JPS6338159B2 - - Google Patents

Info

Publication number
JPS6338159B2
JPS6338159B2 JP56008246A JP824681A JPS6338159B2 JP S6338159 B2 JPS6338159 B2 JP S6338159B2 JP 56008246 A JP56008246 A JP 56008246A JP 824681 A JP824681 A JP 824681A JP S6338159 B2 JPS6338159 B2 JP S6338159B2
Authority
JP
Japan
Prior art keywords
signal
circuit
output
power
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008246A
Other languages
Japanese (ja)
Other versions
JPS57123792A (en
Inventor
Ichiu Watabe
Yutaka Wakasa
Hisayuki Uchiike
Kyoharu Inao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP56008246A priority Critical patent/JPS57123792A/en
Publication of JPS57123792A publication Critical patent/JPS57123792A/en
Publication of JPS6338159B2 publication Critical patent/JPS6338159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/0001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Selective Calling Equipment (AREA)

Description

【発明の詳細な説明】 本発明は、2線式信号伝送システムに関するも
のである。さらに詳しくは、高周波交流電気を情
報および電力の担体として用いるようにした2線
式信号伝送システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-wire signal transmission system. More particularly, the present invention relates to a two-wire signal transmission system that uses high-frequency alternating current electricity as a carrier of information and power.

プロセス制御において、プロセスの各点と制御
部との間で情報をやりとりするために、2線式信
号伝送システムが用いられる。2線式信号伝送シ
ステムは、また、プロセスの各所に配置された端
末器たとえば検出器や操作器に制御部から作動用
の電力を供給する機能をも有する。従来の2線式
信号伝送システムは、直流電気を情報および電力
の担体として用いるのが普通であつて、例えば4
−20mAの範囲の直流電流を用いて4mAの端末
器作動用の電力分とし、その上の16mAを情報分
としている。
In process control, two-wire signal transmission systems are used to exchange information between each point in the process and the control unit. The two-wire signal transmission system also has the function of supplying operating power from the control unit to terminal devices such as detectors and operating devices located at various locations in the process. Conventional two-wire signal transmission systems typically use direct current electricity as an information and power carrier, e.g.
A DC current in the range of -20mA is used to generate 4mA of power for operating the terminal, and 16mA above that is used for information.

端末器はプロセスの各所に分散されるが、制御
部は計器室等に集中される。そして各2線式信号
伝送系に対する電源供給は、計器室等において共
通の直流電源あるいは商用電源から行われる。各
2線式信号伝送系は、系統間で相互におよび各系
統内の入出力間においてそれぞれ絶縁されている
ことが望ましいので、共通の直流電源から給電さ
れる場合は、各系統ごとにDC/DCコンバータな
どによつて電源絶縁および入出力絶縁をすること
が必要になり、商用電源から給電される場合は、
電源トランスによつて電源絶縁は行われるもの
の、トランスの電力を直流化して利用するので入
出力絶縁用にやはりDC/DCコンバータ等を必要
とする。このため、従来の2線式信号伝送システ
ムは絶縁性を要求されると構成が複雑化するのが
避けられない。また伝送される信号は、電流の振
幅が情報を表わす信号なので、ノイズの影響を受
けやすく、高精度の情報が得がたい欠点がある。
Terminals are distributed throughout the process, but the control section is centralized in a control room or the like. Power is supplied to each two-wire signal transmission system from a common DC power source or commercial power source in a control room or the like. It is desirable that each two-wire signal transmission system be isolated from each other and between the input and output within each system, so if power is supplied from a common DC power supply, each system must be isolated from DC/ It is necessary to isolate the power supply and input/output using a DC converter, etc., and if the power is supplied from a commercial power source,
Although the power supply is isolated by the power transformer, since the transformer's power is converted to direct current and used, a DC/DC converter is still required for input/output isolation. For this reason, the conventional two-wire signal transmission system inevitably has a complicated configuration when insulation is required. Furthermore, since the transmitted signal is a signal in which the amplitude of the current represents information, it is easily affected by noise and has the drawback that highly accurate information is difficult to obtain.

制御部とプロセスの間でやりとりされる信号と
しては、値が連続的に変化する信号(以下連続値
信号)と値が2値的にしか変化しない信号(以下
2値信号)とがあり、かつそれぞれについてプロ
セスから制御部に入力される信号(入力信号)と
制御部からプロセスに出力される信号(出力信
号)とがある。従来の2線式信号伝送システム
は、連続値信号の入出力に用いられ、2値信号の
入出力には別のシステムが用いられる。このため
プロセス信号の伝送を総合的に行うためには全く
構成の異なる2つのシステムが必要となり、シス
テム構成が複雑化する。とくに2値信号の入出力
は多点化されることが多いから、システムの複雑
さが倍加する。
There are two types of signals exchanged between the control unit and the process: signals whose values change continuously (hereinafter referred to as continuous value signals) and signals whose values change only in binary terms (hereinafter referred to as binary signals), and For each, there is a signal (input signal) that is input from the process to the control unit and a signal (output signal) that is output from the control unit to the process. Conventional two-wire signal transmission systems are used for inputting and outputting continuous value signals, and separate systems are used for inputting and outputting binary signals. Therefore, in order to comprehensively transmit process signals, two systems with completely different configurations are required, which complicates the system configuration. In particular, since input/output of binary signals is often performed at multiple points, the complexity of the system is doubled.

