチオカーバメート
0―エチル S,S―ジフエニルジチオホスフ
エート
0,0―ジメチル 0―(3―メチル―4―メチ
ルチオフエニルホスホロチオエート
0,0―ジエチル 0―(2―イソプロピル―
4―メチルピリミジル―6)ホスホロチオエート
0,0―ジメチル 0―(3,5,6―トリク
ロロ―2―ピリミジル)ホスホロチオエート
0,0―ジプロピル―0―(4―メチルチオフ
エニル)ホスフエート
0,0―ジメチル S―〔5―メトキシ―1,
3,4―チアジアゾール―2(3H)―オニル―(3)
―メチル〕ホスホロチオエート
2―メチルチオ―4,6―ビス(イソプロピル
アミノ)―S―トリアジン
2―メチルチオ―4,6―ビス(エチルアミ
ノ)―S―トリアジン
0―〔2―クロロ―1―(2,4―ジクロロフ
エニル)ビニル〕 0,0―ジメチルホスフエー
ト
0,0―ジメチル S―ジカルベトキシエチル
ジチオホスフエート
これらの原薬は、単独又は二種以上混合して使
用することもできる。
次に本発明に用いる界面活性剤としては、ポリ
オキシアルキレンアルキルアリールエーテル、ポ
リオキシアルキレン脂肪酸エステル、ポリオキシ
アルキレンアルキルエーテル、ポリオキシアルキ
レンアルキルエステルの如き非イオン系の界面活
性剤、アルキルアリールスルホン酸塩、アルキル
硫酸塩、高級脂肪酸塩の如きアニオン系界面活性
剤が挙げられる。これらは、単独又は二種以上混
合して使用する。界面活性剤は水で希釈したとき
に乳化させるために必要である。
本発明の粉体化した農薬乳剤はすでに述べた如
く原薬と界面活性剤更に必要に応じて少量の溶剤
を粉末化基剤に吸着してなるものであるが、その
製造法は、粉末化基剤をリボン混合機、ナウタミ
キサー、回転ドラム型混合機等の混合機に入れて
おき、撹拌しながら、液状にして原薬等をスプレ
ー又は注入等で添加し均一に混合するだけでよ
く、特別の装置を必要としない。
本発明では、これらの原薬、界面活性剤の他に
必要に応じ安定剤や効力増進のため、及び薬害や
毒性軽減のための添加剤を加えることもできる。
また、増量剤として、尿素、砂糖、各種の無機塩
類等を用いてもよい。
本発明の粉体化した乳剤は、従来の液状の乳剤
と同様に、水に添加すれば何等特別な撹拌をする
ことなく即座に溶解し、任意の濃度の分散安定性
のすぐれた乳化液を得ることができ、従来の乳剤
と同様に使用することができる。また使用する粉
末化基剤は人蓄に対しては勿論、植物に対しても
害作用はなく更に、農薬としての効果を害うもの
ではない。本発明に係る粉体化した乳剤は、従来
の各種の剤型の農薬に比し、次の如き利点、効果
がある。有機溶剤を含まないか、又は含んでも僅
少なので、従来の液状乳剤の最大問題点である有
機溶剤による大気汚染その他の環境問題を解決す
るものである。また省資源の見地からも社会的要
請に合致するものであり、更に危険物又は劇毒物
取扱上からも危険度の低減に著しく貢献するもの
である。キヤリヤーは無害、水易溶性で自然の環
境下で易分解性があり、従つて、水和剤、粉剤の
如き水不溶性キヤリヤーの環境汚染が防止され、
その残留による作物の商品価値低下を避けること
が出来る。また、水和剤使用で遭遇するキヤリヤ
ーの凝集や、ノズルの閉塞の起こることがない。
粉体なるがため取扱いが容易であり、フロアブル
の如き水中での原薬の分散安定性につき製造上、
使用上の考慮を払う必要がない。更に、包装容器
に対する特別な配慮を必要とせず、液状乳剤の如
く使用後のガラス瓶公害を防止することができ
る。また加水分解を受ける恐れのある原薬につい
ても制約がない。以上の様に、本発明に係る粉体
化した乳剤は従来実用化されている剤型の農薬に
比較して格段の改善、進歩が加えられたものであ
り、環境保全、省資源、省エネルギーの見地から
社会の要請に適合するものである。
次に本発明の粉末化基剤の製造法を参考例を挙
げ具体的に説明する。
参考例 1
トウモロコシ澱粉を水に懸濁してボーメ18度の
乳液とし、これに炭酸カルシウムを加えPHを5.8
に調整し、次にクライスターゼKD(大和化成株
式会社製のα―アミラーゼ)0.1%を加えて得た
混合物を、内容10のオンレーター(株式会社桜
製作所製の澱粉連続液化装置)に毎分5の速度
で注入する。オンレーターからの流出液(85〜87
℃)をステンレス・ポツトに採取し、85〜86℃に
調温した恒温槽中で3分間保温して加水分解さ
せ、0.1N塩酸を滴下してPHを3.8に低下させ酵素
を失活させた後、これに炭酸カルシウムを加え、
PHを5.8に戻す。得られる液をオートクレーブに
移し140℃で10分間加圧蒸煮した後86℃に冷却し
液固型分当り0.05〜0.2%の前記酵素を加え再度
加水分解反応を行ない加圧蒸煮により反応を停止
させる。この液に液固型分当り0.5%のラジオラ
イト―800(昭和化学株式会社製の濾過助剤)を加
え、液温70〜80℃で吸引濾過後、濾液を脱塩し濃
縮し、加水分解原液を得る。
参考例 2
タピオカ澱粉を水に懸濁してボーメ度15度の乳
液とし、これに蓚酸0.3%を加え、混合物を参考
例1と同一のオンレーターに毎分1の速度で圧
入し圧力1.5Kg/cm2(温度127℃)の蒸気で加熱し
た。出口からの流出液をステンレス・ポツトに採
取し炭酸カルシウムでPH5.8に中和し、これを85
℃に冷却後0.2%の前述の酸素α―アミラーゼを
加え液温82℃に60分間保持し加水分解を行ない。
以下、参考例1と同様に精製濃縮し、加水分解原
液を得た。
参考例 3
サツマイモ澱粉を水に懸濁してボーメ度15度の
乳液とし、これに蓚酸0.3%を加え、この混合物
を参考例1と同様にオンレーターに圧入後、流出
液をオートクレーブに移し蒸気圧1.6Kg/cm2(温
度128℃)で20分加熱後取り出し、炭酸カルシウ
ムでPH5.0に中和し、以後参考例1と同様に精製
濃縮し、加水分解原液を得た。
参考例 4
加水分解原薬をドラム・ドライヤーで乾燥して
粉末化基剤を得る。原薬の濃度及び粘度、原薬中
の澱粉加水分解物のDE及び得られた粉末化基剤
の比容積を第1表に示す。尚、前記ドラム・ドラ
イヤー及びその運転条件は次の通りである。
(1) 型式 ダブル・ドラム・ドライヤー
径 1.20m
円表面積 3.77m2
面長 2.20m
ドラム表面積 8.3m2
(2) 運転条件
回転数 1.33r.p.m
蒸気温度 158℃
内圧 5.1Kg/cm2
表面温度 135℃
The present invention relates to a powdered agricultural chemical emulsion that is used after being diluted with water, and its purpose is to:
A dosage form that makes it possible to minimize or prevent the adverse effects of ingredients other than agricultural chemical active ingredients (hereinafter referred to as active ingredients), such as air pollution and environmental pollution, especially caused by large-scale spraying. The aim is to provide agricultural chemicals and meet social demands for resource and energy conservation. Pesticides come in a variety of formulations, such as emulsions, wettable powders, powders, and flowables, depending on the purpose and method of use, but as large-scale pesticides have increased in recent years, the so-called negative effects of ingredients other than the active ingredients have become more prevalent in society. The problem has been highlighted, and reduction of these negative effects is desired not only by pesticide workers but also by ordinary people. In addition, from the perspective of resource and energy conservation, conventional pesticides have
