JPS6338360B2 - - Google Patents

Info

Publication number
JPS6338360B2
JPS6338360B2 JP60275853A JP27585385A JPS6338360B2 JP S6338360 B2 JPS6338360 B2 JP S6338360B2 JP 60275853 A JP60275853 A JP 60275853A JP 27585385 A JP27585385 A JP 27585385A JP S6338360 B2 JPS6338360 B2 JP S6338360B2
Authority
JP
Japan
Prior art keywords
formula
ara
carbon atoms
saturated
unsaturated alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60275853A
Other languages
Japanese (ja)
Other versions
JPS61263996A (en
Inventor
Iru Hon Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONEI SEIYAKU KK
Original Assignee
HONEI SEIYAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONEI SEIYAKU KK filed Critical HONEI SEIYAKU KK
Publication of JPS61263996A publication Critical patent/JPS61263996A/en
Publication of JPS6338360B2 publication Critical patent/JPS6338360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/12Triazine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/14Pyrrolo-pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J75/00Processes for the preparation of steroids in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規ヌクレオシド誘導体および式 (式中、Bはアデニン、シトシン、5−フルオロ
ウラシル、5−アザシトシン、6−メルカプトプ
リンまたは7−デアザアデニンであり、 AおよびCはそれぞれ水素またはヒドロキシ基
であり、 Wは8−20個の炭素原子を有する飽和または不
飽和アルキル基または2あるいは3−アルコキシ
アルキル基であり、 W′は7−19個の炭素原子を有する飽和または
不飽和アルキル基である)を有する抗癌剤および
抗ウイルス剤として有用な新規ヌクレオシド誘導
体およびそれらの塩の製造法に関する。 式()では、燐脂質は光学異性体のL.Dおよ
びDL型を包含し、代表的なヌクレオシドには、
9−β−D−アラビノフラノシルアデニン(以下
においては、ara−Aと表す)、1−β−D−ア
ラビノフラノシルシトシン(以下においては、
are−Cと表す)、5−フルオロ−2′−デオキシウ
リジンまたはその他の抗癌剤および抗ウイルス剤
として使用することができるヌクレオシドがあ
る。 本発明は、1−O−アルキル燐脂質とヌクレオ
シドとの抱合体の新規製造法に関する。 式()を有する新規化合物は、本発明者によ
つて最初に合成された。 本発明者等[ジヤーナル オブ メデイカル
ケミストリー(J.of Medical Chemistry)25、
1322(1982)、バイオケミカル アンド バイオフ
イジカル リサーチ コミユニケーシヨン
(Biochemical and Biophysical Research
Communication)85、715(1978)]および他の研
究者等[バイオヒミカ エ バイオフイジカ ア
クタ(Biochimica et Biophysica Acta)69、
604(1980)]は、類似化合物の1,2−ジアシル
グリセロヌクレオシド抱合体を開示した。この先
行技術では、ヌクレオシド−5′−モノホスホモル
ホリデートを1,2−ジアシルグリセロ−3−ホ
スフエートと反応させて、この類似化合物を得
た。しかし、本発明の燐脂質部分は1−O−アル
キル−2−O−アシルグリセロ−3−ホスフエー
トから成つており、ヌクレオシドとの新規抱合体
は先行技術には報告されておらず、本発明によつ
て初めて製造された。 本発明を以下に詳細に説明する。 本発明の目的は、特異な分子構造と物理科学的
特性を有する新規抗癌および抗ウイルス剤を提供
することである。 本発明のもう一つの目的は、特異な分子構造と
物理科学的特性を有する前記の新規抗癌および抗
ウイルス剤の新規且つ高収率での製造法を提供す
ることである。 更にもう一つの本発明の目的は、抗癌および抗
ウイルス剤としての新規クラスの燐脂質抱合体の
製造法を提供することである。 本発明のもう一つの目的は、抗癌および抗ウイ
ルス剤の腫瘍細胞への新規伝達系として作用し且
つリソゾモトロピズム(lysosomtropism)また
は関連した膜現象のプロセスにより癌細胞に浸透
する脂質ベヒクル(リソソーム)を形成する新規
クラスのリポヌクレオシド化合物を提供すること
である。 本発明の抗癌剤は、腫瘍細胞に浸透した後、細
胞内で燐脂質−酵素特異反応または非特異的機構
によつて抗癌および抗ウイルスヌクレオシドまた
はヌクレオチドに分離し、細胞が燐脂質の特異的
な結合部位を有する場合には、それが特異的標的
化合物になる。更に、有効な活性を得るのにホス
ホリル化を必要とするヌクレオシドについて、抱
合体はかかる機能を供し、ヌクレオシドキナーゼ
を欠くレジステイング細胞(resisting cells)に
対して優れた治療効果を生じる。更にこの1−O
−アルキルホスホリピド自身は製薬効果、特に抗
癌および免疫転形作用(immunomodulating
acti−vity)を有し、ヌクレオシドと1−O−ア
ルキルホスホリピドとの結合は好都合な付加的ま
たは相乗的効果を生じる。換言すれば、1−O−
アルキルホスホリピド、1−O−アルキル−2−
リソホスホリピドおよびその誘導体のうち、1−
O−アルキル−2−O−メチルホスフアチジル−
コリンまたはエタノールアミンは、各種動物の癌
に対する抑制および予防作用および免疫転形作用
を有することが開示される[アンテイキヤンサー
リサーチ(Anticancer Research)1、135お
よび345(1981);セミナ− イン イミユノパソ
ロジ−(Seminar in Immunopathology)第3
巻、187−203〔1979)]。抱合体のままである限り、
ara−Cまたはara−Aのアミノ基は、シチジン
デアミナーゼまたはアデノシンデアミナーゼによ
る脱アミノが防止される。抱合体それ自身は親油
性であるので、それは一種の持続性リリースプロ
ドラツグ(sustained release prodrug)として
作用し、標的細胞に到達してこの細胞中で抱合体
をホスホリピドとヌクレオシドとに加水分解す
る。これは二種の医薬品を投与するのと同じ結果
になるので、抗癌剤治療指数を増加する両者の製
薬効果を期待することができる。 式()の化合物の製造法を、下記の反応工程
図に模式的に示す。ヌクレオチド()を縮合し
て、モルホリデート()またはP1−ヌクレオ
シド−5′−P2−ジフエニルピロホスフエート
()とした後、1−O−アルキル−2−O−ア
シルグリセロ−ホスフエート()と反応させる
ことにより抱合体(a)から(b)を得る
(反応工程図、方法Aまたは方法B)。他の経路で
は、ホスホリピド()をそのモルホリデート
()またはP1−グリセロ−5′−P2−ジフエニル
ピロホスフエート()とした後、それをヌクレ
オチド()と反応させて抱合体(c)から
(d)を得る(反応工程図、方法Cおよび方法
D)。 本発明の化合物およびそれらの塩は、通常の製
薬上受容可能な有機および無機担体物質と混合し
て用いることができる。本発明の化合物は、エマ
ルジヨン、懸濁液、アンプル、粉末、顆粒、カプ
セル、錠剤などの通常の受容可能な携帯の一つで
あつてもよい。また、それは通常の充填剤、防腐
剤、安定剤、分散剤、薫蒸剤、緩衝剤および着色
剤を含んでいてもよい。
The present invention provides novel nucleoside derivatives and formula (wherein B is adenine, cytosine, 5-fluorouracil, 5-azacytosine, 6-mercaptopurine or 7-deazaadenine, A and C are each hydrogen or hydroxy group, and W is 8-20 carbon atoms. a saturated or unsaturated alkyl group or a 2- or 3-alkoxyalkyl group having 7 to 19 carbon atoms), and W′ is a saturated or unsaturated alkyl group having 7 to 19 carbon atoms. This invention relates to novel nucleoside derivatives and methods for producing their salts. In formula (), phospholipid encompasses optical isomers LD and DL types, and representative nucleosides include:
9-β-D-arabinofuranosyl adenine (hereinafter referred to as ara-A), 1-β-D-arabinofuranosylcytosine (hereinafter referred to as ara-A),
are-C), 5-fluoro-2'-deoxyuridine or other nucleosides that can be used as anticancer and antiviral agents. The present invention relates to a novel method for producing conjugates of 1-O-alkyl phospholipids and nucleosides. A new compound with formula () was first synthesized by the inventor. The inventors [Journal of Medical
Chemistry (J.of Medical Chemistry) 25,
1322 (1982), Biochemical and Biophysical Research Communication.
