JPS6338377B2 - - Google Patents

Info

Publication number
JPS6338377B2
JPS6338377B2 JP55073793A JP7379380A JPS6338377B2 JP S6338377 B2 JPS6338377 B2 JP S6338377B2 JP 55073793 A JP55073793 A JP 55073793A JP 7379380 A JP7379380 A JP 7379380A JP S6338377 B2 JPS6338377 B2 JP S6338377B2
Authority
JP
Japan
Prior art keywords
rubber
weight
vulcanized
granular
polybutadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073793A
Other languages
Japanese (ja)
Other versions
JPS57148A (en
Inventor
Toshio Honda
Yukio Fukura
Hikari Ishikawa
Tadashi Fuse
Setsuo Akyama
Toshio Naito
Itsuo Tanuma
Masao Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP7379380A priority Critical patent/JPS57148A/en
Publication of JPS57148A publication Critical patent/JPS57148A/en
Publication of JPS6338377B2 publication Critical patent/JPS6338377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粒状加硫ゴムを未加硫ゴム組成物中に
混入したゴム組成物に関するものである。 タイヤ等のゴム製品は、加硫時にモールドのベ
ントホールに流動して形成されるいわゆるスピユ
ーゴムを取り除いて出荷される。このスピユーゴ
ムは従来産業廃棄物として埋立あるいは焼却等の
処分が行われていたが、ゴム製品の生産の増加に
伴いその発生量も増大し、このため環境汚染に対
する配慮あるいは資源の有効利用という社会的要
請を考慮した場合好ましい方法とは言い難い。 本発明者らはスピユーゴムの再利用につき種々
検討を加えた結果、ある一定の比表面積より小さ
い粒状加硫ゴムを、ポリブタジエンを必須成分と
する未加硫ゴム組成物マトリツクス中に混入し、
加硫してなるゴム組成物が粒状ゴムの混入率が極
めて高い場合でもすぐれた物性を有することを見
出し本発明を達成するに至つた。 すなわち本発明は必須成分としてポリブタジエ
ン20〜85重量%を含み、かつ天然および/または
合成シス−1,4−ポリイソプレンおよびスチレ
ン−ブタジエン共重合体の少なくとも1種を混合
してなる未加硫ゴム組成物マトリツクス中に未加
硫ゴム成分100重量部当り比表面積50cm2/g以下
の粒状加硫ゴム1000〜4000重量部および硫黄を3
〜40重量部配合し加硫してなることを特徴とする
ゴム組成物に係る。 本発明のゴム組成物は、従来の粒状ないしは粉
末ゴムを混入して形成したゴム組成物と異なり、
粒状ゴムを大量に混入しても耐摩耗性、耐屈曲性
および破断強度などの物性を満足できる水準に保
つことができるのでスピユーゴムの再利用という
面で価値が高い。本発明のゴム組成物は種々の用
途に適しているが、なかでも紳士靴等の靴底とし
て使用した場合、長期の使用に対し従来の靴底よ
りもすぐれた耐摩耗性、耐クラツク性を示し、か
つ柔軟性が高いのではき心地が良く歩行による疲
れが少ない等極めてすぐれた効果を発揮する。靴
底以外に弾性マツトや鉄道スラブマツトなどにも
本発明のゴム組成物を用いることができる。 以下本発明を詳細に説明する。 未加硫ゴム組成物マトリツクスは必須成分とし
てポリブタジエン20〜85重量%を含み、かつ天然
また合成シス−1,4−ポリイソプレンおよびス
チレン−ブタジエン共重合体の少なくとも1種を
混合したものである。 ポリブタジエンとしてはシス−1,4−ポリブ
タジエンおよびシンジオタクチツク1,2−ポリ
ブタジエンが好適に使用されるが、トランス−
1,4−構造等上記以外の構造が30重量%以下含
まれるポリマーも同様に用いられる。 天然および/または合成シス−1,4−ポリイ
ソプレンとして好適に使用されるのは天然ゴム、
およびシス−1,4結合を90%以上含有する合成
ポリイソプレンである。またスチレン−ブタジエ
ン共重合体はスチレン成分の含有量が10〜70重量
%のものが一般的に用いられるが、中でも25重量
%のものが好適に用いられる。 上記未加硫ゴム組成物は必須成分として20〜85
重量%のポリブタジエンを含む。ポリブタジエン
の含有量が20重量%より少ないと耐屈曲性能が劣
り、また85重量%より多くなると破断強度が劣り
好ましくない。また天然および/または合成シス
−1,4−ポリイソプレンの含有率は50重量%以
下、さらにスチレン−ブタジエン共重合体の含有
率も50重量%以下とした場合、混入した粒状加硫
ゴムとの接着性が良好でかつ耐摩耗性、耐屈曲
性、破断強度等の機械的性能のバランスが優れて
いる。これらの範囲の中でもポリブタジエン30〜
80重量%、天然および/または合成シス−1,4
−ポリイソプレン20〜40重量%、スチレン−ブタ
ジエンゴム0〜40重量%の場合上記諸特性のバラ
ンスは最も良好である。 前記未加硫ゴム組成物に混入する粒状加硫ゴム
は比表面積が50cm2/g以下でなければならない。
比表面積が50cm2/g以下の場合未加硫ゴムマトリ
ツクスのゴム成分100重量部に対し粒状加硫ゴム
を1000重量部以上混入しても耐摩耗性の低下が起
らず、また耐屈曲性および破断強度も満足できる
水準を保ち得る。しかし粒状加硫ゴムが4000重量
部を越えると加硫ゴム同志の接着がよくなくなる
ので、粒状加硫ゴムは1000〜4000重量部の範囲で
配合する。粒状加硫ゴムの比表面積が50cm2/g以
上の場合は少量部数の混入度では物性の低下は目
だたないが1000重量部以上混入した場合には種々
の物性の低下が著しくなる。 粒状加硫ゴムは、天然ゴム、ポリイソプレンゴ
ム、ボリブタジエンゴムおよびスチレン−ブタジ
エンゴムから選ばれた少なくとも1種を主成分と
することが好ましい。これ以外のゴム成分、例え
ばエチレン−プロピレンゴム、アクリロニトリル
−ブタジエンゴム等を全ゴム成分の20重量%以内
の範囲で含む加硫ゴムも上記と同様好適に使用さ
れる。これ等の粒状加硫ゴムとしては通常スピユ
ーゴム、廃タイヤ等のゴム製品を粉砕して粒状と
したもの等が使用される。 本発明のゴム組成物は硫黄によつて加硫され
る。通常の未加硫ゴムと異なり、本発明において
は加硫中に硫黄が粒状加硫ゴム中に含浸され未加
硫ゴムマトリツクス中の硫黄の濃度が低下し、加
硫度の不足をもたらすので、粒状加硫ゴムの配合
量により変化するが、硫黄は3〜40重量部を配合
することが必要である。 上記未加硫ゴム組成物には加硫促進剤、軟化
剤、老化防止剤、樹脂、ワツクス、カーボンブラ
ツク、および無機充填剤等通常ゴムに加えられる
配合剤を適宜加えることができる。 未加硫ゴムと粒状加硫ゴムの混練方法は通常の
バンバリーミキサー、ニーダー、オープンロール
等の混練装置を用いて混合することができる。混
練ゴムは粒状の加硫ゴム成分が多いためペレツト
状になりやすいため次の加硫工程での作業性が良
好となる。 加硫は通常の装置で行ない得るが、靴底等の一
体物を加硫する場合には平モールドによる成型よ
りもトランスフアー成型、あるいは射出成型の方
が寸法精度の良い製品を作るのに好適である。 実施例 1 表1に示すような天然ゴム、スチレン−ブタジ
エンゴム、およびポリブタジエンゴムを等量配合
した未加硫ゴム組成物にタイヤ工場から出た天然
ゴムおよびスチレン−ブタジエンゴムを主体とし
た比表面積約23cm2/gのスピユーゴム(平均大き
さ、直径2mm、長さ10mm)および硫黄(表2)を
混練し、次いで温度160℃、プレス圧50Kg/cm2
条件下で20分間加硫して厚さ2mmの加硫ゴムシー
ト、屈曲試験用試料ならびに摩耗試験用試料を得
た。