プロセス制御の信頼性を高めるために、1つの
端末器に対して制御部を2重化して、一方を現用
側、他方を待機側とし、現用側が故障したとき待
機側がバツクアツプすることが行われる。その場
合待機側は、現用側に入出力信号を監視して、バ
ツクアツプ時の制御の連続性を維持するように準
備されていなければならない。そのためには2線
式信号伝送システムは、異なる系統間で容易に信
号の交流ができるようになつていなければならな
いが、従来の2線式信号伝送システムはそれに適
した構成を持つておらず、しいてそれを可能にし
ようとすれば、構成が複雑化するのが避けられな
い。とくに系統間絶縁を保つたままで系統間の交
流を可能にしようとすれば、構成は著しく複雑化
する。
In order to improve the reliability of process control, the control units for one terminal are duplicated, one is on the active side and the other is on the standby side, and when the active side fails, the standby side is backed up. In that case, the standby side must be prepared to monitor the input/output signals of the active side to maintain continuity of control during backup. To achieve this, a two-wire signal transmission system must be able to easily exchange signals between different systems, but conventional two-wire signal transmission systems do not have a configuration suitable for this. If we try to make this possible, the configuration will inevitably become complicated. In particular, if it is attempted to enable alternating current between systems while maintaining insulation between systems, the configuration becomes significantly complicated.

本発明の目的は、簡単な構成で、電源間および
入出力間の絶縁が容易で、高精度信号の伝送に適
し、連続値信号と2値信号のいずれの伝送にも統
一的に適用でき、多点化が容易で、2重化のため
の系統間交流が容易な2線式信号伝送システムを
提供することにある。
The purpose of the present invention is to have a simple configuration, easy insulation between power supplies and input/output, suitable for transmitting high-precision signals, and uniformly applicable to the transmission of both continuous value signals and binary signals. It is an object of the present invention to provide a two-wire signal transmission system that can easily be multipointed and can easily perform alternating current between systems for duplication.

本発明は、制御部側に設けられる電源として高
周波交流電源を用い、この交流電源の出力電気の
波数に信号を乗せそのエネルギーを端末器作動用
の電力とするようにしたものである。
In the present invention, a high frequency AC power source is used as a power source provided on the control unit side, and a signal is added to the wave number of the output electricity of the AC power source so that the energy is used as power for operating the terminal device.

以下、図面によつて本発明を詳細に説明する。
第1図は、本発明実施例の概念的構成図である。
第1図において、1は制御部、2は2線式の伝送
部、3は端末部である。制御部1において、11
は高周波の交流電源である。ここで「高周波」と
は、その周波数が後に述べる連続値信号を必要十
分な分解能で表現できる程度とする。交流電源の
出力電気の波形は矩形波、正弦波、三角波、その
他の任意の波形でよい。12a〜12dはトラン
ス、13a〜13dは制御部の各入出力ユニツト
であつて、13aは連続値信号出力ユニツトと示
され、13bは連続値信号入力ユニツトとして示
され、13cは2値信号出力ユニツトとして示さ
れ、13dは2値信号入力ユニツトとして示され
ている。これら各ユニツトは各入出力信号の点数
に応じて所要個数設けられるが、ここでは代表例
を1つずつ示す。各ユニツトは共通の交流電源1
1からそれぞれのトランスを通じて十分な電力で
給電される。それぞれのトランスは電源絶縁、昇
圧または降圧、インピーダンス変換等の作用をな
す。
Hereinafter, the present invention will be explained in detail with reference to the drawings.
FIG. 1 is a conceptual block diagram of an embodiment of the present invention.
In FIG. 1, 1 is a control section, 2 is a two-wire transmission section, and 3 is a terminal section. In the control unit 1, 11
is a high frequency AC power source. Here, "high frequency" means that the frequency is such that a continuous value signal, which will be described later, can be expressed with necessary and sufficient resolution. The waveform of the output electricity from the AC power supply may be a rectangular wave, a sine wave, a triangular wave, or any other arbitrary waveform. 12a to 12d are transformers, 13a to 13d are input/output units of the control section, where 13a is shown as a continuous value signal output unit, 13b is shown as a continuous value signal input unit, and 13c is a binary signal output unit. 13d is shown as a binary signal input unit. A required number of each of these units is provided depending on the number of input/output signals, but one representative example is shown here. Each unit has a common AC power source 1
1 through each transformer with sufficient power. Each transformer performs functions such as power supply isolation, step-up or step-down, and impedance conversion.