Communication) 85, 715 (1978)] and other researchers [Biochimica et Biophysica Acta 69,
604 (1980)] disclosed 1,2-diacylglyceronucleoside conjugates of similar compounds. In this prior art, nucleoside-5'-monophosphomorpholinate was reacted with 1,2-diacylglycero-3-phosphate to obtain this analogous compound. However, the phospholipid moiety of the present invention consists of 1-O-alkyl-2-O-acylglycero-3-phosphate, and no novel conjugates with nucleosides have been reported in the prior art, and the present invention It was manufactured for the first time. The invention will be explained in detail below. The aim of the present invention is to provide novel anticancer and antiviral agents with unique molecular structure and physicochemical properties. Another object of the present invention is to provide a new and high-yield method for producing the above-mentioned novel anticancer and antiviral agents with unique molecular structure and physicochemical properties. Yet another object of the present invention is to provide a method for producing a new class of phospholipid conjugates as anticancer and antiviral agents. Another object of the present invention is to provide lipid vehicles ( An object of the present invention is to provide a new class of liponucleoside compounds that form lysosomes. After the anticancer agent of the present invention penetrates into tumor cells, it is separated into anticancer and antiviral nucleosides or nucleotides by a phospholipid-enzyme specific reaction or a non-specific mechanism, and the cells are treated with phospholipid-specific nucleosides or nucleotides. If it has a binding site, it becomes a specific target compound. Additionally, for nucleosides that require phosphorylation for effective activity, the conjugate provides such functionality, resulting in superior therapeutic efficacy against resisting cells lacking nucleoside kinases. Furthermore, this 1-O
- Alkylphospholipids themselves have pharmaceutical effects, especially anticancer and immunomodulating effects.
The combination of nucleosides and 1-O-alkylphospholipids produces advantageous additive or synergistic effects. In other words, 1-O-
Alkylphospholipid, 1-O-alkyl-2-
Among lysophospholipids and their derivatives, 1-
O-alkyl-2-O-methylphosphatidyl-
It is disclosed that choline or ethanolamine has suppressive and preventive effects and immune transforming effects on cancer in various animals [Anticancer Research 1, 135 and 345 (1981); Seminar in Immunopathology. (Seminar in Immunopathology) 3rd
Volume, 187-203 [1979)]. As long as it remains a conjugate,
The amino group of ara-C or ara-A is prevented from being deaminated by cytidine deaminase or adenosine deaminase. Since the conjugate itself is lipophilic, it acts as a type of sustained release prodrug, reaching the target cell in which it hydrolyzes the conjugate into phospholipids and nucleosides. Since this is the same result as administering two types of pharmaceuticals, it is possible to expect the pharmaceutical effects of both to increase the therapeutic index of anticancer drugs. The method for producing the compound of formula () is schematically shown in the reaction process diagram below. Nucleotides () are condensed to give morpholinate () or P1 -nucleoside-5'- P2 -diphenylpyrophosphate (), followed by 1-O-alkyl-2-O-acylglycero-phosphate (). Conjugate (b) is obtained from conjugate (a) by reacting with (reaction process diagram, method A or method B). Another route involves converting the phospholipid () to its morpholinate () or P1 -glycero-5'- P2 -diphenylpyrophosphate (), which is then reacted with a nucleotide () to form the conjugate (c). (d) is obtained from (reaction scheme, method C and method D). The compounds of the invention and their salts can be used in admixture with conventional pharmaceutically acceptable organic and inorganic carrier materials. The compounds of the invention may be in one of the usual acceptable forms such as emulsions, suspensions, ampoules, powders, granules, capsules, tablets, and the like. It may also contain the usual fillers, preservatives, stabilizers, dispersants, fumigants, buffers and colorants.

【表】【table】

【表】 下記の実施例は単に説明のためのものであり、
本発明を限定することを意図するものではない。 実施例 1 1−β−D−アラビノフラノシルシトシン−
5′−ジホスフエート−1−O−オクタデシル−
2−O−パルミトイル−sn−グリセロールまた
は1−β−D−アラビノフラノシルシトシン−
5′−ジホスフエート−β−パルミトイル−L−
バチルアルコール(a、ara−CDP−L−
PBA) 1.7g(2.6ミリモル)の1−O−オクタデシル
−2−O−パルミトイル−sn−グリセロ−3−ホ
スフエート(、n=17、m=14、L−異性体)
をピリジンと共に共蒸発させて乾固した後、1.8
g(2.6ミリモル)のara−CMPモルホリデート
4−モルホリン−N,N′−ジシクロヘキシル
カルボキサミジニウム塩(、B=シトシン)と
混合した。混合物を150mlの乾燥ピリジンに溶解
して、無水条件で室温で5日間撹拌した。次い
で、ピリジンを減圧で除去し、微量のピリジンを
トルエンの共蒸発によつて除去した。残渣を15ml
の乾燥酢酸と150mlのクロロホルム−CH3OH−
水(2:3:1)に溶解して、室温で1時間攪拌
し、この溶液に250mlのクロロホルムを加えた。
有機溶媒層を分離して、減圧下で濃縮し、微量の
残存している酢酸を3段階で10mlのトルエンと共
蒸発することによつて除去した。残渣を100mlの
CMW溶媒に溶解し、DE−52(アセテート)セル
ロースカラム(2.5×50cm、ジヤケツト付き、5
℃)に吸着させた後、カラム0−0.15M
NH4OAc線形勾配溶媒CMW(各1500ml)で溶出
した。900−1500mlの溶出液を集めて、減圧下で
30℃以下の温度で蒸発させ、白色結晶を生成させ
た。この白色結晶性粉末を水で洗浄し、濾過した
後、ナトリウム塩に転換するためCMWに溶解し
て、次いでアンバーライト(Amberlite)CG−
50(Na+)カラム(2.5×15cm)にかけて、溶出
液を集めて減圧下で蒸発した。残渣をクロロホル
ムおよびアセトンから結晶化させると、820mg
(31.2%)の白色の目的化合物を得た。 (1) 融点:199−202℃ (2) [α]25 D=+33.5゜(c=0.23、クロロホルム−
メタノール−水 2:3:1) (3) NMR(90MHz):溶媒(CDCl3−CD3OD−
D2O、2:3:1):δppm0.95(6、t、
2CH3)、1.14−1.87(58、m、29CH2)、2.29
(2、t、CH2−C=O)、3.27−4.42(11、m、
H2′、H3′、H4′、H5′、CH2−O−CH2及び
CH2−O−)、515(1、m、グリセロールCH)、
5.94(1、d、J=7Hz、シトシンH5)、6.18
(1、d、J=5Hz、H1)、7.80(1、d、J=
7Hz、シトシンH6) (4) 元素分析:C46H87N3O14P2・1.5(CH32CO.