The present invention relates to a rubber composition in which granular vulcanized rubber is mixed into an unvulcanized rubber composition. Rubber products such as tires are shipped after removing so-called spill rubber, which is formed by flowing into the vent holes of a mold during vulcanization. Traditionally, this spew rubber was disposed of as industrial waste, such as by landfill or incineration, but as the production of rubber products increases, the amount of spew rubber generated has increased, and as a result, social issues such as consideration for environmental pollution and effective use of resources are being made. Considering the request, it is hard to say that this is a preferable method. The present inventors conducted various studies on the reuse of spilled rubber, and as a result, mixed granular vulcanized rubber smaller than a certain specific surface area into an unvulcanized rubber composition matrix containing polybutadiene as an essential component,
The present invention has been accomplished by discovering that a rubber composition obtained by vulcanization has excellent physical properties even when the proportion of granular rubber is extremely high. That is, the present invention provides an unvulcanized rubber containing 20 to 85% by weight of polybutadiene as an essential component and mixed with at least one of natural and/or synthetic cis-1,4-polyisoprene and styrene-butadiene copolymer. In the composition matrix, 1000 to 4000 parts by weight of granular vulcanized rubber with a specific surface area of 50 cm 2 /g or less and 3 parts by weight of sulfur are added per 100 parts by weight of the unvulcanized rubber component.
It relates to a rubber composition characterized by being blended with ~40 parts by weight and vulcanized. The rubber composition of the present invention differs from conventional rubber compositions formed by mixing granular or powdered rubber,
Even if a large amount of granular rubber is mixed in, the physical properties such as abrasion resistance, bending resistance, and breaking strength can be maintained at a satisfactory level, so the spew rubber is of high value in terms of reuse. The rubber composition of the present invention is suitable for various uses, but especially when used as the sole of men's shoes, it exhibits superior abrasion resistance and crack resistance for long-term use compared to conventional shoe soles. It has excellent flexibility and is comfortable to wear, reducing fatigue when walking. In addition to shoe soles, the rubber composition of the present invention can also be used for elastic mats, railway slab mats, and the like. The present invention will be explained in detail below. The unvulcanized rubber composition matrix contains 20 to 85% by weight of polybutadiene as an essential component and is a mixture of at least one of natural or synthetic cis-1,4-polyisoprene and styrene-butadiene copolymer. As the polybutadiene, cis-1,4-polybutadiene and syndiotactic 1,2-polybutadiene are preferably used, but trans-1,4-polybutadiene is preferably used.
Polymers containing 30% by weight or less of structures other than the above, such as the 1,4-structure, can also be used in the same manner. Preferably used as natural and/or synthetic cis-1,4-polyisoprene are natural rubber,
and synthetic polyisoprene containing 90% or more of cis-1,4 bonds. Furthermore, a styrene-butadiene copolymer having a styrene component content of 10 to 70% by weight is generally used, and among them, a styrene component content of 25% by weight is preferably used. The above unvulcanized rubber composition has 20 to 85% as an essential component.
% by weight of polybutadiene. If the polybutadiene content is less than 20% by weight, the bending resistance will be poor, and if it is more than 85% by weight, the breaking strength will be poor, which is not preferable. In addition, when the content of natural and/or synthetic cis-1,4-polyisoprene is 50% by weight or less, and the content of styrene-butadiene copolymer is also 50% by weight or less, the content of the mixed granular vulcanized rubber is It has good adhesion and an excellent balance of mechanical properties such as abrasion resistance, bending resistance, and breaking strength. Among these ranges, polybutadiene 30~
