JPS6338563A - Sheet having resistance to deformation at high temperature and its manufacture - Google Patents

Sheet having resistance to deformation at high temperature and its manufacture

Info

Publication number
JPS6338563A
JPS6338563A JP18199586A JP18199586A JPS6338563A JP S6338563 A JPS6338563 A JP S6338563A JP 18199586 A JP18199586 A JP 18199586A JP 18199586 A JP18199586 A JP 18199586A JP S6338563 A JPS6338563 A JP S6338563A
Authority
JP
Japan
Prior art keywords
rolling
rolled
sheet
deformation
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18199586A
Other languages
Japanese (ja)
Other versions
JPH0653918B2 (en
Inventor
Hiroyuki Seto
瀬戸 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP61181995A priority Critical patent/JPH0653918B2/en
Publication of JPS6338563A publication Critical patent/JPS6338563A/en
Publication of JPH0653918B2 publication Critical patent/JPH0653918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sheet having high resistance to deformation at high temp. and causing cracking in four directions when deformed in an Erichsen test by rolling an ingot in one direction until a specified draft is attained and by further rolling it to the final thickness in a direction perpendicular to the rolling direction. CONSTITUTION:When an Mo or W alloy ingot as stock for a panel heater is rolled to the final thickness at 100% draft, the stock is rolled in one direction until 76-84% draft is attained and then it is rolled to the final thickness in a direction perpendicular to the rolling direction. Thus, a sheet causing cracking 1 in four directions as shown by the figure when deformed in an Erichsen test is obtd. Since the grains of the stock are uniformly drawn in the longidudinal and lateral directions, the sheet reacts uniformly to strain and the grain boundaries have uniform strength. Accordingly, a panel heater having high resistance to deformation at high temp. is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は、耐高温変形性板材の製造方法に関し。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method of manufacturing a high temperature deformation resistant plate material.

特に圧延加工時における板材の結晶粒配列を並び変える
耐高温変形性板材の製造方法に関する。
In particular, the present invention relates to a method for manufacturing a plate material that is resistant to high temperature deformation and that changes the grain arrangement of the plate material during rolling.

[従来の技術] 一般に、 1300℃以上の高温度における真空炉。[Conventional technology] Generally, a vacuum furnace at a high temperature of 1300°C or higher.

還元雰囲気炉、及び不活性ガス炉等の加熱ヒータには、
高融点材料であるモリブデン又はタングステンが使用さ
れ、炉内の温度分布の状態を均一化するために、線、棒
、撚線、板等の加熱ヒータの形状が1選択される。
Heaters for reducing atmosphere furnaces, inert gas furnaces, etc.
Molybdenum or tungsten, which is a high melting point material, is used, and the shape of the heater, such as a wire, rod, stranded wire, or plate, is selected in order to equalize the temperature distribution inside the furnace.

ところが、炉によっては、所定温度に対して。However, depending on the furnace, for a given temperature.

±0.1%(例えば、 1500℃±0.15°C)も
の精度を要求されるものもあり、このとき、加熱ヒータ
を通電加熱しているうちに、ねじり1反り、及び垂下等
の変形が生じると、被加熱物と加熱ヒータとの距離が変
化し、温度分布の均一さを損なうことになる。
Some products require an accuracy of ±0.1% (for example, 1500°C ±0.15°C), and at this time, deformations such as twisting, warping, and drooping may occur while the heater is energized and heated. When this occurs, the distance between the object to be heated and the heater changes, which impairs the uniformity of temperature distribution.

[発明が解決しようとする問題点コ しかしながら、従来、加熱ヒータの素材であるモリブデ
ン及びタングステン材は、鍛造、転打。
[Problems to be solved by the invention] However, conventionally, molybdenum and tungsten materials, which are the materials for heating heaters, have been forged or rolled.

線引き、圧延等の塑性加工を受けており、このため、板
材内部に発生する残留歪みが不均一であり。
The plate has been subjected to plastic processing such as wire drawing and rolling, and as a result, the residual strain that occurs inside the plate is uneven.

精度の高い温度分布が要求される炉には、不適当である
It is unsuitable for furnaces that require highly accurate temperature distribution.

特に、加熱ヒータの形状が板状の場合には、池の形状の
場合とは異なり、広範囲の温度の均熱ゾーンをノ要とさ
れる炉に使用されるため、その耐高温変形性の改善の要
請が高いのが実情である。
In particular, plate-shaped heaters are used in furnaces that require a soaking zone with a wide range of temperatures, unlike pond-shaped heaters, which improves their high-temperature deformation resistance. The reality is that there is a high demand for this.