入出力ユニツト13a〜13dは、それぞれ伝
送部2の2本の電線を通じて端末部の各端末器3
1a〜31dにそれぞれ接続される。ここで、3
1aはアナログ操作器、31bはアナログ検出
器、31cは接点操作器、31dは接点検出器と
してぞれぞれ示されている。これらは制御部1の
各入出力ユニツトのそれぞれと対をなすものであ
り、対のものは共通の添字で示される。各端末器
も各入出力信号の点数に応じた所要個数が設けら
れる 連続値信号出力ユニツト13aは、連続値出力
回路131aの出力信号を変換回路132aでパ
ルス幅信号に変換してドライバ133aを通じて
変調回路134aに与え、交流電源11の出力電
気(電圧または電流)を変調して伝送線上に送り
出す。連続値出力回路131aの出力信号の形態
は、アナログ信号またはデイジタル信号のどちら
でもよい。変調法は振幅変調、位相変調、
FSK/PSKなどいずれの変調法も利用できる。
この変調により、伝送部2を通じてアナログ操作
器31aに与えられる交流電気は、パルス幅信号
の論理値に対応して振幅や位相などが2値的に変
化するものとなり、このうちパルス幅信号の論理
値「1」に相当する部分の波数が連続値信号の値
を表わす。すなわち、連続値信号の値はいわばパ
ルス数によつて表わされるので、ノイズの影響を
受けにくく、交流電気の周波数を充分に高くすれ
ば高精度の信号伝送が行える。
The input/output units 13a to 13d are connected to each terminal device 3 of the terminal section through two electric wires of the transmission section 2, respectively.
1a to 31d, respectively. Here, 3
1a is an analog operating device, 31b is an analog detector, 31c is a contact operating device, and 31d is a contact detector, respectively. These are paired with each input/output unit of the control section 1, and the paired units are indicated by a common suffix. Each terminal device is provided with a required number according to the number of points of each input/output signal.The continuous value signal output unit 13a converts the output signal of the continuous value output circuit 131a into a pulse width signal with a conversion circuit 132a, and modulates it through a driver 133a. The output voltage (voltage or current) of the AC power supply 11 is modulated and sent onto the transmission line. The output signal form of the continuous value output circuit 131a may be either an analog signal or a digital signal. Modulation methods include amplitude modulation, phase modulation,
Any modulation method such as FSK/PSK can be used.
Due to this modulation, the alternating current electricity applied to the analog controller 31a through the transmission section 2 changes in amplitude, phase, etc. in a binary manner corresponding to the logic value of the pulse width signal. The wave number of the portion corresponding to the value "1" represents the value of the continuous value signal. That is, since the value of the continuous value signal is expressed by the number of pulses, it is less susceptible to noise, and if the frequency of the alternating current electricity is made high enough, highly accurate signal transmission can be achieved.

アナログ操作器31aは、このように変調され
た交流電気をトランス311aを通じて受電し、
交流のままあるいは整流回路312aで直流化し
た後に復調回路313aで復調し、得られたパル
ス幅信号を変換回路314aでアナログ信号に変
換して操作回路315aに与え、操作回路315
aを通じてプロセスを操作する。トランス311
aが受電した交流電気は、また、整流回路312
aで整流されて、アナログ操作器31aの各回路
に作動用電力として供給される。また必要に応じ
て交流電気の波からクロツクパルスを生成し、こ
れを復調やアナログ変換のための規制信号として
利用する(図略)。トランス311aは連続値信
号出力ユニツト13aとアナログ操作器31a間
の絶縁を行うとともに、必要に応じて昇圧、降
圧、インピーダンス変換等の機能を果す。なお、
トランス311aは図示の位置に限らず伝送線上
のどこに設けても、またいくつ設けてもよい。同
様のことが以下のどの端末器においてもいえる。
The analog operating device 31a receives the alternating current electricity modulated in this way through the transformer 311a,
The pulse width signal is either left as AC or converted to DC by the rectifier circuit 312a and then demodulated by the demodulation circuit 313a, and the obtained pulse width signal is converted into an analog signal by the conversion circuit 314a and given to the operation circuit 315a.
operate the process through a. transformer 311
The AC electricity received by a is also passed through the rectifier circuit 312.
a, and is supplied as operating power to each circuit of the analog operating device 31a. Also, if necessary, clock pulses are generated from AC waves and used as regulation signals for demodulation and analog conversion (not shown). The transformer 311a provides insulation between the continuous value signal output unit 13a and the analog operating device 31a, and performs functions such as voltage step-up, voltage step-down, and impedance conversion as required. In addition,
The transformer 311a is not limited to the illustrated position, but may be provided anywhere on the transmission line, and may be provided in any number. The same holds true for any of the following terminals.