Each has its own drawbacks, and efforts are being made to improve and improve them. Conventionally, pesticide emulsions are composed of a drug substance dissolved in a large amount of organic solvent such as xylene, and an adjuvant such as a surfactant is uniformly added to this, and all are provided in liquid form. Because it can be easily diluted with water to any concentration and is easy for users to handle, it is used in large quantities for large-scale pest control, but because it contains large amounts of organic solvents, it In addition to causing social problems such as contamination or contamination of paint films on buildings, etc., this is not desirable from the standpoint of resource conservation. In addition, because flammable organic solvents are used, production, transportation, and storage are subject to regulations under the Hazardous Substances Control Law. Emulsions are subject to chemical substance designation, and improvements to emulsions are strongly desired not only by producers but also by consumers. Furthermore, the glass bottle, which is the main container, has also become a kind of pollution problem in terms of disposal after use. As mentioned above, the emulsion is
Despite its high utility value, especially for large-scale pest control, it is desirable to use wettable powders, powders, flowables, etc. that do not contain organic solvents, and the use of emulsions is decreasing. However, dosage forms such as wettable powders, powders, and flowables also have the following drawbacks and problems, and improvement thereof is desired. Wettable powders contain a large amount of water-insoluble carriers such as talc and bentonite (approximately 50%), and when sprayed in the air, for example, the carriers remain in nearby areas for a long period of time, leading to environmental pollution. Further, carrier residue is also a cause that affects the commercial value of vegetables, flowers, etc. in particular. Furthermore, there are problems that need to be improved in terms of use, such as the carrier tends to aggregate when diluted with water, causing nozzle blockage during spraying. Powders are composed of more than 90% water-insoluble carriers such as talc, and are sprayed as is, but because of their greater drift, the degree of environmental pollution is much wider and more severe than with wettable powders. . Although dosage forms such as powder and granule preparations have been devised and put into practice in order to reduce the degree of environmental pollution caused by powder preparations, this has not resulted in a significant improvement in environmental pollution, as this is not a fundamental improvement. In addition, since powders have a low concentration of drug substance, the packaging and transportation costs per drug substance are much higher than other dosage forms, and they are by no means preferable from the standpoint of resource and energy conservation. Flowable formulations do not contain organic solvents or water-insoluble carriers, so demand is increasing as they are suitable for large-scale pest control such as aerial spraying from the standpoint of environmental pollution. However, the dispersion stability of the drug substance in water is still insufficient, and it is difficult to avoid sedimentation or aggregation during storage.For this reason, thickeners are added, which inevitably increases the viscosity and causes various inconveniences in handling. be. Furthermore, since flowables are in a dosage form in which the drug substance remains in water for a long period of time, there is a restriction that drug substances that may be subject to hydrolysis cannot be used. In addition, it is necessary to micronize the drug substance, and the energy consumption