JPS6338605A - Speed governing stage structure for steam turbine - Google Patents

Speed governing stage structure for steam turbine

Info

Publication number
JPS6338605A
JPS6338605A JP18200186A JP18200186A JPS6338605A JP S6338605 A JPS6338605 A JP S6338605A JP 18200186 A JP18200186 A JP 18200186A JP 18200186 A JP18200186 A JP 18200186A JP S6338605 A JPS6338605 A JP S6338605A
Authority
JP
Japan
Prior art keywords
steam
stator
height
blades
stage structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18200186A
Other languages
Japanese (ja)
Inventor
Toshihiro Matsuura
松浦 俊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18200186A priority Critical patent/JPS6338605A/en
Publication of JPS6338605A publication Critical patent/JPS6338605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent reduction of strength of moving blades and a rotor, by setting the distribution along the circumferential direction, of height of a set of stationary blades in the first stage nozzle box, as being long at the center part of the set of the stationary blades, and being shorter toward both end parts. CONSTITUTION:A steam intake pipe 1 is connected to a set 12 of stationary blades in the first stage nozzle box 4. Blocked parts 13 are formed at both end parts of each set 12 of the stationary blades, and the distribution along the circumferential direction, of height of the set 12 of the stationary blades, is set as being long at the center part of this set 12 of the stationary blades, and being shorter toward both end parts. As quantity of generated steam is restricted at both end parts of the steam ejecting area, reaction force and impact force which act on moving blades are reduced. In this way, reduction of strength of the moving blades and a rotor, caused by fatigue, can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分笠) 本発明は、蒸気タービンの調速段落構造に係り、特に低
負荷運転時にJ3いて、動翼に作用する高温高圧蒸気に
よって発生する励振力を低減することにより!JJ翼お
よびロータの信頼性を[1]Lにさせた蒸気タービンの
調速段落構造に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application) The present invention relates to a speed regulating stage structure of a steam turbine, and in particular, the present invention relates to a speed regulating stage structure of a steam turbine. By reducing the excitation force generated by! The present invention relates to a regulating stage structure for a steam turbine in which the reliability of JJ blades and rotor is [1]L.

(従来の技術) 従来の蒸気タービンの高圧初段階における蒸気流入部の
構造は一般に第7図に示す通りである。
(Prior Art) The structure of the steam inflow section at the high pressure initial stage of a conventional steam turbine is generally as shown in FIG.

原子炉またはボイラなどの蒸気発生膜(!i(図示せず
)から蒸気入口管1を経由して送給された高温・高圧の
蒸気2は、タービンケーシング3の内周に設けた環状の
ノズルボックス4に導入される。
High-temperature, high-pressure steam 2 is fed from a steam generating membrane (! Introduced in Box 4.

導入された蒸気2はノズルボックス4の下流側に配設さ
れる第1段階の静翼5にて流出方向を変化させながら膨
張し、次にタービンロータ6の外周にII?i設した動
X7に衝突し、タービンロータ6に回転エネルギーを付
与した段に、下流のタービン段落に流れる。
The introduced steam 2 expands while changing the outflow direction at the first stage stationary blade 5 disposed downstream of the nozzle box 4, and then flows to the outer periphery of the turbine rotor 6. It collides with the installed rotor X7, imparts rotational energy to the turbine rotor 6, and flows to the downstream turbine stage.

第8図は第7図に示すノズルボックス4に配置した静翼
5を■−■矢視方向ずなわら、蒸気流入側より観察した
断面図である。
FIG. 8 is a cross-sectional view of the stationary blade 5 disposed in the nozzle box 4 shown in FIG. 7, viewed from the steam inflow side in the direction of arrows 1--2.

悪気タービンの定格負荷運転時には、蒸気2は、仕切壁
8によって仕切られて形成された、全ての蒸気室9a、
9b、9c、9dに導入され、静W5を通って、ノズル
ボックス4全周から噴射され、対向する動翼7に高速噴
流となって、衝突づる。
During rated load operation of the bad air turbine, the steam 2 flows through all the steam chambers 9a, which are partitioned by the partition wall 8.
9b, 9c, and 9d, passes through the static W5, is injected from the entire circumference of the nozzle box 4, becomes a high-speed jet against the opposing rotor blade 7, and collides with it.

従来の静翼5の蒸気流路の高さ1」は、ノズルボックス
4の周方向でどの位置にd3いても均一なlこめ、各静
翼間から噴出する蒸気間も均一であった。
The height 1'' of the steam flow path of the conventional stator blades 5 was uniform regardless of the position d3 in the circumferential direction of the nozzle box 4, and the distance between the steam ejected from between each stator blade was also uniform.