そこで9本発明の目的は、上記欠点に鑑み、耐高温変形
性の高い板材及びその製造方法を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks, an object of the present invention is to provide a plate material with high resistance to high temperature deformation and a method for manufacturing the same.

[問題点を解決するための手段] 本発明によれば、板材をエリクセン値以上に変形して得
られる割れ面のうち、該割れ面の割れ方向性が、四方向
を呈することを特徴とする耐高温変形性板材かえられる
[Means for solving the problem] According to the present invention, among the crack surfaces obtained by deforming the plate material to a value equal to or higher than the Erichsen value, the crack directionality of the crack surface exhibits four directions. High temperature deformation resistant plate material can be replaced.

さらに、 本発明によれば、インゴットから最終板厚ま
での圧延加工の加工率で、該加工率76〜84%までは
、一方向に圧延加工し、その後。
Furthermore, according to the present invention, the processing rate of rolling from the ingot to the final plate thickness is 76% to 84%, and then rolling is performed in one direction.

前記圧延方向に対して直角方向に圧延加工することを特
徴とする耐高温変形性板材の製造方法が得られる。
A method for manufacturing a high temperature deformation resistant plate material is obtained, which is characterized in that rolling is carried out in a direction perpendicular to the rolling direction.

[実施例] 本発明の実施例について図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

まず1本板状加熱ヒータの素材であるモリブデン、タン
グステン、又はそれらの合金を圧延加工時において、そ
の素材のインゴットから最終板厚までの加工率を100
%とし、所定の加工率までは。
First, when rolling molybdenum, tungsten, or their alloys, which are the materials for a plate heater, the processing rate from the ingot to the final thickness of the material is 100%.
%, up to the specified processing rate.

一方向に圧延加工し、その後、先の圧延加工方向に対し
て、直角方向に再圧延(以下、クロスロールと呼ぶ)シ
、板材を加工する。
The plate material is rolled in one direction, and then re-rolled (hereinafter referred to as cross-rolling) in a direction perpendicular to the previous rolling direction.

具体的は、インゴットの板厚をTo、最終板厚をto、
 クロスロールするさいの板厚をtxとした場合。
Specifically, the thickness of the ingot is To, the final thickness is to,
When the plate thickness during cross-rolling is tx.

次式に示される板厚の範囲でクロスロールを行うもので
ある。
Cross rolling is performed within the thickness range shown by the following formula.

tx=ETo+(1−E) to・・・(a)但し、 
 0.1G≦E≦0.24 例えば、 Toからto迄の60%加工率時のtxは。
tx=ETo+(1-E) to...(a) However,
0.1G≦E≦0.24 For example, tx at 60% machining rate from To to to.

tx=0.4(To −to)+t。tx=0.4(To-to)+t.

=0.4To +0.8to・・・(b)で表される。=0.4To+0.8to...(b)

次に、 txからto迄の40〜60%加工時のtxは
Next, tx at 40-60% machining from tx to to.

tx=0.40〜0.H(tx −to) 十to・・
・(c)で表される。
tx=0.40~0. H (tx -to) ten to...
-Represented by (c).

ここで、(C)式に(b)式を代入すると。Here, if we substitute equation (b) into equation (C).

tx=0.4 〜O,GE(0,4TO+0.6tO)
−Toコ +t。
tx=0.4 ~O, GE (0,4TO+0.6tO)
-Toko +t.

=0.4〜0.6(0,4To −0,4to)+t。=0.4-0.6(0,4To-0,4to)+t.

=E (To−to )+t。=E (To-to)+t.

=ETo+ (1−E) t。=ETo+(1-E)t.

となる。becomes.

次に、板材を、該板材のエリクセン値以上に変形して得
られる割れ面のうち、該割れ面の割れ方向性を測定し、
該割れ方向性に基づいて、前記板材の耐高温変形性を試
験する耐高温変形性試験を行った。
Next, among the crack surfaces obtained by deforming the plate material to a value higher than the Erichsen value of the plate material, the crack directionality of the crack surface is measured,
Based on the crack directionality, a high temperature deformation resistance test was conducted to test the high temperature deformation resistance of the plate material.

ます9表1に示すとおり、公知の粉末冶金法によって得
られた厚みの異なる(30mm、2θam、101mm
)3種類のモリブデンのインゴットに、熱間、温間。
As shown in Table 1, samples of different thicknesses (30 mm, 2θam, 101 mm) obtained by the known powder metallurgy method
) Three types of molybdenum ingots, hot and warm.