cannot be ignored in many cases. As mentioned above, if we consider the environmental contamination, pollution, and problems unique to each of the various formulations that are used in large quantities for large-scale pest control, and compare the benefits and disadvantages of each formulation in detail, Emulsions are the most commonly used dosage form, except for the adverse effects or regulatory issues caused by the inclusion of organic solvents. Studies have been made to solve the above-mentioned various problems in emulsions. For example, for drug substances that are liquid at room temperature, emulsions that simply add a surfactant or emulsions that use urea as an adsorbent have been proposed, but they are difficult to use and are hygroscopic. Therefore, none of them have been put into practical use due to difficulties in the manufacturing process. The present inventors have completed the present invention as a result of various ideas and studies in order to meet the basic demands of society to reduce the harmful effects of pesticides and to conserve resources and energy. That is, the powdered agrochemical emulsion of the present invention is made by adding a drug substance and a surfactant to a dry powder (hereinafter referred to as powdered base) of a starch hydrolyzed aqueous solution having a glucose content (DE) of 3.5 to 18 using a drum dryer. The mixture is uniformly adsorbed. Examples of starch that is a raw material for the powdered base used in the present invention include sweet potato, potato,
Examples include corn, waxy corn, tapioca, cabbage mackerel, wheat, and rice.
The hydrolysis can be carried out using an acid, an enzyme, or both, as appropriate, according to a conventional method. For example, the lees is made into a suspension of 20 to 40%, preferably 30 to 38%, and an acid such as hydrochloric acid or sulfuric acid or an enzyme such as α-amylase is added thereto, and the mixture is placed in an appropriate device such as an autoclave or a continuous hydrolysis device. Heat to perform a hydrolysis reaction until the desired DE is achieved. In particular, hydrolysis is first performed with an acid, the reaction is stopped before the desired DE is reached, and the decomposition solution is treated with a neutralizing agent such as calcium carbonate to reach a pH of 5.
~7, then add α-amylase to carry out a hydrolysis reaction using enzymes, and temporarily stop this reaction by heating and steaming midway through, deactivating α-amylase and at the same time undegraded and difficult to hydrolyze. It is preferable to use a so-called two-stage liquefaction method in which the starch is completely gelatinized and decomposed, and then α-amylase is newly added and hydrolyzed by enzymes.
The DE of the hydrolyzate should be between 3.5 and 18,
When DE exceeds 18, hygroscopicity becomes significant and dry powdering becomes difficult or impossible. When the DE is less than 3.5, the solubility in water becomes poor and the emulsion becomes unsuitable as a powdered agricultural chemical emulsion. DE also affects the viscosity of the hydrolyzate, and the larger the DE, the lower the viscosity tends to be. The hydrolyzate is subjected to purification operations such as filtration, decolorization, and desalination according to conventional methods, and is further preconcentrated if necessary, and then powdered by drying with a drum dryer. When drying with a drum dryer, the aqueous solution of starch hydrolyzate is usually brought to a viscosity of 20 to 800 CP (at 30° C.), preferably 40 to 200 CP. Single-type and double-type drum dryers can be used, but a double-type dryer is more preferable. The drying conditions are not particularly restricted, and normal temperatures, pressures, and rotational speeds can be used, but the drum internal pressure is usually 3 to 6.