連続値信号入力ユニツト13bは、トランス1
2bの交流電気を負荷状態検出回路134bを通
じて伝送線上に送り出す。この交流電気は、端末
部のアナログ検出器31bによりトランス311
bを通じて受電され、整流回路312bで直流化
されてアナログ検出器31bの各回路の作動用電
源とされる。交流電気から必要に応じてクロツク
パルスが生成される(図略)。アナログ検出器3
1bは、検出回路315bが検出したプロセスの
アナログ測定信号を変換回路314bでパルス幅
信号に変換する。クロツクパルスは変換回路31
4bの動作規制に用いられる。このパルス幅信号
は負荷制御回路313bに与えられ、この負荷制
御回路313bにより整流回路312bまたはト
ランス311bの負荷量を、パルス幅信号の論理
値に対応して2値的に変化させる。このとき、パ
ルス幅信号の論理値「1」に相当する負荷状態に
含まれる交流電気の波数がアナログ測定信号の値
を表わす。このような負荷の変化に対応して伝送
電流が変化するので、これが連続値信号入力ユニ
ツト13bの負荷検出回路134bによつて検出
され、受信回路133bでパルス幅信号が復元さ
れ、変換回路132bで連続値信号に変換されて
連続値入力回路131bに与えられる。この連続
値信号の形態は連続値入力回路131bの構成に
合わせてアナログ信号またはデイジタル信号とさ
れる。
The continuous value signal input unit 13b is connected to the transformer 1.
2b of alternating current electricity is sent out onto the transmission line through the load state detection circuit 134b. This alternating current electricity is transmitted to the transformer 311 by the analog detector 31b at the terminal part.
The electric power is received through the rectifier circuit 312b, and is converted into direct current by the rectifier circuit 312b, and is used as a power source for operating each circuit of the analog detector 31b. Clock pulses are generated as needed from alternating current electricity (not shown). Analog detector 3
1b converts the process analog measurement signal detected by the detection circuit 315b into a pulse width signal by the conversion circuit 314b. The clock pulse is converted by the conversion circuit 31.
4b is used for regulating the operation. This pulse width signal is applied to a load control circuit 313b, which changes the load amount of the rectifier circuit 312b or transformer 311b in a binary manner corresponding to the logical value of the pulse width signal. At this time, the wave number of the AC electricity included in the load state corresponding to the logical value "1" of the pulse width signal represents the value of the analog measurement signal. Since the transmission current changes in response to such changes in load, this is detected by the load detection circuit 134b of the continuous value signal input unit 13b, the pulse width signal is restored by the reception circuit 133b, and the pulse width signal is restored by the conversion circuit 132b. It is converted into a continuous value signal and applied to the continuous value input circuit 131b. The form of this continuous value signal is an analog signal or a digital signal depending on the configuration of the continuous value input circuit 131b.

2値信号出力ユニツト13cは、2値信号出力
回路131cが生じる2値信号をドライバ133
cを通じて変調回路134cに与えて、この変調
回路で交流電源11の出力電気を変調し、伝送線
を通じて接点操作器31cに伝える。変調回路1
34cによる変調は振幅変調(オンオフ変調)が
適当であるが、必ずしもそれに限らない。
The binary signal output unit 13c outputs the binary signal generated by the binary signal output circuit 131c to the driver 133.
c to the modulation circuit 134c, which modulates the output electricity of the AC power supply 11, and transmits it to the contact operating device 31c through the transmission line. Modulation circuit 1
Although amplitude modulation (on-off modulation) is suitable for the modulation by 34c, it is not necessarily limited to this.

接点操作器31cは、伝えられた信号をトラン
ス311cを通じて受電し、復調回路313cで
復調(オンオフ変調の場合は単に整流)して2値
信号を復元し、この信号に従つてリレー等315
cを操作する。
The contact operation device 31c receives the transmitted signal through the transformer 311c, demodulates it (simply rectifies it in the case of on-off modulation) in the demodulation circuit 313c, restores the binary signal, and operates the relay etc. 315 according to this signal.
Operate c.

2値信号入力ユニツト13dは、負荷検出回路
134dを通じて交流電源11の交流電気を伝送
線上に送り出す。この交流電気は、接点検出器3
1dによりトランス311dを通じて受電され、
整流回路312dで整流されて接点回路315d
に与えられる。接点回路315dの接点は外部か
らの操作によつて開閉されるが、接点の開閉によ
つてトランス311dの負荷が2値的に変化する
から、このような負荷変化にともなう電流の変化
が2値信号入力ユニツト13dにおいて負荷検出
回路134dによつて検出され、受信回路133
dで2値信号が復元されて2値入力回路133d
に入力される。
The binary signal input unit 13d sends out AC electricity from the AC power supply 11 onto the transmission line through the load detection circuit 134d. This AC electricity is transmitted to the contact detector 3
1d receives power through the transformer 311d,
Rectified by the rectifier circuit 312d and connected to the contact circuit 315d
given to. The contacts of the contact circuit 315d are opened and closed by external operations, and the load of the transformer 311d changes in a binary manner due to the opening and closing of the contacts, so the change in current due to such load changes is binary. It is detected by the load detection circuit 134d in the signal input unit 13d, and the receiving circuit 133
d, the binary signal is restored and the binary input circuit 133d
is input.

このような2線式信号伝送システムは、高周波
交流電源の交流電気を信号および電力の担保とし
て用い、連続値信号は2値的に変調した交流電気
の1つの状態の波数で表わし、2値信号は2値変
調した信号そのもので表わすようにしたので、簡
単な構成で、電源間および入出力間絶縁が容易
で、高精度信号の伝送に適し、連続値信号と2値
信号のいずれの伝送にも統一的に適用できる2線
式信号伝送システムとなる。本システムにおいて
は、また、交流電源を複数の信号伝送系に対して
共通にし、電源の交流電気の波動からクロツクパ
ルスを生成し利用するようにすれば、複数の信号
伝送系の動作を互いに同期あるいは適宜のタイミ
ング関係を保つて行わせることができる。
Such a two-wire signal transmission system uses AC electricity from a high-frequency AC power source as a signal and power security, and a continuous value signal is expressed by the wave number of one state of binary modulated AC electricity, and a binary signal is used. is expressed by the binary modulated signal itself, so it has a simple configuration, easy isolation between power supplies and input/output, and is suitable for transmitting high-precision signals, and is suitable for transmitting both continuous value signals and binary signals. It also becomes a two-wire signal transmission system that can be uniformly applied. In this system, if the AC power supply is shared by multiple signal transmission systems and clock pulses are generated and used from the AC electricity waves of the power supply, the operations of the multiple signal transmission systems can be synchronized or synchronized with each other. This can be done while maintaining an appropriate timing relationship.