80% by weight, natural and/or synthetic cis-1,4
- The balance of the above properties is the best when polyisoprene is 20 to 40% by weight and styrene-butadiene rubber is 0 to 40% by weight. The granular vulcanized rubber mixed into the unvulcanized rubber composition must have a specific surface area of 50 cm 2 /g or less.
When the specific surface area is 50 cm 2 /g or less, even if 1,000 parts by weight or more of granular vulcanized rubber is mixed into 100 parts by weight of the rubber component of the unvulcanized rubber matrix, the abrasion resistance will not decrease, and the bending resistance will not decrease. The toughness and breaking strength can also be maintained at a satisfactory level. However, if the granular vulcanized rubber exceeds 4000 parts by weight, the adhesion between the vulcanized rubbers will not be good, so the granular vulcanized rubber is blended in an amount in the range of 1000 to 4000 parts by weight. When the specific surface area of the granular vulcanized rubber is 50 cm 2 /g or more, there is no noticeable deterioration in physical properties when a small amount is incorporated, but when 1000 parts by weight or more is mixed, various physical properties are significantly deteriorated. The granular vulcanized rubber preferably has at least one selected from natural rubber, polyisoprene rubber, polybutadiene rubber, and styrene-butadiene rubber as a main component. Vulcanized rubbers containing other rubber components such as ethylene-propylene rubber, acrylonitrile-butadiene rubber, etc. within 20% by weight of the total rubber components are also suitably used as described above. As these granular vulcanized rubbers, granules obtained by crushing rubber products such as spew rubber and waste tires are usually used. The rubber composition of the present invention is vulcanized with sulfur. Unlike ordinary unvulcanized rubber, in the present invention, sulfur is impregnated into the granular vulcanized rubber during vulcanization, reducing the concentration of sulfur in the unvulcanized rubber matrix, resulting in insufficient vulcanization. The amount of sulfur required varies depending on the amount of granular vulcanized rubber blended, but it is necessary to blend 3 to 40 parts by weight of sulfur. Compounding agents commonly added to rubber, such as vulcanization accelerators, softeners, anti-aging agents, resins, waxes, carbon black, and inorganic fillers, can be appropriately added to the unvulcanized rubber composition. The unvulcanized rubber and the granular vulcanized rubber can be kneaded using a conventional kneading device such as a Banbury mixer, a kneader, or an open roll. Since the kneaded rubber contains many particulate vulcanized rubber components, it is easy to form into pellets, which improves workability in the next vulcanization step. Vulcanization can be carried out using normal equipment, but when vulcanizing an integral object such as the sole of a shoe, transfer molding or injection molding is more suitable for producing products with better dimensional accuracy than flat molding. It is. Example 1 The specific surface area of an unvulcanized rubber composition containing equal amounts of natural rubber, styrene-butadiene rubber, and polybutadiene rubber as shown in Table 1, mainly composed of natural rubber and styrene-butadiene rubber from a tire factory, was Approximately 23cm 2 /g of Spiyu rubber (average size, diameter 2mm, length 10mm) and sulfur (Table 2) were kneaded and then vulcanized for 20 minutes at a temperature of 160°C and a press pressure of 50Kg/cm 2 . A vulcanized rubber sheet with a thickness of 2 mm, a sample for a bending test, and a sample for an abrasion test were obtained.