Kg/cm 2 (140~170℃), drum rotation speed 0.8~1.33r.
It is preferable to set it as pm. Generally, the higher the temperature of the steam inside the drum, the more bulky the base material can be obtained. The obtained powder is sieved to a desired particle size and used according to a conventional method. The particle size is not particularly limited, but it is usually about 20 to 60 mesh. In addition, the specific volume of the powder is 6 to 20 ml/g (bulk density 0.05 to 0.17
g/cc) is preferred. The powdered base is capable of adsorbing a liquid containing approximately the same amount of drug substance per weight. The DE referred to in the present invention is the ratio of reducing sugars in the solid content, and the reducing sugars were measured by the Wilstatter Schudel method. That is, the following reagents were prepared. (a) N/10 iodine solution: Approximately 20 g of potassium iodide (special grade reagent) and 150 g of water
12.7ml of iodine (special grade reagent)
Dissolve g in volumetric flask, add the above potassium iodate solution to make a constant volume, and store in a brown bottle. (b) N/10 sodium hydroxide solution: In order to make the concentration correctly N/10, N/10
Standardize it using 10 oxalic acid standard solution or other acid standard solution, and if there is excess or deficiency, add water or sodium hydroxide solution of known concentration to prepare. (c) Hydrochloric acid (1:5) solution: Dilute 1 part of commercially available concentrated hydrochloric acid with 5 parts of water. (d) Starch indicator: Add about 20 ml of water to about 1 g of soluble starch, stir well, add to about 80 ml of boiling water while stirring, heat for 2 to 3 minutes, let cool, and add about 20 g of sodium chloride. Dissolve it. If cloudy, filter and store in a dropper bottle. (e) N/10 sodium thiosulfate solution: Approximately 25 g of crystalline sodium thiosulfate (special grade reagent)
Dissolve in water to make a total volume of 1000 ml, leave for 2 to 3 days, and then standardize as follows. Grind the crystals of potassium dichromate (special grade reagent) to 140 to 150
After drying at °C for 1 hour and cooling in a desiccator, weigh approximately 4.9 g accurately to 4 decimal places.
Adjust the volume to a volumetric flask. Next, take about 0.5 g of potassium iodate in a 200 ml stoppered Erlenmeyer flask, add about 5 ml of water, dissolve it, add 10 ml of the above dichromic acid solution with a pipette, add 3 ml of hydrochloric acid (1:5), and close the stopper. After stirring for 5 minutes, add about 100 ml of water and titrate with the above sodium thiosulfate solution. Near the end of the titration, when the color of the liquid becomes slightly yellow, add 2 to 3 drops of the starch indicator mentioned above and continue the titration.
The end point is the point where the blue color of iodine starch disappears. At this time, if the titration amount is aml and the weight of the weighed potassium dichromate is Wg, then the normality of sodium thiosulfate is W/4.9037×aN. Orient each day of quantification and calculate the conversion factor to N/10. Preparation of sample solution: The reducing sugar in the sample is approximately 10g as glucose anhydride.
Weigh it out and put it into a 1000ml volumetric flask. Quantification was performed using these reagents in the following manner. Procedure: Pipette 20ml of N/10 iodine solution into a 200ml stoppered Erlenmeyer flask, add 10ml of the sample solution with a pipette, then add 30ml of N/10 sodium hydroxide solution from the bottle 2 to 3 times while shaking the flask.
Add the drops for a few minutes, mix well, then cap and store in the dark.
Leave for 20 minutes. Next, add hydrochloric acid (1:5) about 3
ml of the solution was rapidly added using a comagome pipette, mixed well, and titrated with N/10 sodium thiosulfate solution. When the color of the liquid turns slightly yellow at the end of the titration, stop the titration, add 2 drops of starch indicator, stop the titration, add 2 drops of starch indicator, continue the titration,
The point at which the blue color of the liquid disappears after exactly half a drop is the titration value a.