このような信号伝送システムであるから、制御
部の入出力ユニツトを二重化して信頼性を高める
ことが容易にできる。第2図に二重化の例を示
す。第2図においては、端末部の1組のアナログ
操作、検出器31a,31bに対して2組の連続
値信号出、入力ユニツト13a,13b,13
a′13b′が設けられ、出力ユニツト13a,13
a′同志および入力ユニツト13b,13b′同志が
共通の伝送線に並列に接続されている。このよう
に構成すれば、アナログ検出器31bが生じる連
続値入力信号すなわちパルス幅変調された負荷状
態は、連続値入力ユニツト13b,13b′に共通
に入力される。そして、この入力信号に基づく同
じ値の操作出力が連続値出力ユニツト13a,1
3a′からそれぞれ生成され、共通のアナログ操作
器31aに与えられる。交流電源11が共通なの
で、パルス幅変調された2つの操作出力は同期し
て与えることができる。このような状態で入出力
ユニツト対の一方が故障などによつてダウンして
も、他方の対による入出力動作は正常に行われ、
プロセスへのサービスはとぎれることがない。す
なわち、共通の端末器に対して2系統の入力ある
いは出力ユニツトの伝送線を並列接続するだけ
で、2重化システムが簡単に構成することがで
き、しかも入出力絶縁が保たれる。また2重化さ
れた系統間の相互絶縁を望むときは、適宜の位置
にトランスを挿入すればよい。上記は連続値信号
の伝送系を2重化した例であるが、2値信号の伝
送系も同様にして2重化できる。
With such a signal transmission system, the reliability can be easily increased by duplicating the input/output units of the control section. Figure 2 shows an example of duplication. In FIG. 2, one set of analog operations at the terminal, two sets of continuous value signal outputs for the detectors 31a and 31b, and input units 13a, 13b, 13 are shown.
a'13b' is provided, and the output units 13a, 13
A' and input units 13b and 13b' are connected in parallel to a common transmission line. With this arrangement, the continuous value input signal, ie the pulse width modulated load state, generated by the analog detector 31b is commonly input to the continuous value input units 13b, 13b'. Then, the operation output of the same value based on this input signal is output from the continuous value output units 13a, 1.
3a' and applied to a common analog controller 31a. Since the AC power source 11 is common, the two pulse width modulated operation outputs can be provided synchronously. In such a state, even if one of the input/output unit pairs goes down due to a failure, the input/output operations by the other pair will continue normally.
Service to the process is uninterrupted. That is, by simply connecting the transmission lines of two input or output units in parallel to a common terminal, a duplex system can be easily constructed, and input/output insulation can be maintained. Moreover, when mutual isolation between duplicated systems is desired, a transformer may be inserted at an appropriate position. The above is an example in which the continuous value signal transmission system is duplicated, but the binary signal transmission system can also be duplicated in the same manner.

連続値信号出力系統の一例を第3図に示す。第
3図において、変調回路134aはスイツチSと
抵抗Rの並列回路で構成され、スイツチSがドラ
イバ133aによつてパルス幅信号に従つて開閉
されるようになつている。スイツチSの開閉につ
れて、交流電源11から伝送線に与えられる交流
電圧の振幅は大小2値に変調される。このように
変調された交流電圧は、トランス311aの2次
側に取出され、整流回路312aで整流されて需
要回路310aに与えられる。需要回路310a
は、第1図における復調回路313a、変換回路
314aおよび操作回路315aを含むものであ
る。整流回路312aの出力電力はダイオードD
を通じてコンデンサCに充電され、この充電され
た電力が需要回路310aに作動用電力として与
えられる。
An example of a continuous value signal output system is shown in FIG. In FIG. 3, the modulation circuit 134a is constituted by a parallel circuit of a switch S and a resistor R, and the switch S is opened and closed by a driver 133a in accordance with a pulse width signal. As the switch S opens and closes, the amplitude of the AC voltage applied from the AC power source 11 to the transmission line is modulated into two values, large and small. The alternating current voltage modulated in this way is taken out to the secondary side of the transformer 311a, rectified by a rectifier circuit 312a, and given to the demand circuit 310a. Demand circuit 310a
1 includes a demodulation circuit 313a, a conversion circuit 314a, and an operation circuit 315a in FIG. The output power of the rectifier circuit 312a is
The capacitor C is charged through the capacitor C, and this charged power is given to the demand circuit 310a as operating power.