H2O C H N P 計算値 56.51 9.20 3.92 5.77 実測値 56.81 9.27 3.69 5.87 実施例 2 1−β−D−アラビノフラノシルシトシン−
5′−ジホスフエート−rac−1−O−オクタデ
シル−2−O−パルミトイルグリセロール(
b.ara−CDP−DL−PBA) (1) 方法A(反応工程図、方法A) 表記化合物は、rac−1−O−オクタデシル
−2−O−パルミトイルグリセロ−3−ホスフ
エート(、n=17、m=14、DL−混合物)
をara−CMP−モルホリデート(、B=シト
シン)と縮合することによつて調製し、次いで
上述のように分離して35%の収率で目的化合物
を得た。クロマトグラフイでの移動度および
NMRデータは、理論値と一致した。 (2) 方法B(反応工程図、方法B) 表記化合物は、下記の方法によつて調製し
た。323mg(1ミリモル)のara−CMP、(、
B=シトシン)と371mg(1ミリモル)のトリ
−n−オクチルアミンを7mlの熱メタノールに
溶解し、次いで溶媒を減圧下で蒸発させ、残渣
を再度N,N′−ジメチルホルムアミド
(DMF)に溶解し、減圧下で蒸発させ、残渣中
に残つている痕跡量の水を除去した。こうして
得た乾燥ara−CMP−トリ−O−オクチルアン
モニウム塩を10mlのジオキサンおよび5mlの
DMFに溶解し、この溶液に0.3mlのジフエニル
ホスホクロリデートおよび0.45mlのトリ−n−
ブチルアミンを加えて、混合物を無水条件下で
室温で2から3時間反応させた。溶媒を減圧下
で留去した後、50mlのエーテルを加えてP1
(1−β−D−アラビノフラノシルシトシン−
5′−イル)−P2−ジフエニルピロホスフエート
(、B=シトシン)を沈澱させ、0℃で30−
60分間保持した後、エーテルを除去した。沈澱
を2mlのジオキサンに溶解させ、沈殿中の痕跡
量の水を減圧下で留去した。P2O5上で663mg
(1ミリモル)のrac−1−O−オクタデシル−
2−O−パルミトグリセロ−3−ホスフエート
(、n=17、m=14、DL−混合物)を一晩乾
燥した後、1mlの無水ピリジンに溶解し上記の
ピロホスフエート()を0.5mlのジオキサン
に溶解したものと無水条件で室温で一日間反応
させた。反応後、溶媒を減圧で留去し、こうし
て得た残渣に25mlのエーテルを加え、目的化合
物を沈殿させた。こうして得た沈殿を100mlの
CMWに溶解させ、DE−52(アセテート)セル
ロースカラム(2.5×50cm、ジヤケツト付き、
5℃)に吸着させた後、上述のように溶出さ
せ、精製すると、30%の収率で目的化合物を得
た。クロマトグラフイでの移動度およびNMR
データは、理論値と一致した。 実施例 3 1−β−D−アラビノフラノシルシトシン−
5′−ジホスフエート−rac−1−O−ヘキサデ
シル−2−O−パルミトイルグリセロールまた
は1−β−D−アラビノフラノシルシトシン−
5′−ジホスフエート−β−パルミトイル−DL
−チミルアルコール(c、ara−CDP−L−
PCA) (1) 方法A(反応工程図、方法A) 基本的には、この化合物は実施例1に記載し
たのと同じ方法で調製される。ピリジンと共蒸
発させた4.19g(6.6ミリモル)のrac−1−O
−ヘキサデシル−2−O−パルミトイルグリセ
ロ−3−ホスフエート(、n=15、m=14、
DL−混合物)を、300mlの無水ピリジン中で
3.43g(5ミリモル)のara−CMPモルホリデ
ート(、B=シトシン)と、無水条件で室温
で5日間反応させた。ピリジンを減圧で蒸発さ
せ、残渣を実施例1に記載したように処理し、
DE−52(アセテート)セルロースカラム(2.5
×50cm、ジヤケツト付き、5℃)に吸着させた
後、0−0.15M NH4Acを含む線形勾配CMW
溶媒(各1500ml)で溶出し、目的化合物を含む
画分をまとめて30℃以下の温度で減圧で濃縮し
て、白色結晶を生成させた。こうして得た結晶
をアンバーライトCG−50(Na+)カラムで処
理することにより、目的化合物を30%の終了で
得た。 (1) 融点:202−205℃(分解) (2) NMR(90MHz):溶媒(CDCl3−CD3OD−
D2O、2:3:1):δppm0.87(6、t、
2CH3)、1.07−1.78(54H、m、27CH2)、2.35
(2、t、CH2−C=O)、3.27−4.35(11、m、
H2′、H3′、H4′、H5′、CH2−O−CH2、CH2
O)、5.15(1、m、グリセロールCH)、5.92
(1、d、J=7Hz、シトシンH5)、6.14(1、
d、J=5Hz、H1′)、7.88(1、d、J=7Hz、
シトシンH6) (3) 元素分析:C44H81N3O14P2Na2・0.5H2O C H N P 計算値 53.21 8.43 4.23 6.24 実測値 53.69 9.27 3.92 5.72 (2) 方法B(反応工程図、方法C) 3.17g(5ミリモル)のrac−1−O−ヘキ
サデシル−2−パルミトイルグリセロ−3−ホ
スフエート(、m=15、n=14、DL−混合
物)と、1.7ml(20ミリモル)のモルホリンと、
50mlのt−ブチルアルコールとから成る還流混
合物に、4.12g(20ミリモル)のN,N′−ジシ
クロヘキシルカルボジイミド(DCC)と75ml
のt−ブチルアルコールの溶液を滴下して加
え、還流条件で2時間反応させた。反応混合物
を室温で一晩攪拌した後、20mlの水を加え、室
温で2時間攪拌して、残りのDCCを分解した。
こうして生成した白色結晶を濾過して除去し、
濾液を減圧で蒸発させて濃縮し、エーテルで抽
出した。抽出物を減圧で蒸発させ、生成する残
渣(、n=15、m=14、DLC−混合物)を
トルエンと二回共蒸発させた後、2.13g(6.6
ミリモル)のara−CMP(、B=シトシン)
と4.67g(13.2ミリモル)のトリ−n−オクチ
ルアミンを加えて、混合物を再度ピリジンと3
段階で共蒸発させて乾燥させた後、200mlのピ
リジンに溶解させ、無水条件で室温で7日間攪
拌して反応させた。ピリジンを減圧で留去し、
更に残つている痕跡量のピリジンを少量のトル
エンと共蒸発させて完全に除去した。残渣を30
mlの酢酸と300mlのCMW溶媒に溶解させ、室
温で1時間攪拌した後、500mlのクロロホルム
を加えた。有機層を分離して、減圧で濃縮し、
残つている痕跡量の酢酸を10mlのトルエンと3
段階で共蒸発することによつて完全に除去し
た。残渣を100mlのCMW溶媒に溶解させ、DE
−52(アセテート)セルロースカラム(2.5×50
cm、5℃のジヤケツト付き)に吸着させ、次い
で実施例1に記載した方法と同様に0−1.15M
NH4OAcを含む線形勾配CMW溶媒で溶出し、
目的化合物を30%の収率で得た。クロマトグラ
フイでの移動度およびNMRデータは、理論量
と一致した。 実施例 4 9−β−D−アラビノフラノシルアデニン−
5′−ジホスフエート−rac−1−O−ヘキサデ
シル−2−O−パルミトイルグリセロールまた
は9−β−D−アラビノフラノシルアデニン−
5′−ジホスフエート−β−パルミトイル−DL
−チミルアルコール(d、ara−ADP−DL
−PCA)(反応工程図、方法A) 1.90g(3ミリモル)のrac−1−O−ヘキサ
デシル−2−O−パルミトイルグリセロ−3−ホ
スフエート(、n=15、m=14、DL−混合物)
をピリジンと3段階で共蒸発することによつて乾
燥し、2.13g(3ミリモル)のara−AMPモルホ
リデート−4−モルホリン−N,N′−ジシクロ
ヘキシル−カルボキサミジニウム塩(、B=ア
デニン)を200mlのピリジンに溶解し、溶液を無
水条件で室温で7日間攪拌した。ピリジンを減圧
で留去し、残渣を実施例1に記載したのと同様の
方法で処理し、DE−52(アセテート)セルロース
カラム(2.5×50、ジヤケツト付き、5℃)に吸
着させ、0−0.15M NH4OAcを含む線形勾配
CMW溶媒で溶出した後、アンバーライトCG−
50(Na+)カラムを通して、851mg(29%)のナ
トリウム塩を得た。 (1) NMR(90MHz):溶媒(CDCl3−CD3OD−
D2O、2:3:1):δppm0.92(6、t、
2CH3)、1.07−1.78(54H、m、27CH3)、2.35
(2、t、CH2−C=O)、3.27−4.35(11、m、
H2′、H3′、H4′、H5′、CH2−O−CH2;CHz
−O)、5.07(1、m、グリセロールCH)、6.33
(1、d、J=4.5H2、H1′)、8.17(1、s、ア
デニンH2)、8.40(1、s、アデニンH8) 実験1 L1210を腹腔内投与によるリンパ性白血病マウ
スに対する抗腫瘍活性: DBA/2Jマウスに1×106または1×105個の
L1210リンパ性白血病細胞を腹腔内投与し、24時
間後に医薬を0.9%NaClに溶解して、マウスに注