ところが、低負荷運転時には一般に部分送入方式が採用
され、蒸気タービンに送給される蒸気間は、抑制され、
一部の蒸気室、例えば蒸気室9aのみに蒸気2が導入さ
れる。導入蒸気は蒸気室9aの下流側周上に設(Jた静
翼5を通り、対向づ−る動翼7に衝突する。
However, during low-load operation, a partial feed system is generally adopted, and the amount of steam fed to the steam turbine is suppressed.
Steam 2 is introduced only into some steam chambers, for example, the steam chamber 9a. The introduced steam passes through stationary blades 5 provided on the downstream circumference of the steam chamber 9a, and collides with the opposing rotor blades 7.

このとき、タービンロータ6の全周に配設された動W7
は、1回転り−る途中で蒸気室9aの下流側を通過する
ときのみ蒸気力を受け、蒸気が供給されない他の蒸気室
9b、9c、9dの後方を通過する際には蒸気力を受け
ない。このため動′fA7は定格運転時のように連続的
に蒸気力を受けるのではイ1く、タービンロータが1回
転覆る間の一定範囲にJ3いてのみ間欠的に酒気ツノを
受(プる。
At this time, the movable W7 disposed around the entire circumference of the turbine rotor 6
receives steam power only when it passes downstream of steam chamber 9a during one rotation, and receives steam power when it passes behind other steam chambers 9b, 9c, and 9d to which steam is not supplied. do not have. For this reason, the motor 'fA7 does not receive steam power continuously as it does during rated operation, but only intermittently receives alcohol horns within a certain range during one rotation of the turbine rotor.

このときの静翼を通過ける蒸気流の状態と動翼に作用す
る蒸気力の関係を模式的に第9図に示す。
FIG. 9 schematically shows the relationship between the state of the steam flow passing through the stationary blades and the steam force acting on the rotor blades at this time.

ノズルボックス4に配設された静翼5を通過する蒸気流
10は蒸気噴出域Wから対向づ−る動TA7側に流入す
る。ここで蒸気噴出域Wの両端部において、蒸気流10
は、静翼前後の圧力差によって、蒸気流のない外方にそ
れぞれ分散して流れる。
A steam flow 10 passing through the stator blades 5 disposed in the nozzle box 4 flows from the steam ejection area W to the opposing moving TA7 side. Here, at both ends of the steam ejection area W, the steam flow 10
Due to the pressure difference between the front and rear of the stationary blades, the steam is dispersed and flows outward, where there is no steam flow.

従って蒸気噴出t4Wに到達じずかつ分散した蒸気流に
影響を受けないIl!IIm +−、には蒸気力が作用
しない。一方、蒸気噴出i!I!Wに進入した動M l
−2には、ロータの回転方向11とは逆方向に分散した
分散蒸気流16が作用する。また蒸気噴出域Wを通過す
る動ML7には本来の蒸気流の他に、ロータの回転方向
11ど同方向に分Blした分散蒸気流17が付加されて
噴出する。すなわち、蒸気噴出i!!wに進入する動M
 l−2には回転方向と逆方向の悪気力が瞬間的に作用
し、反対に悪気噴出域Wを通過する瞬間における動m 
L 7には、回転方向に大きな蒸気力が作用ηる。
Therefore, Il! does not reach the steam jet t4W and is not affected by the dispersed steam flow! No steam force acts on IIm +-. On the other hand, steam jet i! I! Motion M l that entered W
-2 is acted upon by a dispersed steam flow 16 that is dispersed in a direction opposite to the rotational direction 11 of the rotor. Further, in addition to the original steam flow, a dispersed steam flow 17 that is divided in the same direction as the rotor rotational direction 11 is added to the dynamic ML7 passing through the steam ejection area W, and is ejected. In other words, steam jet i! ! Motion M entering w
A bad air force in the opposite direction to the rotating direction momentarily acts on l-2, and on the contrary, the movement m at the moment when it passes through the bad air spout area W.
A large steam force acts on L7 in the direction of rotation.

この蒸気噴出域Wを初品が通過するときに、動翼に作用
する蒸気力の変化を第10図に示す。
FIG. 10 shows changes in the steam force acting on the rotor blades when the first product passes through this steam ejection area W.