第4図は、連続値信号出力系統の他の例の構成
を示したものであつて、トランス12a′のセンタ
ー・タツプ付1次コイル両端に高周波交流電源1
1の出力電気を半サイクルずつ交互に印加し、2
次側に誘起した交流電圧を伝送線を通じて需要側
に与えるようにしたものである。トランス12
a′の1次コイルのセンター・タツプは抵抗Rとト
ランジスタQのコレクタ・エミツタ回路の並列回
路を通じてコモン点に接続される。トランジスタ
Qはそのベースに与えられるパルス幅信号によつ
てオンオフされる。トランジスタQのオンオフに
つれてトランス12a′の1次コイルに加わる電圧
が大小2値に変調されるので、需要側にはパルス
幅信号に応じて振幅変調された交流電圧が供給さ
れる。このような交流電圧はトランス311aを
通り、整流回路312aで整流され、抵抗rを通
じてゼナーダイオードZとコンデンサCの並列回
路に与えられ、ゼナーダイオードで一定化されて
コンデンサCに充電される。抵抗rの電圧降下お
よびコンデンサCの電圧は需要回路310aにそ
れぞれ信号および電源電圧として与えられる。抵
抗rの電圧降下はパルス幅信号に応じて振幅変調
されているので、パルス幅信号から連続値を復元
することによりプロセス操作信号を得ることがで
きる。
FIG. 4 shows the configuration of another example of a continuous value signal output system, in which a high frequency AC power source is connected to both ends of the primary coil with center tap of the transformer 12a'.
1 output electricity is applied alternately in half cycles, 2
The AC voltage induced on the next side is applied to the demand side through a transmission line. transformer 12
The center tap of the primary coil a' is connected to the common point through a parallel circuit of a resistor R and a collector-emitter circuit of a transistor Q. Transistor Q is turned on and off by a pulse width signal applied to its base. As the transistor Q is turned on and off, the voltage applied to the primary coil of the transformer 12a' is modulated into two values, large and small, so that the demand side is supplied with an AC voltage whose amplitude is modulated according to the pulse width signal. Such an AC voltage passes through a transformer 311a, is rectified by a rectifier circuit 312a, is applied to a parallel circuit of a Zener diode Z and a capacitor C through a resistor r, is made constant by the Zener diode, and is charged to the capacitor C. The voltage drop across resistor r and the voltage across capacitor C are provided to demand circuit 310a as a signal and a power supply voltage, respectively. Since the voltage drop across the resistor r is amplitude modulated in accordance with the pulse width signal, the process operation signal can be obtained by restoring continuous values from the pulse width signal.

連続値信号入力系統の一例を第5図に示す。第
5図において、交流電源11の電圧は、スイツチ
Sの開閉によつて振幅変調され一定周期のタイミ
ング信号が重畳されて信号線に送出される。な
お、タイミング信号の重畳は場合によつては省略
してよい。このような電圧はトランス311bを
通り、整流回路312bで整流されて検出変換回
路310bに与えられるとともにダイオードDを
通じてコンデンサCに充電される。整流回路31
2bの出力端間には抵抗rとトランジスタQの直
列回路が設けられる。コンデンサCの電圧は検出
変換回路310bに電源電圧として与えられる。
検出変換回路310bは第1図における変換回路
314bと検出回路315bを含むものである。
検出変換回路310bは整流回路312bから与
えられる直流電圧に含まれるタイミング信号に規
制されて動作し、アナログ検出信号をパルス幅信
号に変換してこのパルス幅信号でトランジスタQ
をオンオフする。トンジスタQのオンオフにつれ
て整流回路312bの負荷すなわちトランス31
1bの負荷が2値的に変化し、それに対応した伝
送電流の変化が電源側において抵抗R′の電圧降
下を観測している受信回路133bによつて検知
され、それに基づいてパルス幅信号とそれに対応
した連続値信号が復元される。
An example of a continuous value signal input system is shown in FIG. In FIG. 5, the voltage of an AC power source 11 is amplitude modulated by opening and closing a switch S, and a timing signal of a constant period is superimposed on it, and then sent to a signal line. Note that the superimposition of the timing signal may be omitted depending on the case. Such a voltage passes through a transformer 311b, is rectified by a rectifier circuit 312b, is applied to a detection conversion circuit 310b, and is charged to a capacitor C through a diode D. Rectifier circuit 31
A series circuit of a resistor r and a transistor Q is provided between the output terminals of the transistor 2b. The voltage of capacitor C is given to detection conversion circuit 310b as a power supply voltage.
The detection conversion circuit 310b includes the conversion circuit 314b and the detection circuit 315b shown in FIG.
The detection conversion circuit 310b operates under the control of a timing signal included in the DC voltage applied from the rectification circuit 312b, converts the analog detection signal into a pulse width signal, and uses this pulse width signal to drive the transistor Q.
Turn on and off. As the transformer Q turns on and off, the load of the rectifier circuit 312b, that is, the transformer 31
1b changes binary, and the corresponding change in the transmission current is detected by the receiving circuit 133b that observes the voltage drop across the resistor R' on the power supply side, and based on this, the pulse width signal and the The corresponding continuous value signal is restored.