射して、45日間に互り生存率を計測した。試験は
米国国立癌研究所プロトコール(キヤンサー、ケ
モセラピーリポーツ 3、1−103、1972)に準
拠して行つた。処理計画は、qd1、qd1、5、9
およびqd1−5であつた。表1の最適投与量は、
最大活性を生じる量である。広い投与量範囲に互
つて試験を行つた。活性は、寿命の増加を比較す
ることによつて測定した。これは、試験および対
照群マウスの平均寿命を比較することによつて行
つた。表1には、ara−Cおよびその抱合体ara
−DCP−DL−PBA(b)およびara−CDP−
PCA(a)の治療結果を示している。第一の部
分は、ara−C感受性L1210リンパ性白血病マウ
スの結果を示す。無処理の対照マウスは、腫瘍細
胞の接種後7または8日で死亡した。ara−Cを
400mg(1644マイクロモル)/Kgの最適単回投与
で注射した場合には、寿命の増加(%ILS)は14
%であり、一日に一回200mg(822マイクロモル)
を5日間注射した場合には、129%ILSになつた。
しかし、抱合体ara−CDP−DL−PBA(Ib)およ
びara−CDP−DL−PCA(Ic)の400mg(395およ
び407マイクロモル)/Kgの最適単回投与では、
それぞれ257%および293%の優れたILSを示し
た。最適投与量で5回注射した場合にも、それぞ
れ229%および264%の優れたILSを生じた。ara
−Cおよばその抱合体での単回投与の比較は、範
囲外である。5回投与計画では、抱合体はara−
Cモル投与量の1/8または1/10の投与量で2倍の
効果を示し、毒性はずつと少なかつた。第二に、
少量存在しているデオキシシチジンキナーゼによ
るara−C耐性L 1210リンパ性白血病マウスの
治療処理の結果では、無処理の対照マウスは腫瘍
細胞の接種後8から11日で死亡した。ara−Cの
単回投与処理では、ほとんど効果は見られず
(ILS6%)、5日間処理では、65%ILSを生じた。
これらの結果はara−Cが極少量だけデオキシシ
チジンキナーゼを含むことを示している。しかし
ながら、ara−Cの抱合体、すなわちara−CDP
−DL−PBA(Ib)およびara−CDP−DL−PCA
(Ic)は顕著な治療成果を生じ、癌に抵抗する大
きな期待を抱けるものである。単回投与または一
日に80mg/Kgの量で5日間使用した最適投与量
400mg/Kgでは、ILSは259〜>356%となり、6
匹のマウスのうち1から3匹のマウスは45日以上
生存し、完全に治瘉した、更に、第1、5および
5日目に167mg/Kgを投与する(3回投与)計画
では、ara−CDP−PBA−(Ib)は290%以上の
ILSを示し、ara−CDP−PGA−(Ic)は374%以
上のILSを示し、3匹以上のマウス、特にara−
CDP−DL−PCAの場合には、6匹のマウスのう
ち6匹のマウスが45日以上生存し、治瘉した。例
えば、ara−Cの1/3モルの投力量で5倍の効果
を得た。抱合体がデオキシナーゼ欠損ara−C耐
性L 1210リンパ性白血病マウスに有効であると
いう事実は、抱合体がエンドサイトーシスまたは
他の機構によつて細胞内に導入され、酵素によつ
て燐脂質とara−CMPとに加水分解され、これに
よつて遊離したara−CMP連続的にara−CTPに
燐酸化される。従つて、ara−CMPが抱合体から
放出されるので、ara−Cの燐酸化に要するデオ
キシシチジンキナーゼは必要でない。 利 点 上記試験に示されるように、これらの抱合体
は、親医薬のara−Cよりも、少ない投与量でで
も、大きな活性を示し、これは逆に親医薬の治療
指数の向上に後見することになる。更に、ara−
Cは半減期が短く、効果的にするには連続した投
与する必要があつたが、抱合体は単回投与でもよ
り大きく且つ優れた活性を有する。それ故、抱合
体は持続麿出薬として使用することができる。特
に抱合体がara−C耐性L1210リンパ性白血病マ
ウスに有効であるという事実は、それが癌細胞中
で加水分解してara−Cと燐脂質を放出し、デオ
キシシチジンキナーゼ欠損耐性細胞に非常に有効
であることを意味する。燐脂質は、1−O−アル
キル−2−O−アシルグリセロ−3−ホスフエー
トであり、生化学反応の後、1−O−アルキル−
2−リソホスフアチジル−コリンまたは−エタノ
ールアミンに変換され、これらの化合物自身は癌
細胞に対して成長および転換抑制作用および免疫
転形作用を有するので、それらは付加的および相
乗効果を示すことが期待される。抱合体は、単に
ara−Cのプロドラツグではなく、更に新規な医
薬と考えられる。更に、他の親油性プロドラツグ
と比較して、本抱合体は、超音波により水に透明
に懸濁されるという利点を有する。白血病患者の
ara−Cを用いる治療では、この医薬に対する耐
性の発生はデオキシシチジンキナーゼとシチジン
デアミナーゼの細胞の相対含有量に関係すること
が文献に報告されていた[アンナルス オブ ニ
ユーヨーク アカデミー オブ サイエンス
(Annals of New York Aoademy of Science)
255 247(1975)]。一方、ara−C抱合体は、ジチ
ジンデアミナーゼに対して抵抗力を有し、アミノ
基を加水分解しない。この抱合体は、ara−C耐
性白血病患者の治療に大きな効果を有するものと
考えられる。
[Table] The following examples are for illustrative purposes only;
It is not intended to limit the invention. Example 1 1-β-D-arabinofuranosylcytosine-
5'-diphosphate-1-O-octadecyl-
2-O-palmitoyl-sn-glycerol or 1-β-D-arabinofuranosylcytosine-
5'-diphosphate-β-palmitoyl-L-
Batyl alcohol (a, ara-CDP-L-
PBA) 1.7 g (2.6 mmol) of 1-O-octadecyl-2-O-palmitoyl-sn-glycero-3-phosphate (, n=17, m=14, L-isomer)
After co-evaporation with pyridine to dryness, 1.8
g (2.6 mmol) of ara-CMP morpholinate 4-morpholine-N,N'-dicyclohexylcarboxamidinium salt (B=cytosine). The mixture was dissolved in 150 ml of dry pyridine and stirred for 5 days at room temperature under anhydrous conditions. The pyridine was then removed under reduced pressure and traces of pyridine were removed by co-evaporation of toluene. 15ml of residue
of dry acetic acid and 150 ml of chloroform -CH 3 OH-
It was dissolved in water (2:3:1) and stirred at room temperature for 1 hour, and 250 ml of chloroform was added to this solution.
The organic solvent layer was separated and concentrated under reduced pressure, and traces of residual acetic acid were removed by coevaporation with 10 ml of toluene in three steps. 100ml of residue
Dissolved in CMW solvent, DE-52 (acetate) cellulose column (2.5 x 50 cm, with jacket, 5
After adsorption to ℃), column 0-0.15M
Elute with NH4OAc linear gradient solvent CMW (1500 ml each). Collect 900−1500 ml of eluate and evaporate under reduced pressure.