【表】 加硫物の物性評価はJIS K−6301に準じて行つ
た。 屈曲試験は次のような条件で行つた。デマーチ
ヤ型の試料に通常は傷を入れて行うが本法では傷
を入れない状態で屈曲試験機(最長距離7.48cm、
最短距離1.88cm、300回屈曲/分)に取り付け1
万回後の試験片に発生するクラツクの有無および
発生した傷の大きさの具合により次の7段階に分
類して評価を行つた。評点 発生状況 7:クラツク発生なし 6:0.1〜0.2mmクラツク(1ケ発生) 5:0.3〜0.5mm 〃 (1ケ発生) 4:0.6〜1.0mm 〃 (1〜3ケ発生) 3:1.0〜5.0mm 〃 (1〜5ケ発生) 2:5.0〜 20mm 〃 (1〜10ケ発生) 1:全カツト 摩耗試験はランボーン型摩耗試験機を用いて、
荷重5Kg、グラインダーの回転数380回/分、試
料の回転数540回/分、スリツプ比+40%の条件
で予備磨り30秒、および本磨り180秒間後の1分
間当りの試料の容量変化を測定した。 以上の結果を表2に示す。
[Table] Physical properties of the vulcanizate were evaluated in accordance with JIS K-6301. The bending test was conducted under the following conditions. Usually, this is done by making a scratch on a Demartya-type sample, but in this method, we use a bending tester (maximum distance 7.48 cm,
Minimum distance 1.88cm, 300 bends/min) 1
After 10,000 cycles, the test pieces were classified into the following 7 grades depending on the presence or absence of cracks and the size of the scratches. Rating situation 7: No cracks 6: 0.1~0.2mm cracks (1 crack occurred) 5: 0.3~0.5mm 〃 (1 crack occurred) 4: 0.6~1.0mm 〃 (1~3 cracks occurred) 3: 1.0~ 5.0mm 〃 (1 to 5 pieces occur) 2: 5.0 to 20mm 〃 (1 to 10 pieces occur) 1: All cuts The abrasion test was performed using a Lambourn type abrasion tester.
Measure the volume change of the sample per minute after 30 seconds of preliminary polishing and 180 seconds of main polishing under the conditions of load 5 kg, grinder rotation speed 380 times/minute, sample rotation speed 540 times/minute, and slip ratio +40%. did. The above results are shown in Table 2.