ml as the end point, and at the same time, use water instead of the sample solution and perform the same treatment as above, and the titer obtained at this time is taken as the Planck value bml. The reducing sugar DE in the anhydrous sample is determined by the following formula: DE (%) = 9.005 x 10 3 x f (ba)/s (100 -
m) However, s: sample collection amount (g), m: sample moisture (%), f: coefficient of N/10 sodium thiosulfate solution. Calculate with. Furthermore, if the drug substance used in the present invention is liquid at room temperature, a predetermined amount of surfactant can be added thereto to form a highly concentrated emulsion, which can then be adsorbed onto the powdered base. In addition, solid drug substances can be used by dissolving them in a small amount of solvent. Drug substances that cannot be easily dissolved in a small amount of solvent are not applicable to the present invention. However, in the case of a mixture of two or more drug substances, even if some of the drug substances are solid, they easily dissolve in other liquid drug substances to form a homogeneous liquid, and if a small amount of solvent is added to these two or more drug substances, Any material that can be easily liquefied by adding can be applied. These drug substances include insecticides, fungicides, herbicides, and the like. Examples include the following: 2-Secondary butylphenyl N-methyl carbamate 0,0-dimethyl 2,2-dichlorovinyl phosphate 0,0-diisopropyl S-benzyl thiophosphate 0,0-dimethyl 0-(3-methyl-4-nitrophenyl) Phosphorothioate 0,0-dimethyl S-(phenylethoxycarbamoylmethyl)phosphorodithioate S-(4-chlorobenzyl) N,N-diethylthiocarbamate 0-ethyl S,S-diphenyldithiophosphate 0,0- Dimethyl 0-(3-methyl-4-methylthiophenyl phosphorothioate 0,0-diethyl 0-(2-isopropyl-
4-Methylpyrimidyl-6) Phosphorothioate 0,0-dimethyl 0-(3,5,6-trichloro-2-pyrimidyl)phosphorothioate 0,0-dipropyl-0-(4-methylthiophenyl)phosphate 0,0-dimethyl S - [5-methoxy-1,
3,4-thiadiazole-2(3H)-onyl-(3)
-Methyl]phosphorothioate 2-Methylthio-4,6-bis(isopropylamino)-S-triazine 2-methylthio-4,6-bis(ethylamino)-S-triazine 0-[2-chloro-1-(2, 4-dichlorophenyl)vinyl] 0,0-dimethyl phosphate 0,0-dimethyl S-dicarbethoxyethyl dithiophosphate These drug substances can be used alone or in combination of two or more. Next, the surfactants used in the present invention include nonionic surfactants such as polyoxyalkylene alkylaryl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl ether, and polyoxyalkylene alkyl ester, and alkylaryl sulfonic acid. Examples include anionic surfactants such as salts, alkyl sulfates, and higher fatty acid salts. These may be used alone or in combination. Surfactants are necessary for emulsification when diluted with water. As mentioned above, the powdered agrochemical emulsion of the present invention is made by adsorbing the drug substance, surfactant, and, if necessary, a small amount of solvent to a powdered base. All you have to do is place the base in a mixer such as a ribbon mixer, Nauta mixer, or rotating drum mixer, and while stirring, make it into a liquid, add the drug substance, etc. by spraying or injection, and mix uniformly. No special equipment required. In the present invention, in addition to these drug substances and surfactants, stabilizers and additives for enhancing efficacy and reducing drug damage and toxicity may be added as necessary.
Further, as a filler, urea, sugar, various inorganic salts, etc. may be used. The powdered emulsion of the present invention, like conventional liquid emulsions, dissolves instantly without any special stirring when added to water, producing an emulsion of any concentration with excellent dispersion stability. can be obtained and used in the same manner as conventional emulsions. Furthermore, the powdered base used has no harmful effect on plants as well as human stock, and furthermore, does not impair its effectiveness as an agricultural chemical. The powdered emulsion according to the present invention has the following advantages and effects compared to conventional agricultural chemicals in various dosage forms. Since it does not contain organic solvents or contains only a small amount of organic solvents, it solves the biggest problem of conventional liquid emulsions, such as air pollution and other environmental problems caused by organic solvents. Furthermore, it meets social demands from the standpoint of resource conservation, and furthermore, it significantly contributes to reducing the degree of risk in handling dangerous or poisonous substances. The carrier is harmless, easily water-soluble and easily decomposed in natural environments, thus preventing water-insoluble carriers such as wettable powders and powders from polluting the environment.
It is possible to avoid a decrease in the commercial value of crops due to the residue. Furthermore, there is no carrier agglomeration or nozzle clogging that is encountered when using wettable powders.
Because it is a powder, it is easy to handle, and due to the dispersion stability of the drug substance in water such as flowables, it is difficult to manufacture.
There is no need to take into account usage considerations. Furthermore, no special consideration is required for the packaging container, and it is possible to prevent pollution from glass bottles after use, as with liquid emulsions. There are also no restrictions on drug substances that may be subject to hydrolysis. As described above, the powdered emulsion according to the present invention has been significantly improved and advanced compared to conventionally put into practical use the formulation-type agricultural chemicals, and is effective for environmental conservation, resource saving, and energy saving. It meets the needs of society from this point of view. Next, the method for producing the powdered base of the present invention will be specifically explained with reference to examples. Reference example 1 Corn starch is suspended in water to make a Baume emulsion of 18 degrees, and calcium carbonate is added to this to make the pH 5.8.