蒸気噴出vAWに進入した直後の動翼には、回転方向と
は逆に流れる分子11.蒸気流16が作用覆るため、回
転方向と反対方向に反力P、が作用するが、次の瞬間に
は、定常レベルの蒸気力P、に達し、小さな変動を生じ
ながらもほぼ一定値となる。さらに蒸気噴出域Wを通過
づ゛る瞬間には、回転方向に匍記分散怠気流17が作用
するため、動翼は、回転方向に衝撃力P1を受ける。
Immediately after entering the steam jet vAW, molecules 11. Since the steam flow 16 acts against the steam, a reaction force P acts in the opposite direction to the rotation direction, but at the next moment, the steam force P reaches a steady level and remains almost constant even though small fluctuations occur. . Furthermore, at the moment of passing through the steam ejection region W, the rotor blades are subjected to an impact force P1 in the rotational direction because the air flow 17 acts in the rotational direction.

従来の調速段落構造によれば、一般に、前記反力P、の
値は、定常レベルの蒸気力P0の約30%程度であり、
また衝撃力P は蒸気〕)P□の約50%にも達するこ
とがある。つまり、蒸気噴出域Wを通過する際に初弾が
受ける蒸気力の幅は、定常レベルの蒸気力の1.8倍に
も達する場合がある。
According to the conventional speed regulating stage structure, the value of the reaction force P is generally about 30% of the steady level steam power P0,
In addition, the impact force P can reach approximately 50% of the steam])P□. In other words, the range of steam force that the first bullet receives when passing through the steam ejection area W may reach 1.8 times the steam force at a steady level.

さらにタービンの低負荷運転時には、定格運転時と比較
して定常レベルの蒸気力PIIl自体が大きいので、動
翼に幼く、励震力も比例して人さくなる。
Furthermore, when the turbine is operated at low load, the steady level steam power PIIl itself is larger than during rated operation, so the moving blades are affected and the excitation force is proportionally weaker.

(発明が解決しようとする問題点) このように従来の調速段落構造において、いわゆる部分
送入方式にJ:つで、ターごンの低負荷連中2を実施す
る場合においては、ノズルボックスの蒸気噴出域に進入
する瞬間および通過する瞬間fσに、分散した蒸気流の
ために犬ぎな衝撃ノjを受けていた。従って、動翼およ
びロータに振動による損傷を起こす可能性が高く、まI
〔疲労による乃苦の強度低下が問題となっていた。
(Problems to be Solved by the Invention) In this way, in the conventional speed-governing stage structure, when implementing the low load series 2 of the targon in the so-called partial feeding system, it is necessary to At the moment of entering the steam ejection area and at the moment of passing through it, it was subjected to a severe impact no.j due to the dispersed steam flow. Therefore, there is a high possibility of vibration damage to the blades and rotor, and
[The decline in the strength of the noku due to fatigue was a problem.

本発明は上記の問題点を解消するために発案されたもの
であり、蒸気タービンの低負荷運転時に8四に作用する
衝撃力のレベルを低減することにより動翼およびロータ
の疲労にJ:る強度低下を防止し、蒸気タービン全体の
信頼性を向上し、特に、部分送入方式を採用した高性能
低負荷運転に適した蒸気タービンの調速段落構造を提供
することを目的とする。
The present invention was devised to solve the above problems, and reduces the fatigue of moving blades and rotors by reducing the level of impact force that acts on the steam turbine during low-load operation. The purpose of the present invention is to provide a regulating stage structure for a steam turbine that prevents a decrease in strength, improves the reliability of the entire steam turbine, and is particularly suitable for high-performance, low-load operation employing a partial feed system.

〔発明の構成〕[Structure of the invention]

(問題点を解決するだめの手段) 上記目的を達成するため本発明は、蒸気タービンの第1
段落ノズルボックス内に周方向に配設した静翼を仕切壁
によって数群の静翼群に分割し、各静翼群毎に蒸気を供
給する蒸気入口管を接続し、低負荷運転時には静N群に
供給する蒸気間を調整して負荷調整を行う悪気タービン
の調速段落構造にJ3いて、複数の静翼セグメントを周
方向に連設して構成される前記静翼群の蒸気通路の周方
向高さ分布を、上記静衷詳の中央部分に配設した静岡セ
グメン1〜の蒸気通路の高さを大きく、上記静翼rJの
両端部に配設される静免廿グメン1−のパス通路の高さ
を小さく設定したことを要旨とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a first
The stator blades arranged circumferentially in the stage nozzle box are divided into several groups of stator blades by partition walls, and a steam inlet pipe that supplies steam is connected to each stator blade group to reduce static N during low load operation. J3 has a speed regulating stage structure of a bad air turbine that adjusts the load by adjusting the amount of steam supplied to a group of stator blades. The directional height distribution is increased by increasing the height of the steam passage of the Shizuoka segment 1~ arranged in the central part of the above-mentioned stationary vane rJ, and increasing the height of the steam passage of the Shizuoka segment 1~ arranged at the center part of the above-mentioned stationary vane rJ. The main point is that the height of the passage was set small.