【表】 比較例 1 表1に示す配合の未加硫ゴム組成物に使用済み
の乗用車タイヤを粉砕して得られた比表面積約60
cm2/gの粒状粉末ゴム(平均大きさ30メツシユ)
および硫黄を混練し、実施例1と同じ条件で加硫
および評価を行つた。結果を表3に示す。
[Table] Comparative Example 1 A specific surface area of approximately 60 obtained by crushing used passenger car tires into an unvulcanized rubber composition having the formulation shown in Table 1.
cm 2 /g granular powder rubber (average size 30 mesh)
and sulfur were kneaded, and vulcanization and evaluation were performed under the same conditions as in Example 1. The results are shown in Table 3.

【表】【table】

【表】 実施例2、3および比較例2〜4 マトリツクス用未加硫ゴム組成物のポリマー成
分を変えた場合の配合組成物を作製し、実施例1
と同様の条件で加硫および評価を行つた。 配合および結果を表4に示す。
[Table] Examples 2 and 3 and Comparative Examples 2 to 4 Compound compositions were prepared in which the polymer components of the unvulcanized rubber composition for matrix were changed, and Example 1
Vulcanization and evaluation were carried out under the same conditions as above. The formulation and results are shown in Table 4.

【表】 実施例 4 表5に示すようにマトリツクス用未加硫ゴム組
成物に比表面積23cm2/gのスピユーゴムおよび硫
黄を混入した2種のゴム組成物からトランスフア
ーモールドを用いて160℃で30分間加硫しゴム製
靴底を作成した。そのゴム製靴底を用いて紳士用
革靴を各々10足づつ作製し1年間試履きして評価
試験を行つた。
[Table] Example 4 As shown in Table 5, two types of rubber compositions were prepared by mixing spew rubber with a specific surface area of 23 cm 2 /g and sulfur into an unvulcanized rubber composition for matrix at 160°C using a transfer mold. Rubber soles were created by vulcanization for 30 minutes. Using the rubber soles, 10 pairs of men's leather shoes were manufactured and evaluated by wearing them for one year.

【表】【table】

【表】 合成ゴム(スチレン−ブタジエンゴム)系の靴
底で顕著に認められる踵部の摩耗は本発明の靴底
では非常に少なく、偏摩耗も少なかつた。また屈
曲の激しい土踏まずの部分はクラツク等のトラブ
ルの発生はなかつた。さらにクツシヨン性、フイ
ツト性等靴底としてのフイーリングも好評を得
た。
[Table] Heel wear, which is noticeable in synthetic rubber (styrene-butadiene rubber) soles, was extremely low in the soles of the present invention, and uneven wear was also small. In addition, there were no problems such as cracks in the arch of the foot, which is severely bent. In addition, its cushioning, fit, and feel as a shoe sole were also well-received.