Evaporation at temperatures below 30°C produced white crystals. The white crystalline powder was washed with water, filtered and then dissolved in CMW for conversion to sodium salt, then Amberlite CG-
50 (Na+) column (2.5 x 15 cm), the eluate was collected and evaporated under reduced pressure. Crystallization of the residue from chloroform and acetone yields 820 mg
(31.2%) of the white target compound was obtained. (1) Melting point: 199-202℃ (2) [α] 25 D = +33.5° (c = 0.23, chloroform-
Methanol-water 2:3:1) (3) NMR (90MHz): Solvent ( CDCl3 - CD3OD-
D 2 O, 2:3:1): δppm0.95 (6, t,
2CH 3 ), 1.14−1.87 (58, m, 29CH 2 ), 2.29
(2, t, CH2 -C=O), 3.27-4.42 (11, m,
H2′, H3′, H4′, H5′, CH 2 −O−CH 2 and
CH 2 -O-), 515 (1, m, glycerol CH),
5.94 (1, d, J=7Hz, cytosine H5), 6.18
(1, d, J=5Hz, H1), 7.80 (1, d, J=
7Hz, cytosine H6) (4) Elemental analysis: C 46 H 87 N 3 O 14 P 2・1.5 (CH 3 ) 2 CO.
H 2 O C H N P Calculated value 56.51 9.20 3.92 5.77 Actual value 56.81 9.27 3.69 5.87 Example 2 1-β-D-arabinofuranosylcytosine-
5'-Diphosphate-rac-1-O-octadecyl-2-O-palmitoylglycerol (
b.ara-CDP-DL-PBA) (1) Method A (reaction process diagram, method A) The indicated compound is rac-1-O-octadecyl-2-O-palmitoylglycero-3-phosphate (, n = 17 , m=14, DL-mixture)
was prepared by condensation of ara-CMP-morpholidate (, B=cytosine) and then separated as described above to give the target compound in 35% yield. Mobility in chromatography and
NMR data agreed with theoretical values. (2) Method B (Reaction Process Diagram, Method B) The title compound was prepared by the following method. 323 mg (1 mmol) of ara-CMP, (,
B = cytosine) and 371 mg (1 mmol) of tri-n-octylamine were dissolved in 7 ml of hot methanol, then the solvent was evaporated under reduced pressure and the residue was redissolved in N,N'-dimethylformamide (DMF). and evaporated under reduced pressure to remove traces of water remaining in the residue. The dry ara-CMP-tri-O-octylammonium salt thus obtained was mixed with 10 ml of dioxane and 5 ml of dioxane.
Dissolved in DMF and added to this solution 0.3 ml diphenylphosphochloridate and 0.45 ml tri-n-
Butylamine was added and the mixture was allowed to react under anhydrous conditions at room temperature for 2 to 3 hours. After distilling off the solvent under reduced pressure, 50 ml of ether was added and P 1
(1-β-D-arabinofuranosylcytosine-
5′-yl)-P2-diphenylpyrophosphate (,B=cytosine) was precipitated and incubated at 0°C for 30-
After holding for 60 minutes, the ether was removed. The precipitate was dissolved in 2 ml of dioxane, and traces of water in the precipitate were distilled off under reduced pressure. 663mg on P2O5
(1 mmol) of rac-1-O-octadecyl-
2-O-palmitoglycero-3-phosphate (, n = 17, m = 14, DL-mixture) was dried overnight and then dissolved in 1 ml of anhydrous pyridine, and the above pyrophosphate () was dissolved in 0.5 ml of dioxane. The reaction was carried out under anhydrous conditions at room temperature for one day. After the reaction, the solvent was distilled off under reduced pressure, and 25 ml of ether was added to the thus obtained residue to precipitate the target compound. 100ml of the precipitate thus obtained
Dissolve in CMW, DE-52 (acetate) cellulose column (2.5 x 50 cm, with jacket,
After adsorption at 5°C), elution and purification as described above gave the target compound in 30% yield. Mobility in chromatography and NMR
The data agreed with the theoretical values. Example 3 1-β-D-arabinofuranosylcytosine-
5'-Diphosphate-rac-1-O-hexadecyl-2-O-palmitoylglycerol or 1-β-D-arabinofuranosylcytosine-
5'-Diphosphate-β-palmitoyl-DL
-thymyl alcohol (c, ara-CDP-L-
PCA) (1) Method A (Reaction Scheme, Method A) Basically, this compound is prepared in the same manner as described in Example 1. 4.19 g (6.6 mmol) rac-1-O coevaporated with pyridine
-hexadecyl-2-O-palmitoylglycero-3-phosphate (, n=15, m=14,
DL-mixture) in 300 ml of anhydrous pyridine.