(flT用) 」二足構成によれば、各群内において蒸気噴出域を形成
する静翼セグメントの蒸気通路の高さについて分布をも
たゼ、かつその高さ分布が中央に43いて大であり、一
方両端の仕切壁近傍において小となるように形成される
ため、噴出蒸気mもその高さに比例した分布をもつ。ず
なわI5、蒸気噴出域の中央部分と比較して、その両端
付近においては蒸気発生ti′iが抑制されるため、悪
気噴出域の両側外方に分散して流れる蒸気!Rが少ない
。そのため動翼が蒸気噴出域へ進入するときおよび蒸気
噴出域を通過する際に、動翼に作用する反力および衝撃
力が(L(減し、fIIrAの振動増大を抑制できる。
(For flT) According to the two-legged configuration, there is a distribution in the height of the steam passage of the stationary vane segment that forms the steam ejection area within each group, and the height distribution is large with 43 in the center. On the other hand, since it is formed to be smaller near the partition walls at both ends, the ejected steam m also has a distribution proportional to its height. Zunawa I5, steam generation ti'i is suppressed near both ends compared to the central part of the steam ejection area, so the steam disperses and flows outward on both sides of the bad air ejection area! There is little R. Therefore, when the rotor blade enters the steam ejection area and when it passes through the steam ejection area, the reaction force and impact force acting on the rotor blade are reduced (L(), and the increase in vibration of fIIrA can be suppressed.

従って、動翼およびロータの撮動疲労による強度低下が
防止され、低負荷運転時における蒸気タービンの信頼性
が向上ザる。
Therefore, a decrease in the strength of the moving blades and rotor due to fatigue due to imaging is prevented, and the reliability of the steam turbine during low-load operation is improved.

(実施例) 次に本発明の一実施例を添付図面に従って説明する。(Example) Next, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明の一実施例を示す断面図であり、ノズ
ルボックス4に配設した静翼5を仕切壁8によって4群
に分割してノズルボックス4内に区画された蒸気室9a
、9b、9c、9dを形成し、さらに各蒸気室に蒸気入
口管1を接続した例を示している。低負荷運転時には、
蒸気室9aのみに蒸気が送給される。蒸気室9aに形成
された蒸気nri出域Wは、円弧状に配設された静翼セ
グメント12から構成されている。各静翼セグメント1
2の蒸気通路の高さト1は各群内で分布を形成する。す
なわち、仕切g8に近接した部位においては小さく、円
弧の中央部分においては、大きく設定している。第1図
における、二重斜線部分は、蒸気通路の閉塞部13を示
している。蒸気通路の閉塞部13は、第1図の実施例に
おいては、各静翼セグメント12の半径方向外側に設け
られており、かつ蒸気通路の高ざHは、中央部分から両
端方向に滑らかに漸減するように構成している。
FIG. 1 is a sectional view showing one embodiment of the present invention, in which stator blades 5 disposed in the nozzle box 4 are divided into four groups by a partition wall 8, and a steam chamber 9a is partitioned into the nozzle box 4.
, 9b, 9c, and 9d are formed, and a steam inlet pipe 1 is connected to each steam chamber. During low load operation,
Steam is supplied only to the steam chamber 9a. The steam outlet area W formed in the steam chamber 9a is composed of stationary vane segments 12 arranged in an arc shape. Each stator vane segment 1
The heights of the steam passages 1 and 2 form a distribution within each group. That is, it is set small in the region close to the partition g8, and set large in the central part of the arc. In FIG. 1, the double hatched area indicates the steam passage blockage 13. In the embodiment shown in FIG. 1, the steam passage closing portion 13 is provided on the radially outer side of each stationary vane segment 12, and the height H of the steam passage gradually decreases from the center portion toward both ends. It is configured to do so.