The mixture obtained by adding 0.1% of Klystase KD (α-amylase manufactured by Daiwa Kasei Co., Ltd.) was added every minute to an Onrator (continuous starch liquefaction device manufactured by Sakura Seisakusho Co., Ltd.) with a content of 10. Inject at a rate of 5. Effluent from the onrator (85-87
℃) was collected in a stainless steel pot, kept warm for 3 minutes in a constant temperature bath controlled at 85-86℃ for hydrolysis, and 0.1N hydrochloric acid was added dropwise to lower the pH to 3.8 and deactivate the enzyme. After that, add calcium carbonate to this,
Return the pH to 5.8. The resulting liquid was transferred to an autoclave and steamed under pressure at 140°C for 10 minutes, then cooled to 86°C, 0.05-0.2% of the enzyme per liquid solid content was added, the hydrolysis reaction was carried out again, and the reaction was stopped by steaming under pressure. . Add 0.5% Radiolite-800 (filter aid manufactured by Showa Kagaku Co., Ltd.) per liquid-solid content to this liquid, and after suction filtration at a liquid temperature of 70 to 80°C, the filtrate is desalted, concentrated, and hydrolyzed. Obtain the stock solution. Reference Example 2 Tapioca starch is suspended in water to make an emulsion with a Baume degree of 15 degrees, 0.3% oxalic acid is added to this, and the mixture is press-fitted into the same onrator as in Reference Example 1 at a rate of 1/min to create a pressure of 1.5 kg/min. cm 2 (temperature 127 ° C) with steam. The effluent from the outlet was collected in a stainless steel pot, neutralized to pH 5.8 with calcium carbonate, and then
After cooling to ℃, 0.2% of the above-mentioned oxygen α-amylase was added and the solution was maintained at 82℃ for 60 minutes to perform hydrolysis.
Thereafter, purification and concentration were performed in the same manner as in Reference Example 1 to obtain a hydrolyzed stock solution. Reference Example 3 Suspend sweet potato starch in water to make an emulsion with a Baume degree of 15 degrees, add 0.3% oxalic acid to this, pressurize this mixture into the Onlator in the same manner as Reference Example 1, and transfer the effluent to an autoclave to increase the vapor pressure. After heating at 1.6 Kg/cm 2 (temperature 128° C.) for 20 minutes, it was taken out, neutralized to pH 5.0 with calcium carbonate, and then purified and concentrated in the same manner as in Reference Example 1 to obtain a hydrolyzed stock solution. Reference Example 4 Dry the hydrolyzed drug substance with a drum dryer to obtain a powdered base. The concentration and viscosity of the drug substance, the DE of the starch hydrolyzate in the drug substance, and the specific volume of the resulting powdered base are shown in Table 1. The drum dryer and its operating conditions are as follows. (1) Model Double drum dryer Diameter 1.20m Circular surface area 3.77m 2 Face length 2.20m Drum surface area 8.3m 2 (2) Operating conditions Rotation speed 1.33rpm Steam temperature 158℃ Internal pressure 5.1Kg/cm 2Surface temperature 135℃
【表】
実施例 1
0,0―ジメチル 0―(3―メチル―4―ニ
トロフエニル)ホスホロチオエート40重量部(以
下すべて重量部)に、ポリオキシエチレンアルキ
ルアリールエーテル、アルキルアリールスルホネ
ートの混合物5部を溶解したものをあらかじめリ
ボンミキサーに入れておいた粉末化基剤(第1表
基剤No.3(DE15))55部に均一に吸着混合し粉体
化した乳剤を得る。
実施例 2
S―(4―クロロベンジル) N,N―ジエチ
ルチオカーバメート50部に、ポリオキシエチレン
アルキルアリールエーテル、ポリオキシエチレン
脂肪酸エステル、アルキルアリールスルホネート
の混合物5部を溶解したものを実施例1と同様に
リボンミキサーに入れておいた粉末化基剤(第1
表基剤No.2(DE7.0))45部に均一に吸着混合し粉
体化した乳剤を得る。
実施例 3
2―セカンダリーブチルフエニル N―メチル
カーバメート35部、キシレン3部、及びポリオキ
シエチレンアルキルエーテル、ポリオキシエチレ
ン脂肪酸エステル、アルキルアリールスルホネー
トの混合物5部を溶解したものを実施例1と同様
にリボンミキサーに入れた粉末化基剤(第1表基
剤No.2(DE7.0))57部に均一に吸着混合した粉体
化した乳剤を得る。
実施例 4
S―(4―クロロベンジル) N,N―シエチ
ルチオカーバメート30部に、2―メチルチオ―
4,6―ビス(エチルアミノ)―S―トリアジン
5部を溶解させたのちポリオキシアルキレンアル
キルエーテル、ポリオキシエチレンスチリルフエ
ニルエーテル、アルキルアリールスルホネート混
合物5倍を加えたのち実施例1と同様にリボンミ
キサーに入れた粉末化基剤(第1表基剤No.1
(DE3.5))60部に均一に吸着混合し粉体化した乳
剤を得る。
実施例 5
0,0―ジメチル 0―(3―メチル―4―ニ
トロフエニル)ホスホロチオネート3部、ポリオ
キシエチレンスチリルフエニルエーテル、アルキ
ルアリールスルホネート混合物17部の混合液を粉
末化基剤(第1表、基剤No.2(DE7.0))に有効成
分として10%、20%、30%、40%、50%の濃度に
なるように加え、以下実施例1の方法に準じて吸