It was reacted with 3.43 g (5 mmol) of ara-CMP morpholidate (B=cytosine) for 5 days at room temperature under anhydrous conditions. The pyridine is evaporated under reduced pressure and the residue is treated as described in Example 1,
DE-52 (acetate) cellulose column (2.5
x 50 cm, with jacket, at 5 °C), followed by linear gradient CMW containing 0-0.15 M NH 4 Ac.
It was eluted with a solvent (1500 ml each), and the fractions containing the target compound were combined and concentrated under reduced pressure at a temperature below 30°C to produce white crystals. The thus obtained crystals were treated with an Amberlite CG-50 (Na+) column to obtain the target compound with a yield of 30%. (1) Melting point: 202-205℃ (decomposition) (2) NMR (90MHz): Solvent (CDCl 3 −CD 3 OD−
D 2 O, 2:3:1): δppm0.87 (6, t,
2CH 3 ), 1.07−1.78 (54H, m, 27CH 2 ), 2.35
(2, t, CH2 -C=O), 3.27-4.35 (11, m,
H 2 ′, H 3 ′, H 4 ′, H 5 ′, CH 2 −O−CH 2 , CH 2
O), 5.15 (1, m, glycerol CH), 5.92
(1, d, J=7Hz, cytosine H 5 ), 6.14 (1,
d, J = 5 Hz, H 1 ′), 7.88 (1, d, J = 7 Hz,
Cytosine H 6 ) (3) Elemental analysis: C 44 H 81 N 3 O 14 P 2 Na 2・0.5H 2 O C H N P Calculated value 53.21 8.43 4.23 6.24 Actual value 53.69 9.27 3.92 5.72 (2) Method B (reaction Process diagram, method C) 3.17 g (5 mmol) rac-1-O-hexadecyl-2-palmitoylglycero-3-phosphate (, m = 15, n = 14, DL-mixture) and 1.7 ml (20 mmol) ) of morpholine,
75 ml of 4.12 g (20 mmol) of N,N'-dicyclohexylcarbodiimide (DCC) and 50 ml of t-butyl alcohol.
A solution of t-butyl alcohol was added dropwise, and the mixture was reacted under reflux conditions for 2 hours. After the reaction mixture was stirred at room temperature overnight, 20 ml of water was added and stirred for 2 hours at room temperature to destroy the remaining DCC.
The white crystals thus formed are removed by filtration,
The filtrate was concentrated by evaporation under reduced pressure and extracted with ether. The extract was evaporated under reduced pressure and the resulting residue (, n = 15, m = 14, DLC-mixture) was co-evaporated twice with toluene to yield 2.13 g (6.6
mmol) of ara-CMP (, B = cytosine)
and 4.67 g (13.2 mmol) of tri-n-octylamine and the mixture was again diluted with pyridine.
After drying by step co-evaporation, it was dissolved in 200 ml of pyridine and reacted by stirring at room temperature for 7 days under anhydrous conditions. Pyridine is distilled off under reduced pressure,
Further, remaining traces of pyridine were co-evaporated with a small amount of toluene to completely remove them. 30 residue
It was dissolved in ml of acetic acid and 300ml of CMW solvent, stirred for 1 hour at room temperature, and then 500ml of chloroform was added. Separate the organic layer and concentrate under reduced pressure.
The remaining traces of acetic acid are mixed with 10 ml of toluene and 3
It was completely removed by step co-evaporation. Dissolve the residue in 100 ml of CMW solvent and DE
-52 (acetate) cellulose column (2.5 x 50
cm, jacketed at 5°C) and then 0-1.15M as described in Example 1.
Elute with a linear gradient CMW solvent containing NH4OAc ,
The target compound was obtained with a yield of 30%. Chromatographic mobility and NMR data were consistent with theoretical amounts. Example 4 9-β-D-arabinofuranosyl adenine-
5'-Diphosphate-rac-1-O-hexadecyl-2-O-palmitoylglycerol or 9-β-D-arabinofuranosyladenine-
5'-Diphosphate-β-palmitoyl-DL
-thymyl alcohol (d,ara-ADP-DL
-PCA) (reaction scheme, method A) 1.90 g (3 mmol) rac-1-O-hexadecyl-2-O-palmitoylglycero-3-phosphate (, n=15, m=14, DL-mixture)
was dried by co-evaporation with pyridine in three steps to give 2.13 g (3 mmol) of ara-AMP morpholidate-4-morpholine-N,N'-dicyclohexyl-carboxamidinium salt (B = adenine). was dissolved in 200 ml of pyridine and the solution was stirred under anhydrous conditions at room temperature for 7 days. The pyridine was distilled off under reduced pressure and the residue was treated in a manner similar to that described in Example 1, adsorbed onto a DE-52 (acetate) cellulose column (2.5 x 50, jacketed, 5°C) and 0- Linear gradient containing 0.15M NH4OAc
After elution with CMW solvent, Amberlite CG-
50 (Na+) column, 851 mg (29%) of the sodium salt was obtained. (1) NMR (90MHz): Solvent (CDCl 3 −CD 3 OD−
D 2 O, 2:3:1): δppm0.92 (6, t,
2CH 3 ), 1.07−1.78 (54H, m, 27CH 3 ), 2.35
(2, t, CH2 -C=O), 3.27-4.35 (11, m,
H 2 ′, H 3 ′, H 4 ′, H 5 ′, CH 2 −O−CH 2 ; CHz
-O), 5.07 (1, m, glycerol CH), 6.33
(1, d, J = 4.5H 2 , H 1 '), 8.17 (1, s, adenine H 2 ), 8.40 (1, s, adenine H 8 ) Experiment 1 Intraperitoneal administration of L1210 to lymphocytic leukemia mice Antitumor activity: 1×10 6 or 1×10 5 in DBA/2J mice
L1210 lymphocytic leukemia cells were administered intraperitoneally, and 24 hours later, the drug was dissolved in 0.9% NaCl and injected into mice, and the survival rate was measured for 45 days. The test was conducted in accordance with the US National Cancer Institute protocol (Cancer, Chemotherapy Reports 3, 1-103, 1972). The processing plan is qd1, qd1, 5, 9
and qd1-5. The optimal dosage in Table 1 is
It is the amount that produces maximum activity. A wide dose range was tested. Activity was measured by comparing the increase in longevity. This was done by comparing the average lifespan of test and control mice. Table 1 shows ara-C and its conjugate ara
-DCP-DL-PBA (b) and ara-CDP-
The treatment results of PCA (a) are shown. The first part shows the results of ara-C sensitive L1210 lymphocytic leukemia mice. Untreated control mice died 7 or 8 days after inoculation with tumor cells. ara-C
When injected at an optimal single dose of 400 mg (1644 micromoles)/Kg, the increase in lifespan (%ILS) was 14
%, 200mg (822 micromoles) once a day
When injected for 5 days, the ILS was 129%.