冷間圧延及び中間焼鈍を繰り返し施し、しかも。Repeated cold rolling and intermediate annealing.

各インゴットに圧延を施す際に9本発明に係わるE値で
規定されるクロスロールで圧延加工された板材Ab、B
b、Cbと、E値以外のクロスロールで圧延加工された
板材Ac+  Bc+ Ccと、一方向圧延加工(以下
、ストレートロールと呼ぶ)された板材A a + B
 b + Ccとに分け、最終仕上厚み迄の加圧をおこ
なう。
When rolling each ingot, plate materials Ab and B are rolled with cross rolls defined by the E value according to the present invention.
b, Cb, plate material Ac + Bc + Cc rolled with cross rolls other than E value, and plate material A a + B rolled in one direction (hereinafter referred to as straight roll)
Divide into b + Cc and pressurize to the final finished thickness.

次に、第1図に示すとおり、各圧延仕上された板材を、
  JIS  B7729のエリクセン値より3mm深
く、エリクセン試験用圧子球を押し出し1割れ面1を得
る。
Next, as shown in Figure 1, each rolled plate material is
An indenter ball for Erichsen test is extruded 3 mm deeper than the Erichsen value of JIS B7729 to obtain 1 crack surface 1.

第2図に示すとおり9表1に示した各板材より得られた
割れ面の割れ方向性は、Ab、Bb、Cbの板材では、
四方向を呈しており、他の板材では、二方向又は三方向
を呈している。即ち、E値で規定されるクロスロールを
施したAb、Bb。
As shown in Figure 2, the crack directionality of the crack surface obtained from each plate shown in Table 1 is as follows for Ab, Bb, and Cb plates:
It has four directions; other plates have two or three directions. That is, Ab and Bb are subjected to a cross roll defined by the E value.

cbの板材では、圧延された板材の結晶粒が、縦横に均
一に延ばされるため、歪みに対し均一に反応し、結晶粒
界の強度が均一であるためである。
This is because in the cb plate, the crystal grains of the rolled plate are uniformly stretched vertically and horizontally, so they react uniformly to strain, and the strength of the grain boundaries is uniform.

次に、第3図に示す通り、他の耐高温変形性試験方法に
より9表1に示した各板材を20mm幅X20Qmm長
さの板状に切断し、真空炉3内にヒータ材2として取り
付け、真空度I X 10  Torr、加熱温度17
00度、保持時間10Hrの加熱条件を施した。その後
、冷却したモリブデン板2を取り出し、その最大変形量
を、第4図に示すとおり。
Next, as shown in FIG. 3, each plate shown in Table 1 was cut into a plate shape of 20 mm width x 20 Q mm length using another high temperature deformation resistance test method, and installed as heater material 2 in vacuum furnace 3. , vacuum degree I x 10 Torr, heating temperature 17
The heating conditions were 00 degrees Celsius and a holding time of 10 hours. Thereafter, the cooled molybdenum plate 2 was taken out, and its maximum deformation amount was determined as shown in FIG.

測定した。その結果を表2に示す。It was measured. The results are shown in Table 2.

表−1 以下糸口 表−2 [発明 効果] 本発明によれば、E値に規定されるクロスロールで圧延
加工することにより、耐高温変形性の高い板材及びその
製造方法を提供することができる。
Table-1 The following is a clue table-2 [Invention Effect] According to the present invention, by rolling with cross rolls defined by the E value, it is possible to provide a plate material with high high temperature deformation resistance and a method for manufacturing the same. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の実施例による板材の割れ而の斜視図
、第2図は1本発明の実施例による割れ面の割れ方向性
をしめず概略図、第3図は、従来の耐高温変形性試験方
法の概略図、第4図は、最大変形量の測定方法の概略図
である。 1・・・割れ面、2・・・モリブデン板、3・・・真空
炉。 代理人(7783)弁理士池田憲保 第1図 第2図 −一一一一−aS冬ロール方向
Fig. 1 is a perspective view of a plate material cracked according to an embodiment of the present invention, Fig. 2 is a schematic diagram without showing the crack direction of the crack surface according to an embodiment of the present invention, and Fig. 3 is a conventional A schematic diagram of the high temperature deformability test method, FIG. 4 is a schematic diagram of the method of measuring the maximum amount of deformation. 1... Cracked surface, 2... Molybdenum plate, 3... Vacuum furnace. Agent (7783) Patent Attorney Noriyasu Ikeda Figure 1 Figure 2-1111-aS Winter Roll Direction