なお、蒸気通路の閉塞部13を設ける周方向の範囲は、
動翼進入側、動翼通過側をそれぞれ少なくともtJノ翼
1ピッチ分の角度以上とする。少なくとも1ピッチ分以
上の角度で閉塞部13を設けねば分散中る蒸気の影響を
少なくできる。
Incidentally, the circumferential range in which the steam passage blocking portion 13 is provided is as follows:
The rotor blade entry side and the rotor blade passing side are each set at an angle equal to or more than one pitch of blade tJ. If the closing portion 13 is provided at an angle of at least one pitch, the influence of the vapor being dispersed can be reduced.

次に蒸気通路の閉塞部13を形成する静翼セグメント1
2の構造を第2図J3よび第3図に従って説明する。
Next, the stator vane segment 1 forming the steam passage blockage 13
The structure of No. 2 will be explained with reference to FIG. 2 J3 and FIG. 3.

第2図は円弧状に形成された静翼群を構成づる静翼セグ
メント12の1シ1を示づ斜視図である。第2図(a)
は静翼群の中央部分に配設される静4セグメントであり
、断面が略!」形であり、静翼5の両側に力Jた蒸気通
路14の高さhlが相等しい。
FIG. 2 is a perspective view showing one stator vane segment 12 constituting a stator vane group formed in an arc shape. Figure 2(a)
is a static 4 segment located in the center of the static vane group, and the cross section is approximately! '' shape, and the heights hl of the steam passages 14 on both sides of the stationary blades 5 are equal.

一方、第2図(E))は静”12 ffFの両端部に配
5シされる静lIクセグメン1−であり、静翼5の一方
の側の蒸気通路の高さをh2で形成し、使方の側をh2
より小さいh、で形成している。このように蒸気通路の
高さを漸減または瀬増した静翼セグメント12の溶1シ
開先部15を溶接等に」ζつm互に接合することにより
、第1図に示すように静翼市内において蒸気通路の高さ
が滑らかに変化づ−るように構成する。
On the other hand, FIG. 2(E)) shows a stator lI segment 1- arranged at both ends of the stator vane 5, and the height of the steam passage on one side of the stator vane 5 is h2. H2 on the usage side
It is formed with a smaller h. By welding or otherwise welding the welded grooves 15 of the stator blade segments 12 whose steam passage heights have been gradually reduced or increased in this way, the stator blades can be assembled as shown in FIG. The height of the steam passageway will be constructed so that it changes smoothly within the city.

また第3図は静翼5をノズルボックス4に取付けた状態
を示す断面図である。ノズルボックス4の開孔周縁に連
設された静翼5に対向して、動翼7が配設される。図の
断面位置に配設した動′!A5の蒸気通路の高さにはh
2であり、この高さh2は静翼群の中央部に配設した静
TA5の蒸気通路の高さhlより小さい。この高ざの差
(hl−h2)が閉塞部13となる。
Further, FIG. 3 is a sectional view showing a state in which the stationary blade 5 is attached to the nozzle box 4. A rotor blade 7 is arranged opposite to a stationary blade 5 which is connected to the periphery of the opening of the nozzle box 4 . The movement located at the cross-sectional position shown in the figure! The height of the steam passage of A5 is h
2, and this height h2 is smaller than the height hl of the steam passage of the stator TA5 disposed at the center of the stator blade group. This difference in height (hl-h2) becomes the closed portion 13.

上記構成による調速段落構造によれば、仕切壁8に隣接
する部分から周方向に向って静翼5の蒸気通路の高さが
漸増する。これに伴い動マフ7が蒸気噴出域Wに進入す
る際に動′A7に衝突する蒸気量はOから徐々に増加す
る。さらに、動翼7が蒸気噴出域Wを通過するときは再
び蒸気Mが抑制される。従って、動翼7が蒸気噴出域W
に進入する際に受ける回転方向と反対方向の反力P n
 d3よび通過プる際に受ける回転方向の衝撃力PUは
大幅に減少する。
According to the speed regulating stage structure having the above configuration, the height of the steam passage of the stator vane 5 gradually increases in the circumferential direction from the portion adjacent to the partition wall 8. Accordingly, when the dynamic muff 7 enters the steam ejection area W, the amount of steam that collides with the dynamic muff A7 gradually increases from O. Furthermore, when the rotor blade 7 passes through the steam ejection area W, the steam M is suppressed again. Therefore, the rotor blade 7 is in the steam ejection area W
Reaction force P n in the opposite direction to the rotational direction received when entering the
d3 and the impact force PU in the rotational direction received during passing are significantly reduced.