However, the optimal single dose of 400 mg (395 and 407 micromoles)/Kg of the conjugates ara-CDP-DL-PBA (Ib) and ara-CDP-DL-PCA (Ic)
showed excellent ILS of 257% and 293%, respectively. Five injections at the optimal dose also produced excellent ILS of 229% and 264%, respectively. ara
Comparison of single doses of -C and its conjugates is out of scope. In the 5-dose regimen, the conjugate is ara-
A dose of 1/8 or 1/10 of the C mol dose was twice as effective, and the toxicity was significantly lower. Secondly,
Therapeutic treatment of ara-C resistant L 1210 lymphocytic leukemia mice with low abundance deoxycytidine kinase resulted in untreated control mice dying 8 to 11 days after inoculation with tumor cells. A single dose treatment with ara-C had little effect (6% ILS), and a 5-day treatment resulted in a 65% ILS.
These results indicate that ara-C contains only a minimal amount of deoxycytidine kinase. However, conjugates of ara-C, i.e. ara-CDP
−DL−PBA(Ib) and ara−CDP−DL−PCA
(Ic) has produced remarkable therapeutic results and holds great promise for fighting cancer. Optimal dosage used as a single dose or 80mg/Kg per day for 5 days
At 400 mg/Kg, ILS was 259 to >356%, 6
One to three of the mice survived for more than 45 days and were completely cured; −CDP−PBA−(Ib) is more than 290%
ara-CDP-PGA-(Ic) showed more than 374% ILS, and 3 or more mice, especially ara-
In the case of CDP-DL-PCA, 6 out of 6 mice survived for more than 45 days and were cured. For example, a dose of 1/3 mole of ara-C was 5 times more effective. The fact that the conjugate is effective in deoxynase-deficient ara-C-resistant L1210 lymphocytic leukemia mice indicates that the conjugate is introduced into the cell by endocytosis or other mechanisms and is enzymatically converted to phospholipids. The ara-CMP thus liberated is continuously phosphorylated to ara-CTP. Therefore, the deoxycytidine kinase required for phosphorylation of ara-C is not required since ara-CMP is released from the conjugate. Advantages As shown in the above studies, these conjugates exhibit greater activity than the parent drug ara-C, even at lower doses, which in turn may result in an improved therapeutic index of the parent drug. It turns out. Furthermore, ara-
C had a short half-life and required continuous administration to be effective, whereas the conjugate has greater and better activity in a single dose. Therefore, the conjugate can be used as a sustained release drug. In particular, the fact that the conjugate is effective in ara-C-resistant L1210 lymphocytic leukemia mice is due to the fact that it hydrolyzes in cancer cells to release ara-C and phospholipids, and is highly effective in deoxycytidine kinase-deficient resistant cells. means valid. Phospholipids are 1-O-alkyl-2-O-acylglycero-3-phosphates, and after biochemical reactions, 1-O-alkyl-
Converted to 2-lysophosphatidyl-choline or -ethanolamine, these compounds themselves have growth- and transformation-inhibiting and immunotransforming effects on cancer cells, so they exhibit additive and synergistic effects. There is expected. The conjugate is simply
It is not considered to be a prodrug of ara-C, but rather a novel drug. Furthermore, compared to other lipophilic prodrugs, the present conjugates have the advantage of being transparently suspended in water by ultrasound. leukemia patient
For treatment with ara-C, it has been reported in the literature that the development of resistance to this drug is related to the relative cellular content of deoxycytidine kinase and cytidine deaminase [Annals of the New York Academy of Sciences] AoAcademy of Science)
255 247 (1975)]. On the other hand, the ara-C conjugate is resistant to ditidine deaminase and does not hydrolyze amino groups. This conjugate is considered to have great effects in the treatment of ara-C resistant leukemia patients.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 式 (式中、Bはアデニン、シトシン、5−フルオロ
ウラシル、5−アザシトシン、6−メルカプトプ
リンまたは7−デアザアデニンであり、 AおよびCはそれぞれ水素またはヒドロキシ基
であり、 Wは8−20個の炭素原子を有する飽和または不
飽和アルキル基または2あるいは3−アルコキシ
アルキル基であり、 W′は7−19個の炭素原子を有する飽和または
不飽和アルキル基である)を有するヌクレオシド
抱合体および製薬上受容可能な毒性のない塩。 2 式 (式中、Bはアデニン、シトシン、5−フルオロ
ウラシル、5−アザシトシン、6−メルカプトプ
リンまたは7−デアザアデニンである)を有する
ヌクレオチドを縮合して、式 (式中、Bは上記定義の通りである)を有するモ
ルホリデートまたは式 (式中、Bは上記定義の通りである)を有する
P1−ヌクレオシド−5′−P2−ジフエニルピロホス
フエートとし、次いで式 (式中、Wは8から20個の炭素原子を有する飽和
または不飽和アルキル基または2或は3−アルコ
キシアルキル基であり、W′は7から19個の炭素
原子を有する飽和または不飽和アルキル基であ
る)を有する1−O−アルキル−2−O−アシル
グリセロ−3−ホスフエートと反応させて、式 (式中、AおよびCはそれぞれ水素またはヒドロ
キシ基である)を有するヌクレオシド抱合体また
はその塩を得ることを特徴とする、式()を有
するヌクレオシド抱合体の製造法。 3 式 (式中、Wは8から20個の炭素原子を有する飽和
または不飽和アルキル基または2或は3−アルコ
キシアルキル基であり、W′は7から19個の炭素
原子を有する飽和または不飽和アルキル基であ
る)を有する燐脂質を縮合して、式 (式中、WおよびW′は上記定義の通りである)
を有する燐脂質モルホリデートまたは式 (式中、WおよびW′は上記定義の通りである)
を有するP1−グリセロ−5′−P2−ジフエニルピロ
ホスフエートとし、次いでこれを式 (式中、Bはアデニン、シトシン、5−フルオロ
ウラシル、5−アザシトシン、6−メルカプトプ
リンまたは7−デアザアデニンである)を有する
ヌクレオチドと反応させて、式 (式中、AおよびCはそれぞれ水素またはヒドロ
キシ基である)を有するヌクレオシド抱合体また
はその塩を得ることを特徴とする、式()を有
するヌクレオシド抱合体の製造法。 4 目的化合物が1−β−D−アラビノフラノシ
ルシトシン−5′−ジホスフエート−1−O−オク
タデシル−2−O−パルミトイル−sn−グリセロ
ールである特許請求の範囲第1項記載の化合物。 5 目的化合物が1−β−D−アラビノフラノシ
ルシトシン−5′−ジホスフエート−rac−1−O
−オクタデシル−2−O−パルミトイルグリセロ
ールである特許請求の範囲第1項記載の化合物。 6 目的化合物が1−β−D−アラビノフラノシ
ルシトシン−5′−ジホスフエート−rac−1−O
−ヘキサデシル−2−O−パルミトイルグリセロ
ールである特許請求の範囲第1項記載の化合物。 7 目的化合物が9−β−D−アラビノフラノシ
ルアデニン−5′−ジホスフエート−rac−1−O
−ヘキサデシル−2−O−パルミトイルグリセロ
ールである特許請求の範囲第1項記載の化合物。
[Claims] 1 formula (wherein B is adenine, cytosine, 5-fluorouracil, 5-azacytosine, 6-mercaptopurine or 7-deazaadenine, A and C are each hydrogen or hydroxy group, and W is 8-20 carbon atoms. a saturated or unsaturated alkyl group or a 2- or 3-alkoxyalkyl group having W' is a saturated or unsaturated alkyl group having 7-19 carbon atoms) and pharmaceutically acceptable Non-toxic salt. 2 formulas nucleotides having the formula morpholidate or formula having the formula (wherein B is as defined above) (wherein B is as defined above)
P 1 -nucleoside-5′-P 2 -diphenylpyrophosphate and then the formula (wherein W is a saturated or unsaturated alkyl group or a 2- or 3-alkoxyalkyl group having from 8 to 20 carbon atoms, and W' is a saturated or unsaturated alkyl group having from 7 to 19 carbon atoms. ) having the formula (wherein A and C are each a hydrogen or hydroxy group) or a salt thereof. A method for producing a nucleoside conjugate having the formula (). 3 formulas (wherein W is a saturated or unsaturated alkyl group or a 2- or 3-alkoxyalkyl group having from 8 to 20 carbon atoms, and W' is a saturated or unsaturated alkyl group having from 7 to 19 carbon atoms. ) is condensed to give the formula (In the formula, W and W′ are as defined above.)