連続値信号入力系統の他の例の構成を第6図に
示す。第6図において、高周波交流電源11の出
力電圧はトランス12b′のセンター・タツプ付1
次コイルの両端に半サイクルずつ交互に与えら
れ、これによつて2次側に誘起した交流電圧が伝
送線を通じて送出される。トランス12b′のセン
ター・タツプは抵抗RとトランジスタQのコレク
タ・エミツタ回路を通じてコモン点に接続され
る。トランジスタQはそのベースに与えられるタ
イミング信号によつてオンオフされる。トランジ
スタQのオンオフにつれてトランス12b′の1次
コイルに加わる電圧が大小2値に変調されるの
で、伝送線にはタイミング信号が振幅変調によつ
て重畳された交流電圧が送出される。このような
交流電圧はトランス311bを通り、整流回路3
12bで整流され、抵抗γ′を通じてゼナーダイオ
ードZとコンデンサCの並列回路に与えられ、ゼ
ナーダイオードZで一定化されてコンデンサCに
充電される。抵抗r′の電圧降下およびコンデンサ
Cの電圧は、検出変換回路310bにそれぞれタ
イミング信号および電源電圧として与えられる。
The configuration of another example of the continuous value signal input system is shown in FIG. In FIG. 6, the output voltage of the high frequency AC power supply 11 is the center tap 1 of the transformer 12b'.
A half cycle is alternately applied to both ends of the secondary coil, thereby causing an AC voltage induced on the secondary side to be sent out through the transmission line. The center tap of the transformer 12b' is connected to a common point through a resistor R and a collector-emitter circuit of a transistor Q. Transistor Q is turned on and off by a timing signal applied to its base. As the transistor Q is turned on and off, the voltage applied to the primary coil of the transformer 12b' is modulated into two values, large and small, so that an alternating current voltage on which a timing signal is superimposed by amplitude modulation is sent to the transmission line. Such AC voltage passes through the transformer 311b and is then connected to the rectifier circuit 3.
The voltage is rectified by 12b, applied to a parallel circuit of a Zener diode Z and a capacitor C through a resistor γ', is made constant by the Zener diode Z, and is charged to a capacitor C. The voltage drop across resistor r' and the voltage across capacitor C are provided to detection conversion circuit 310b as a timing signal and a power supply voltage, respectively.

検出変換回路310bは、前置増幅回路Aと、
パルス幅変換用の、積分回路Iと比較回路Hとフ
リツプフロツプ回路Fとからなる。前置増幅回路
Aは被変換のアナログ電圧を積分回路Iに入力す
る。積分回路Iはこのアナログ信号を単独で、あ
るいはスイツチKが閉じているときは基準電圧e
との差をとつて積分し、積分出力と比較回路Hに
与える。比較回路Hは積分出力が零になつたかど
うかを検出し、その出力信号でフリツプフロツプ
回路Fをリセツトする。フリツプフロツプ回路F
は抵抗r′の電圧降下に含まれるタイミング信号に
よつてセツトされ、このセツトされた出力信号で
積分回路IのスイツチKをオンにする。積分回路
I、比較回路H、およびフリツプフロツプ回路F
からなる部分は積分形の電圧/パルス幅変換器と
して知られるものであつて、このような変換器に
よつて、前置増幅回路Aのアナログ出力電圧はタ
イミング信号が与えられるたびにパルス幅信号に
変換される。したがつてこのパルス幅信号でトラ
ンジスタQをオンオフすれば、電源側において抵
抗Rの電圧降下を観測している受信回路133b
によつてパルス幅信号を検知することができる。
The detection conversion circuit 310b includes a preamplifier circuit A,
It consists of an integrating circuit I, a comparing circuit H, and a flip-flop circuit F for pulse width conversion. The preamplifier circuit A inputs the analog voltage to be converted to the integrating circuit I. The integrator circuit I receives this analog signal either alone or when the switch K is closed, using the reference voltage e.
The difference between the two is calculated and integrated, and the integrated output is provided to the comparison circuit H. Comparison circuit H detects whether the integral output has become zero, and uses the output signal to reset flip-flop circuit F. Flip-flop circuit F
is set by a timing signal included in the voltage drop across the resistor r', and the set output signal turns on the switch K of the integrating circuit I. Integrator circuit I, comparator circuit H, and flip-flop circuit F
is known as an integral type voltage/pulse width converter, and by means of such a converter, the analog output voltage of preamplifier circuit A is converted into a pulse width signal every time a timing signal is applied. is converted to Therefore, if the transistor Q is turned on and off using this pulse width signal, the receiving circuit 133b which observes the voltage drop across the resistor R on the power supply side
The pulse width signal can be detected by