この衝撃力等の低減効果の実証例を第4図のグラフに従
って説明する。第4図は、本発明に係る調速段落構造を
適用した場合において、動翼が蒸気噴出域Wに進入して
から通過するまでの間、動翼に作用する蒸気力の変化を
示ず。従来の調速段落構造の場合における蒸気力の変化
を示す第10図と比較すると、蒸気噴出域Wに進入する
ときに動翼7が回転方向と反対方向に受ける反力P、は
三方の一程度に減少し、さらに蒸気噴出域Wを通過する
際に受りる回転方向の衝撃力PIJは消滅し、動翼に例
ノ<励振力は定常レベルの蒸気力となる。
A demonstration example of the effect of reducing impact force, etc. will be explained with reference to the graph of FIG. 4. FIG. 4 does not show changes in the steam power acting on the rotor blades from the time the rotor blades enter the steam ejection region W until they pass through, when the speed regulating stage structure according to the present invention is applied. When compared with FIG. 10, which shows the change in steam power in the case of the conventional speed-governing stage structure, the reaction force P, which the rotor blades 7 receive in the opposite direction to the rotational direction when entering the steam ejection region W, is one of the three. Furthermore, the rotational impact force PIJ received when passing through the steam ejection area W disappears, and the excitation force on the rotor blade becomes a steady level steam force.

この場合蒸気力が変化する幅は従来構造の場合における
変化の幅の約55%に低減し、動翼の振動は大幅に抑制
できる。
In this case, the width of change in steam power is reduced to about 55% of the width of change in the case of the conventional structure, and vibration of the rotor blades can be significantly suppressed.

以−トの実施例に43いては、蒸気噴出域の両端部にJ
3いて噴出づる蒸気iflを抑制する構造を採用してい
るので動翼が蒸気噴出域に進入または通過覆るとぎに受
ける反力、または衝撃力を大幅に低減できる。従って、
部分送入方式を採用した高性能低負荷運転において、動
翼の振動レベルを低減し、amおよびロータの信頼性を
大幅に向上することができる。
In the following embodiment, J is installed at both ends of the steam ejection area.
3. Since the structure is adopted to suppress the steam ifl ejected, the reaction force or impact force received when the rotor blade enters or passes through the steam ejection region can be significantly reduced. Therefore,
In high-performance, low-load operation using the partial feed method, the vibration level of the rotor blades can be reduced and the reliability of the AM and rotor can be significantly improved.

次に他の実施例を第5図および第6図に従って説明する
Next, another embodiment will be described with reference to FIGS. 5 and 6.

まず第5図は蒸気通路の高さがそれぞれhl。First, in Figure 5, the height of the steam passage is hl.

h2の2種類の静翼セグメントを連設して静翼群を形成
した場合であり、蒸気通路の高さが低い静翼セグメント
を静舊群の両端近傍に配設している。
This is a case where two types of stator vane segments h2 are arranged in series to form a stator blade group, and the stator blade segments with low height steam passages are arranged near both ends of the stator blade group.

この場合、製作する静翼セグメントは2種類だけであり
、第1図のように蒸気通路の高さを滑らかに変化させる
場合と比較して静翼セグメントの種類が少なく製作が簡
略化されコストも低減きれる。
In this case, only two types of stator blade segments are manufactured, and compared to the case where the height of the steam passage is changed smoothly as shown in Figure 1, there are fewer types of stator blade segments, simplifying manufacturing and reducing costs. Can be reduced.

第6図は、静′y2群の両端部に配設した蒸気通路の閉
塞部13を各静翼セグメン1〜12の半径方向の内側に
設けた場合を示す。この場合においても第1図の実施例
の場合と同様な作用効果を17ることができる。
FIG. 6 shows a case in which the steam passage closing portions 13 disposed at both ends of the stator vane segments 1 to 12 are provided inside each of the stator vane segments 1 to 12 in the radial direction. In this case as well, the same effects as in the embodiment shown in FIG. 1 can be obtained.