Phospholipid morpholidate or with the formula (In the formula, W and W′ are as defined above.)
P 1 -glycero-5′-P 2 -diphenylpyrophosphate with the formula (wherein B is adenine, cytosine, 5-fluorouracil, 5-azacytosine, 6-mercaptopurine or 7-deazaadenine) by reacting with a nucleotide having the formula (wherein A and C are each a hydrogen or hydroxy group) or a salt thereof. A method for producing a nucleoside conjugate having the formula (). 4. The compound according to claim 1, wherein the target compound is 1-β-D-arabinofuranosylcytosine-5'-diphosphate-1-O-octadecyl-2-O-palmitoyl-sn-glycerol. 5 The target compound is 1-β-D-arabinofuranosylcytosine-5'-diphosphate-rac-1-O
-Octadecyl-2-O-palmitoylglycerol. 6 The target compound is 1-β-D-arabinofuranosylcytosine-5'-diphosphate-rac-1-O
-hexadecyl-2-O-palmitoylglycerol. 7 The target compound is 9-β-D-arabinofuranosyl adenine-5'-diphosphate-rac-1-O
-hexadecyl-2-O-palmitoylglycerol.
JP60275853A 1984-12-07 1985-12-07 Novel nucleotide derivative and its production Granted JPS61263996A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR84-7754 1984-12-07
KR1019840007754A KR880000094B1 (en) 1984-12-07 1984-12-07 Preparation process for nucleoside derivative
KR85-6039 1985-08-22

Publications (2)

Publication Number Publication Date
JPS61263996A JPS61263996A (en) 1986-11-21
JPS6338360B2 true JPS6338360B2 (en) 1988-07-29

Family

ID=19236525

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60275853A Granted JPS61263996A (en) 1984-12-07 1985-12-07 Novel nucleotide derivative and its production
JP60275852A Granted JPS61197591A (en) 1984-12-07 1985-12-07 Manufacture of nucleoside derivative

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP60275852A Granted JPS61197591A (en) 1984-12-07 1985-12-07 Manufacture of nucleoside derivative

Country Status (6)

Country Link
JP (2) JPS61263996A (en)
KR (1) KR880000094B1 (en)
DE (1) DE3543347A1 (en)
ES (1) ES8701192A1 (en)
FR (1) FR2574412B1 (en)
GB (1) GB2168353B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599887B2 (en) 1988-07-07 2003-07-29 Chimerix, Inc. Methods of treating viral infections using antiviral liponucleotides
MY164523A (en) 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
JP5230052B2 (en) 2000-05-26 2013-07-10 イデニクス(ケイマン)リミテツド Methods and compositions for the treatment of flaviviruses and pestiviruses
CA2506129C (en) 2002-11-15 2015-02-17 Idenix (Cayman) Limited 2'-branched nucleosides and flaviviridae mutation
ITFI20040173A1 (en) * 2004-08-03 2004-11-03 Protera S R L RNA-DEPENDENT POLYMERASE-ACTIVATED DNA DRUGS
GB0505781D0 (en) * 2005-03-21 2005-04-27 Univ Cardiff Chemical compounds
TWI464402B (en) * 2011-01-12 2014-12-11 Univ Kaohsiung Medical Method for conjugating nucleic acid and small molecular
EP2712868A1 (en) * 2012-09-28 2014-04-02 B. Braun Melsungen AG 5-Fluoruoracil Derivatives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283394A (en) * 1979-08-06 1981-08-11 Research Corporation Cytotoxic nucleoside-corticosteroid phosphodiesters

Also Published As

Publication number Publication date
DE3543347C2 (en) 1989-11-09
FR2574412B1 (en) 1989-06-09
JPS61263996A (en) 1986-11-21
KR880000094B1 (en) 1988-02-23
JPS61197591A (en) 1986-09-01
GB8530114D0 (en) 1986-01-15
DE3543347A1 (en) 1986-06-12
FR2574412A1 (en) 1986-06-13
GB2168353B (en) 1988-06-22
KR860004919A (en) 1986-07-16
JPH0129800B2 (en) 1989-06-14
ES549558A0 (en) 1986-12-01
ES8701192A1 (en) 1986-12-01
GB2168353A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US4622392A (en) Thiophospholipid conjugates of antitumor agents
IE60328B1 (en) Improvements in the treatment of tumors in mammals
FI61315C (en) PROCEDURE FOR FRAMSTATION OF ANTIVIRAL 9- (BETA-D-ARABINOFURANOSYL) PURIN-5'-PHOSPHATE
KR880000093B1 (en) Process for the preparation of neucleoside derivative
CN106661077A (en) Novel compound of 4'-thionucleoside, as well as preparation method therefor, pharmaceutical composition thereof and application thereof
AU2016367237A1 (en) Diastereoselective synthesis of phosphate derivatives and of the gemcitabine prodrug NUC-1031
AU746170B2 (en) 5'-Deoxy-cytidine derivatives
EP0138656B1 (en) Cyclic pyrophosphates of purine and pyrimidine acyclonucleosides, their preparation and their application in anti-viral compositions
JPH09504541A (en) 5-fluorouracil derivative
JPS6338360B2 (en)
CA2352229C (en) Glyceryl nucleotides, method for the production thereof and their use
WO1996001834A1 (en) 2'-deoxy-2'-(substituted or unsubstituted methylidene)-4'-thionucleoside
EP1606233B1 (en) Phospholipid esters of Clofarabin
CA2707593A1 (en) Clofarabine phospholipid derivatives
KR0136869B1 (en) 2'-methylidenepyrimidine nucleoside compounds, their use and method for production thereof
CS270235B2 (en) Method of carbocyclic purine nicleotides preparation
EP0882734B1 (en) 5'-Deoxy-cytidine derivatives
US6812365B2 (en) Disulfone reagents and methods of preparing and using same
US5179084A (en) Antiviral phosphoric acid esters of oxetanocins
Schmitt et al. Synthesis of the Optically Active Carbocyclic Analogs of the Four 2′-Deoxyribonucleoside Monophosphates
KR0170079B1 (en) Phospholipid derivatives of acyclic nucleoside and their preparation
KR0125779B1 (en) Nucleoside and the preparation method thereof
JPH02188A (en) Nucleotide analogue, production thereof and antiviral agent
WO1989010361A1 (en) Novel compound and medicine containing same
MXPA06010863A (en) 4'-c-substituted 2-haloadenosine derivative