以上のように、本発明は、制御部側に設けられ
る電源として高周波交流電源を用い、この交流電
源の出力電気の波数に信号を乗せそのエネルギー
に端末器作動用の電力を乗せるようにした。この
ため、本発明によれば、簡単な構成で、電源間お
よび入出力間の絶縁が容易で、高精度信号の伝送
に適し、連続値信号と2値信号のいずれの伝送に
も統一的に適用でき、2重化のために系統間交流
が容易な2線式信号伝送システムが実現できる。
As described above, in the present invention, a high frequency AC power source is used as a power source provided on the control unit side, and a signal is added to the wave number of the output electricity of the AC power source, and the power for operating the terminal device is added to the energy. Therefore, according to the present invention, the configuration is simple, the insulation between power supplies and input/output is easy, and it is suitable for transmitting high-precision signals, and can be uniformly used for transmitting both continuous value signals and binary signals. It is possible to realize a two-wire signal transmission system in which alternating current between systems is easy due to duplication.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の概念的構成図、第2
図は、2重化システムの場合の概念的構成図、第
3図および第4図は、連続値出力系の具体的構成
図、第5図および第6図は、連続値入力系の具体
的構成図、である。 1……制御部、11……交流電源、12a〜1
2d……トランス、13a……連続値信号出力ユ
ニツト、13b……連続値信号入力ユニツト、1
3c……2値信号出力ユニツト、13d……2値
信号入力ユニツト、2……伝送部、3……端末
部、31a……アナログ操作器、31b……アナ
ログ検出器、31c……接点操作器、31d……
接点検出器。
Fig. 1 is a conceptual configuration diagram of an embodiment of the present invention;
The figure is a conceptual block diagram of a duplex system, Figures 3 and 4 are concrete block diagrams of a continuous value output system, and Figures 5 and 6 are concrete diagrams of a continuous value input system. This is a configuration diagram. 1...Control unit, 11...AC power supply, 12a-1
2d...Transformer, 13a...Continuous value signal output unit, 13b...Continuous value signal input unit, 1
3c...Binary signal output unit, 13d...Binary signal input unit, 2...Transmission section, 3...Terminal section, 31a...Analog operation device, 31b...Analog detector, 31c...Contact operation device , 31d...
Contact detector.

Claims (1)

【特許請求の範囲】 1 電源側に配置された制御部からプロセス側に
配置された端末部に2本の伝送線を通じて信号及
び電源電力を供給するシステムであつて、 電源として高周波交流電源を用い、 前記制御部は前記高周波交流電源の電気を2値
変調して交流電気の波数に変換する形式で信号を
乗せ前記伝送線に送出する変調手段を有し、 前記端末部は前記伝送線を介して伝送された信
号を復調する復調手段と、前記伝送線を介して伝
送された信号のエネルギーを端末部作動用の電力
として供給する電源手段とを有する ことを特徴とする2線式信号伝送システム。 2 端末部において、復調手段で復調された信号
はプロセスを操作する操作信号となる特許請求の
範囲第1項記載の2線式信号伝送システム。
[Claims] 1. A system for supplying signals and power from a control section located on the power source side to a terminal section located on the process side through two transmission lines, using a high frequency AC power source as the power source. , the control section has a modulation means for binary-modulating the electricity of the high-frequency AC power source and converting it into a wave number of AC electricity, and transmitting the signal to the transmission line, and the terminal section is configured to transmit the signal to the transmission line via the transmission line. A two-wire signal transmission system comprising demodulation means for demodulating the signal transmitted via the transmission line, and power supply means for supplying the energy of the signal transmitted via the transmission line as power for operating the terminal section. . 2. The two-wire signal transmission system according to claim 1, wherein in the terminal section, the signal demodulated by the demodulating means becomes an operation signal for operating a process.
JP56008246A 1981-01-22 1981-01-22 Two-wire signal transmission system Granted JPS57123792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008246A JPS57123792A (en) 1981-01-22 1981-01-22 Two-wire signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008246A JPS57123792A (en) 1981-01-22 1981-01-22 Two-wire signal transmission system

Publications (2)

Publication Number Publication Date
JPS57123792A JPS57123792A (en) 1982-08-02
JPS6338159B2 true JPS6338159B2 (en) 1988-07-28

Family

ID=11687781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008246A Granted JPS57123792A (en) 1981-01-22 1981-01-22 Two-wire signal transmission system

Country Status (1)

Country Link
JP (1) JPS57123792A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164337A (en) * 1986-01-14 1987-07-21 Victor Co Of Japan Ltd Feeding system for terminal equipment

Also Published As

Publication number Publication date
JPS57123792A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4060735A (en) Control system employing a programmable multiple channel controller for transmitting control signals over electrical power lines
US4658241A (en) Surveillance system including transmitter and receiver synchronized by power line zero crossings
JPH0630535A (en) High-quality electric power distribution system
JPS5946148B2 (en) insulation device
JPS6338159B2 (en)
US20020135492A1 (en) Ultrasonic control and monitoring bus and method
US6111918A (en) Two-way data communicating method and system
JPS6338158B2 (en)
JPS6338157B2 (en)
WO1989003623A1 (en) Decoupling network and communication system
JPS6338160B2 (en)
KR920008410B1 (en) Method and device watching safety for power wire
JPS62169533A (en) Remote supervisory and controlling system for distribution line
AU733334B1 (en) Power and data communications transmission system
JPS5947506B2 (en) insulation device
AU2005101076A6 (en) Data communication system and method
KR920011065B1 (en) Data communication circuit and the same method
JPH0746792B2 (en) Power line carrier system
JPS5972239A (en) Data transmitter
SU1552292A1 (en) Conversion insert for connection of two energy systems
JPS62233035A (en) Distribution line remote monitoring control system
JPS6135168A (en) Current converter and emergency power source
JPS62253241A (en) Frame synchronizing system for code-multiplexed communication
KR930004130B1 (en) Circuit for receiving and transmitting power line signal
JPH0456518B2 (en)