着混合し粉末化した乳剤を得る。
次に試験例を挙げ本発明の効果を説明する。
尚、試験には次の比較例を製剤し供試した。
比較例 1
実施例5の粉末化基剤(第1表、基剤No.2
(DE7.0))に用いた原液をスプレー・ドライヤー
で乾燥して得られた基剤を用いて実施例5と同様
の方法により有効成分として10%、20%、30%の
濃度となるように加え粉末化した乳剤を得る。
比較例 2
S―(4―クロロベンジル) N,N―ジエチ
ルチオカーバメート30部、2―メチルチオ―4,
6―ビス(エチルアミノ)―S―トリアジン5
部、ポリオキシアルキレンアルキルアリールエー
テル、ポリオキシアルキレンスチリルフエニルエ
ーテル、アルキルアリルスルホネートの混合物6
部、キシレン59部を均一に混合溶解し乳剤を得
る。
試験例1 (流動性試験)
安息角測定器(筒井理化学器械株式会社製三輪
式円筒回転法)に粉体化乳剤120mlを採り安息角
(θ)を測定し下式により流動性を算出した。結
果を第2表に示す。
流動性(%)=100×Cotθ
上記算出式により安息角(θ)が45℃の場合流
動性が100となり、この数値が大きい程流動性の
大きいことを示す。[Table] Example 1 Dissolve 5 parts of a mixture of polyoxyethylene alkylaryl ether and alkylaryl sulfonate in 40 parts by weight of 0,0-dimethyl 0-(3-methyl-4-nitrophenyl) phosphorothioate (all parts by weight below). The mixture was uniformly adsorbed and mixed with 55 parts of a powdered base (base No. 3 (DE15) in Table 1) previously placed in a ribbon mixer to obtain a powdered emulsion. Example 2 Example 1 was prepared by dissolving 5 parts of a mixture of polyoxyethylene alkylaryl ether, polyoxyethylene fatty acid ester, and alkylaryl sulfonate in 50 parts of S-(4-chlorobenzyl) N,N-diethylthiocarbamate. Powdered base (No. 1) placed in the ribbon mixer in the same way as
A powdered emulsion is obtained by uniformly adsorbing and mixing with 45 parts of surface base No. 2 (DE7.0). Example 3 Same as Example 1 except that 35 parts of 2-secondary butylphenyl N-methyl carbamate, 3 parts of xylene, and 5 parts of a mixture of polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, and alkylaryl sulfonate were dissolved. A powdered emulsion was obtained by uniformly adsorbing and mixing with 57 parts of a powdered base (base No. 2 (DE7.0) in Table 1) placed in a ribbon mixer. Example 4 To 30 parts of S-(4-chlorobenzyl) N,N-ethylthiocarbamate, 2-methylthio-
After dissolving 5 parts of 4,6-bis(ethylamino)-S-triazine, 5 times the mixture of polyoxyalkylene alkyl ether, polyoxyethylene styryl phenyl ether, and alkylaryl sulfonate was added, and the same procedure as in Example 1 was carried out. Powdered base in a ribbon mixer (Table 1 Base No. 1)
(DE3.5)) 60 parts of the mixture was evenly adsorbed and mixed to obtain a powdered emulsion. Example 5 A mixed solution of 3 parts of 0,0-dimethyl 0-(3-methyl-4-nitrophenyl) phosphorothionate, polyoxyethylene styryl phenyl ether, and 17 parts of an alkylaryl sulfonate mixture was mixed with a powdered base (No. Table 1, Base No. 2 (DE7.0)) was added as an active ingredient to a concentration of 10%, 20%, 30%, 40%, and 50%, and the following was adsorbed according to the method of Example 1. A powdered emulsion is obtained by mixing. Next, the effects of the present invention will be explained with reference to test examples. In addition, the following comparative example was prepared and tested in the test. Comparative Example 1 Powdered base of Example 5 (Table 1, Base No. 2
Using a base obtained by drying the stock solution used in (DE7.0)) with a spray dryer, the concentration of the active ingredient was adjusted to 10%, 20%, and 30% using the same method as in Example 5. In addition, a powdered emulsion is obtained. Comparative Example 2 S-(4-chlorobenzyl) N,N-diethylthiocarbamate 30 parts, 2-methylthio-4,
6-bis(ethylamino)-S-triazine 5
Part 6, mixture of polyoxyalkylene alkylaryl ether, polyoxyalkylene styryl phenyl ether, and alkylaryl sulfonate
1 part and 59 parts of xylene were uniformly mixed and dissolved to obtain an emulsion. Test Example 1 (Fluidity test) 120 ml of the powdered emulsion was taken into an angle of repose measuring device (three-wheel cylinder rotation method manufactured by Tsutsui Rikagaku Kikai Co., Ltd.), the angle of repose (θ) was measured, and the fluidity was calculated using the following formula. The results are shown in Table 2. Fluidity (%) = 100×Cotθ According to the above calculation formula, when the angle of repose (θ) is 45°C, the fluidity is 100, and the larger this number is, the greater the fluidity is.