Claims (1)

【特許請求の範囲】 1)板材をエリクセン値以上に変形して得られる割れ面
のうち、該割れ面の割れ方向性が、四方向を呈すること
を特徴とする耐高温変形性板材。 2)インゴットから最終板厚までの圧延加工の加工率で
、該加工率76〜84%までは、一方向に圧延加工し、
その後、前記圧延方向に対して直角方向に圧延加工する
ことを特徴とする耐高温変形性板材の製造方法。
[Scope of Claims] 1) A high-temperature deformation-resistant plate material, characterized in that among the crack surfaces obtained by deforming the plate material to a value greater than the Erichsen value, the crack directions of the crack surfaces exhibit four directions. 2) The processing rate of rolling from the ingot to the final plate thickness, the processing rate of 76 to 84% is rolling in one direction,
A method for manufacturing a high temperature deformation resistant plate material, which is then rolled in a direction perpendicular to the rolling direction.
JP61181995A 1986-08-04 1986-08-04 Method for manufacturing high temperature deformation resistant plate material Expired - Lifetime JPH0653918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181995A JPH0653918B2 (en) 1986-08-04 1986-08-04 Method for manufacturing high temperature deformation resistant plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181995A JPH0653918B2 (en) 1986-08-04 1986-08-04 Method for manufacturing high temperature deformation resistant plate material

Publications (2)

Publication Number Publication Date
JPS6338563A true JPS6338563A (en) 1988-02-19
JPH0653918B2 JPH0653918B2 (en) 1994-07-20

Family

ID=16110483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181995A Expired - Lifetime JPH0653918B2 (en) 1986-08-04 1986-08-04 Method for manufacturing high temperature deformation resistant plate material

Country Status (1)

Country Link
JP (1) JPH0653918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574749B2 (en) 2004-05-20 2009-08-18 Mizuno Corporation Catching tool and method of designing catching tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583761A (en) * 1981-07-01 1983-01-10 Nippon Steel Corp Roll device for continuous casting machine
JPS6137944A (en) * 1984-07-30 1986-02-22 Toshiba Corp Manufacture of molybdenum plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583761A (en) * 1981-07-01 1983-01-10 Nippon Steel Corp Roll device for continuous casting machine
JPS6137944A (en) * 1984-07-30 1986-02-22 Toshiba Corp Manufacture of molybdenum plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574749B2 (en) 2004-05-20 2009-08-18 Mizuno Corporation Catching tool and method of designing catching tool

Also Published As

Publication number Publication date
JPH0653918B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
CN101503770B (en) Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
CN101857950B (en) Tantalum sputtering target
CN106955892B (en) Method for producing Fe-Ni alloy thin plate
CN111647802B (en) Preparation method of hot stamping component coated with aluminum-silicon alloy coating and product thereof
CN109468561A (en) A kind of preparation method of GH3625 alloy strip steel rolled stock
JPH07252617A (en) Production of titanium alloy having high strength and high toughness
JPS6338563A (en) Sheet having resistance to deformation at high temperature and its manufacture
US3496755A (en) Method for producing flat-rolled product
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JP4108943B2 (en) Molybdenum sintered body, molybdenum plate material, and manufacturing method thereof
JPS62133053A (en) Heat treatment of titanium-alloy rolled plate
JPH0754093A (en) Molybdenum material and production thereof
EP2236240B1 (en) Method for manufacturing an aluminium device, comprising a brazing and a preheating step
JPH05295502A (en) Production of alpha plus beta titanium alloy sheet for superplastic working
CN114959230A (en) Copper-nickel-tin alloy strip or plate and preparation method thereof
CN112143947B (en) High-strength aluminum alloy material and production process thereof
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
JPH11335803A (en) Production of near beta type titanium alloy coil
JP2000080417A (en) Manufacture of hot rolled austenitic stainless steel strip
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
JPH0776411B2 (en) Method for manufacturing thin-walled high-strength blind aluminum material
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPS62136525A (en) Production of ferritic stainless steel having excellent surface characteristic and formability
KR20230095259A (en) Method for manufacturing thin titanium plates with fine and equiaxed grains and thin titanium plates manufactured by using the same
JPS6240336A (en) Ni-fe-cr alloy sheet material superior in cold formability and its manufacture