(発明の効果) 以上の通り、本発明の調速段落構造によれば、円弧状に
形成した静翼群の中央部分に配設した静翼セグメントの
酒気通路の高さを大きく、一方円弧の両端部に配設した
静m tグメントの蒸気通路の高さを小ざく設定してい
るため、静!X! I!¥の両端部を通過する動翼に作
用する衝撃力が大幅に減少する。従って動Vりおよびロ
ータの振動による疲労、強度低下を防止し、蒸気タービ
ン全体の信頼性を向上でさる。特に部分送入方式を採用
しlζ低(1荷運転を行う場合の蒸気タービンの信頼性
を大幅に向上できる。
(Effects of the Invention) As described above, according to the regulating stage structure of the present invention, the height of the alcohol passage of the stator vane segment disposed at the center of the arc-shaped stator blade group is increased, while the height of the stator vane segment is increased. The height of the steam passages of the static components installed at both ends are set small, so it is quiet! X! I! The impact force acting on the rotor blade passing through both ends of the blade is significantly reduced. Therefore, fatigue and strength deterioration due to dynamic torque and rotor vibration are prevented, and the reliability of the steam turbine as a whole is improved. In particular, by adopting a partial feed system, the reliability of the steam turbine can be greatly improved when performing low lζ (one load operation).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実711!i例を示″81断面図
、第2図は、静翼セグメントの形状を例示する斜視図、
第3図は、第1図にJ3けるII[−I[[矢視斯面図
、第4図は、本発明の調速段落構造に、13いて動翼に
動く蒸気力を示すグラフ、第5図および第6図は、池の
実施例を示′?l′断面図、第7図は、従来の蒸気ター
ビンの烹気流入部の構造を示す断面図、第8図は、第7
図における■−■矢視所面図、第9図は、静翼を通過す
る蒸気流の状態と動Wに作用する蒸気力の関係を示す断
面図、第10図は、従来の調速段落構造においてS V
 t、:動く蒸気力を示すグラフである。 1・・・蒸気入口管、2・・・蒸気、3・・・タービン
ケーシング、4・・・ノズルボックス、5・・・静翼、
6・・・タービンロータ、7・・・動翼、8・・・仕切
壁、9,9a 、 9 b 、 9 C,9d−然51
Fc、10−;fl気流、11・・・回転方向、12・
・・静翼セグメント、13・・・閉塞部、14・・・蒸
気通路、15・・・溶接量先部、16・・・分散蒸気流
、17・・・分散蒸気流、H・・・静翼の蒸気通路高さ
、h、h、、、h3・・・静翼の急気通路高さ、W・・
・悪気噴出域、L、L、13゜し4.L5.L、、L7
・・・動翼位置。 出願人代理人   波 多 野   久渠 1 目 手3図 第4図 1町グメシイ了I置;L 羊10  旧 茶5 図 ℃θ 国 準 6 図 羊 9 面
Figure 1 shows the fruit of the present invention 711! Fig. 2 is a perspective view illustrating the shape of the stator blade segment;
FIG. 3 is a plane view of II[-I[[arrow in FIG. Figures 5 and 6 show examples of ponds. 7 is a sectional view showing the structure of the hot air inlet of a conventional steam turbine, and FIG.
9 is a cross-sectional view showing the relationship between the state of the steam flow passing through the stationary blades and the steam force acting on the dynamic W, and FIG. 10 is a view of the conventional speed regulating stage. In the structure S V
t: is a graph showing moving steam power. DESCRIPTION OF SYMBOLS 1... Steam inlet pipe, 2... Steam, 3... Turbine casing, 4... Nozzle box, 5... Stationary blade,
6... Turbine rotor, 7... Moving blade, 8... Partition wall, 9, 9a, 9b, 9C, 9d-Nan 51
Fc, 10-; fl airflow, 11...rotation direction, 12.
...Stator blade segment, 13...Closed part, 14...Steam passage, 15...Welding amount tip, 16...Distributed steam flow, 17...Distributed steam flow, H...Static Steam passage height of blades, h, h, , h3... Height of steep air passage of stationary blades, W...
・Bad air ejection area, L, L, 13 degrees 4. L5. L,,L7
...Rotating blade position. Applicant's agent Hisaku Hatano 1 Figure 3 Figure 4 Figure 1 Town Gumeshii Ryo I Place;

Claims (1)