【表】
試験例2 (吸油性試験)
粉体化乳剤の吸油性を肉眼観察で以下のように
判定した。
〇:吸油能力に余裕があり、流動性が良好であ
る状態。
△:吸油能力はほぼ限界であり、若干湿つた状
態。
×:吸油能力は限界以上であり、湿つて流動性
がない状態。
(△、×の判定は粉末化した乳剤として適当で
ない。)
結果を第3表に示す。[Table] Test Example 2 (Oil absorption test) The oil absorption of the powdered emulsion was determined by visual observation as follows. 〇: Condition with sufficient oil absorption capacity and good fluidity. △: Oil absorption capacity is almost at its limit, and it is in a slightly damp state. ×: The oil absorption capacity is above the limit, and the state is wet and has no fluidity. (Judgments of Δ and × are not appropriate for powdered emulsions.) The results are shown in Table 3.
【表】
実施例5のドラム・ドライヤー品は比較例1の
スプレードライヤー品に比較し吸油性は2倍以上
であり、ドラム・ドライヤー使用は粉体化した乳
剤の基剤として優れている。
試験例3 (乳化安定性試験)
本発明の粉体化乳剤の一定量をメスシリンダー
に取り水で100倍に希釈し、1時間静置後、希釈
液の上部又は下部にクリーム状物質の存在の有無
により安定性を判定した(農薬公定検査法、物理
性検定法 昭和35年2月3日制定第71号)。
結果を第4表に示す。[Table] The oil absorption of the drum dryer product of Example 5 is more than twice that of the spray dryer product of Comparative Example 1, and the drum dryer product is excellent as a base for powdered emulsions. Test Example 3 (Emulsion Stability Test) A certain amount of the powdered emulsion of the present invention was taken into a graduated cylinder, diluted 100 times with water, and left to stand for 1 hour. Stability was determined based on the presence or absence of (Pesticide Official Testing Method, Physical Testing Method No. 71 enacted on February 3, 1960). The results are shown in Table 4.
【表】
試験例4 (原薬の安定性試験)
本発明の粉体化乳剤20gを10c.c.広口瓶に取り、
40℃の恒温器中に放置し、30日及び60日目にとり
出しガスクロマトグラフ法により内容原薬を分析
した。比較に市販乳剤又は別に試作した乳剤(比
較例2)を使用した。結果を第5表に示す。[Table] Test Example 4 (Stability test of drug substance) 20 g of the powdered emulsion of the present invention was placed in a 10 c.c. wide-mouthed bottle.
It was left in a constant temperature chamber at 40°C, taken out on the 30th and 60th day, and the drug substance contained therein was analyzed by gas chromatography. For comparison, a commercially available emulsion or a separately prepared emulsion (Comparative Example 2) was used. The results are shown in Table 5.
【表】
第5表中、原薬1は、S―(4―クロロベンジ
ル) N,N―ジエチルチオカーバメートを、原
薬2は、2―メチルチオ―4,6―ビス(エチル
アミノ)―S―トリアジンを示す。
以上の試験結果より本発明の粉体化乳剤は、市
販又は試作の乳剤と比較して40℃に放置虐待後の
原薬の分解に差がないことが判明する。[Table] In Table 5, drug substance 1 contains S-(4-chlorobenzyl) N,N-diethylthiocarbamate, drug substance 2 contains 2-methylthio-4,6-bis(ethylamino)-S - indicates triazine. The above test results reveal that the powdered emulsion of the present invention shows no difference in decomposition of the drug substance after being left at 40°C compared to commercially available or prototype emulsions.