Claims (1)

【特許請求の範囲】[Claims] 1 必須成分としてポリブタジエン20〜85重量%
を含み、かつ天然および/または合成シス−1,
4−ポリイソプレンおよびスチレン−ブタジエン
共重合体の少なくとも1種を混合してなる未加硫
ゴム組成物マトリツクス中に未加硫ゴム成分100
重量部当り比表面積50cm2/g以下の粒状加硫ゴム
を1000〜4000重量部および硫黄を3〜40重量部配
合し加硫してなることを特徴とするゴム組成物。
1 20-85% by weight of polybutadiene as an essential component
and natural and/or synthetic cis-1,
100% unvulcanized rubber component in a matrix of an unvulcanized rubber composition prepared by mixing at least one of 4-polyisoprene and a styrene-butadiene copolymer.
1. A rubber composition comprising 1000 to 4000 parts by weight of granular vulcanized rubber having a specific surface area of 50 cm 2 /g or less per part by weight and 3 to 40 parts by weight of sulfur and vulcanized.
JP7379380A 1980-06-03 1980-06-03 Rubber composition containing vulcanized rubber mixed therewith Granted JPS57148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7379380A JPS57148A (en) 1980-06-03 1980-06-03 Rubber composition containing vulcanized rubber mixed therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7379380A JPS57148A (en) 1980-06-03 1980-06-03 Rubber composition containing vulcanized rubber mixed therewith

Publications (2)

Publication Number Publication Date
JPS57148A JPS57148A (en) 1982-01-05
JPS6338377B2 true JPS6338377B2 (en) 1988-07-29

Family

ID=13528413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7379380A Granted JPS57148A (en) 1980-06-03 1980-06-03 Rubber composition containing vulcanized rubber mixed therewith

Country Status (1)

Country Link
JP (1) JPS57148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271696A (en) * 1989-04-13 1990-11-06 Fuji Electric Co Ltd Manufacture of box body
JPH0350379U (en) * 1989-09-20 1991-05-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271696A (en) * 1989-04-13 1990-11-06 Fuji Electric Co Ltd Manufacture of box body
JPH0350379U (en) * 1989-09-20 1991-05-16

Also Published As

Publication number Publication date
JPS57148A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
JP4895576B2 (en) Rubber composition and high-performance tire using the same
EP1535959B1 (en) Rubber composition for a tire and tire using the same
JP6228157B2 (en) Rubber composition and pneumatic tire
JP4835769B2 (en) Rubber composition for tire tread
JP4088258B2 (en) Rubber composition and tire using the same
EP1612241B1 (en) Rubber composition and tire using the same
WO2005087858A1 (en) Rubber composition and pneumatic tire using same
US4427831A (en) Rubber materials having excellent grip on ice
JPS586738B2 (en) High hardness rubber composition
JP5552730B2 (en) Rubber composition for undertread
EP1460103B2 (en) Rubber composition
JP4819236B2 (en) Rubber composition for tire tread and tire using the same
JP2007169500A (en) Rubber composition for studless tires
JP6540263B2 (en) Rubber composition
JP4039735B2 (en) Rubber composition for tire
JP2019137281A (en) Rubber composition for tire
JP4262436B2 (en) Pneumatic tire
JP4414691B2 (en) Rubber composition and tire using the same
JPS6338377B2 (en)
JP4210619B2 (en) Rubber composition and tire using the same
JP4124758B2 (en) Rubber composition and tire using the same
JP3240770B2 (en) Method for producing rubber composition
JP5407305B2 (en) Rubber composition for tire tread
JP2006291105A (en) Rubber composition for tread, and pneumatic tire
JP2009263584A (en) Rubber composition and pneumatic tire using the same