【特許請求の範囲】 1、蒸気タービンの第1段落ノズルボックス内に周方向
に配設した静翼を仕切壁によつて数群の静翼群に分割し
、各静翼群毎に蒸気を供給する蒸気入口管を接続し、低
負荷運転時には静翼群に供給する蒸気間を調整して負荷
調整を行う蒸気タービンの調速段落構造において、複数
の静翼セグメントを周方向に連設して構成される前記静
翼群の蒸気通路の周方向高さ分布を、上記静翼群の中央
部分に配設した静翼セグメントの蒸気通路の高さを大き
く、上記静翼群の両端部に配設される静翼セグメントの
蒸気通路の高さを小さく設定したことを特徴とする蒸気
タービンの調速段落構造。 2、静翼群は、蒸気通路の高さが異なる2種類の静翼セ
グメントから構成される特許請求の範囲第1項記載の蒸
気タービンの調速段落構造。 3、静翼セグメントの蒸気通路の周方向の高さ分布は、
静翼群内において、滑らかに変化することを特徴とする
特許請求の範囲第1項記載の蒸気タービンの調速段落構
造。
[Claims] 1. Stator blades arranged circumferentially in the first stage nozzle box of a steam turbine are divided into several groups of stator blades by a partition wall, and steam is supplied to each stator blade group. In the regulating stage structure of a steam turbine, the steam turbine is connected to the steam inlet pipe and adjusts the load by adjusting the amount of steam supplied to the stator blade group during low-load operation. The height distribution in the circumferential direction of the steam passage of the stator vane group is made such that the height of the steam passage of the stator vane segment disposed in the central part of the stator blade group is increased, and A speed regulating stage structure for a steam turbine, characterized in that the height of a steam passage of a stator vane segment is set small. 2. The regulating stage structure for a steam turbine according to claim 1, wherein the stationary blade group is composed of two types of stationary blade segments having different heights of steam passages. 3. The circumferential height distribution of the steam passage of the stator vane segment is:
2. The speed regulating stage structure of a steam turbine according to claim 1, wherein the speed regulating stage structure changes smoothly within the stationary blade group.
JP18200186A 1986-08-04 1986-08-04 Speed governing stage structure for steam turbine Pending JPS6338605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18200186A JPS6338605A (en) 1986-08-04 1986-08-04 Speed governing stage structure for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18200186A JPS6338605A (en) 1986-08-04 1986-08-04 Speed governing stage structure for steam turbine

Publications (1)

Publication Number Publication Date
JPS6338605A true JPS6338605A (en) 1988-02-19

Family

ID=16110586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18200186A Pending JPS6338605A (en) 1986-08-04 1986-08-04 Speed governing stage structure for steam turbine

Country Status (1)

Country Link
JP (1) JPS6338605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940383A (en) * 1989-07-21 1990-07-10 Westinghouse Electric Corp. System for admitting steam into a turbine
US6302644B1 (en) * 1999-02-04 2001-10-16 Abb Alstom Power (Schweiz) Ag Steam turbine
JP2008064091A (en) * 2006-09-06 2008-03-21 General Electric Co <Ge> Steam turbine nozzle box and steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940383A (en) * 1989-07-21 1990-07-10 Westinghouse Electric Corp. System for admitting steam into a turbine
US6302644B1 (en) * 1999-02-04 2001-10-16 Abb Alstom Power (Schweiz) Ag Steam turbine
JP2008064091A (en) * 2006-09-06 2008-03-21 General Electric Co <Ge> Steam turbine nozzle box and steam turbine
US7713023B2 (en) * 2006-09-06 2010-05-11 General Electric Company Steam turbine nozzle box and methods of fabricating

Similar Documents

Publication Publication Date Title
US7665964B2 (en) Turbine
JP5508008B2 (en) Impact turbine used in bidirectional flow
KR100755542B1 (en) Structures of turbine scroll
JP2009281197A (en) Mixed flow turbine
US8403630B2 (en) Blade shroud with fluid barrier jet generation
US3804335A (en) Vaneless supersonic nozzle
US4624104A (en) Variable flow gas turbine engine
WO2010047259A1 (en) Radial turbine scroll structure
KR20000012075A (en) High efficiency blade configuration for steam turbine
JPH09510527A (en) Noise reduction device for rotor pump
JPS6338605A (en) Speed governing stage structure for steam turbine
US20050175448A1 (en) Axial flow turbo compressor
JP5427900B2 (en) Mixed flow turbine
JP2007192180A (en) Turbine for turbocharger
JP6088134B2 (en) Supersonic compressor rotor and its assembly method
JPH01318790A (en) Flashing vane of multistage pump
JPH0738641Y2 (en) Multi-stage axial turbine
JP2001355592A (en) Mixed flow pump of high specific speed
JPH0758041B2 (en) Variable capacity nozzleless radial bottle
JP7361214B2 (en) Compressor housing and centrifugal compressor
JP7356285B2 (en) axial flow turbine
JP7288982B2 (en) turbine and turbocharger
JP7445004B2 (en) Compressor housing and centrifugal compressor
JPH10141003A (en) Nozzle flow straightening device for axial flow turbine stage
JP2000204908A (en) Axial turbine