JPS6338064B2 - - Google Patents

Info

Publication number
JPS6338064B2
JPS6338064B2 JP58035699A JP3569983A JPS6338064B2 JP S6338064 B2 JPS6338064 B2 JP S6338064B2 JP 58035699 A JP58035699 A JP 58035699A JP 3569983 A JP3569983 A JP 3569983A JP S6338064 B2 JPS6338064 B2 JP S6338064B2
Authority
JP
Japan
Prior art keywords
tin
formula
reference example
organotin
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58035699A
Other languages
Japanese (ja)
Other versions
JPS58180495A (en
Inventor
Eritsuku Hatsuton Ronarudo
Uiriamu Baarii Josefu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo NV
Original Assignee
Akzo NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV filed Critical Akzo NV
Publication of JPS58180495A publication Critical patent/JPS58180495A/en
Publication of JPS6338064B2 publication Critical patent/JPS6338064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • C07F7/226Compounds with one or more Sn-S linkages

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規な有機スズ化合物からなるポリ
塩化ビニル用安定剤に関する。 ポリ塩化ビニルの如き、重合体は一般に熱安定
性に劣り、それ故従来から各種安定剤が検討され
ている。その中に、ブチルスズ等の有機スズ化合
物が知られている。しかしながら、これらの従来
の安定剤は、上記重合体に熱安定性を付与するに
満足ではなかつた。 本発明者らは上記問題を解決するため鋭意検討
した結果、次式で示される新規な有機スズ化合物
がポリ塩化ビニルの熱安定性向上に有用であるこ
とを見出し本発明に到つたものである。 すなわち、本発明は、 式(R)2SnX2 〔ただし、Rは
The present invention relates to a stabilizer for polyvinyl chloride comprising a novel organotin compound. Polymers such as polyvinyl chloride generally have poor thermal stability, and therefore various stabilizers have been considered. Among them, organic tin compounds such as butyltin are known. However, these conventional stabilizers have not been satisfactory in imparting thermal stability to the above polymers. As a result of intensive studies to solve the above problems, the present inventors discovered that a novel organotin compound represented by the following formula is useful for improving the thermal stability of polyvinyl chloride, leading to the present invention. . That is, the present invention provides formula (R) 2 SnX 2 [wherein R is

【式】【formula】

【式】 又は、【formula】 Or

【式】 (式中、R1及びR2は式[Formula] (In the formula, R 1 and R 2 are the formula

【式】(ただし、 R5は炭素数1〜18のアルコキシを表わす)を有
する酸素含有基である) を表わし、R3及びR4はいずれも水素でありかつ
Xは
[Formula] (where R 5 represents alkoxy having 1 to 18 carbon atoms), R 3 and R 4 are both hydrogen, and X is

【式】(n=1又は 2)、―S―アルキル、[Formula] (n=1 or 2), -S-alkyl,

【式】及 び[Formula] and Beauty

【式】からなる群か ら選ばれる有機残基を表わす〕 を有する有機スズ化合物からなるポリ塩化ビニル
用安定剤に関する。 本発明の安定剤に用いる有機スズ化合物は、有
機スズハロゲン化物を出発原料として製造し得
る。この有機スズハロゲン化物の製造は、グリニ
ヤール、アルミニウムアルキル、またはウルツ経
路を使用し、塩化スズをテトラアルキルスズに変
え、これをついでアルキルスズハロゲン化物に変
える方法あるいは金属スズを直接ハロゲン化アル
キルと反応させてアルキルスズハロゲン化物を形
成する直接法(たとえばオランダ特許明細書第
144283号参照)等の従来法)により行なうことが
出来るが、本件出願人の出願(特許昭51―113831
号公報)に記載されているとおり次のようにして
行なうことが有利である。 金属スズとハロゲン化水素と次式 (ただしR1,R2,R3,R4は水素または炭化水
素基を表わし、ただしR1とR2のうち少なくとも
1つはオレフイン二重結合に隣接したカルボニル
基を有する酸素含有基である。)のオレフインと
を反応させ、次の構造式 を有する有機スズ二ハロゲン化物を形成する。 金属スズとハロゲン化水素と、1つまたはそれ
以上のカルボニル基により活性化されたオレフイ
ンとの間の反応は常温、常圧で触媒を使わなくて
も、スズから計算して高収率を与える。 ハロゲン化水素としては、比較的高価でない塩
化水素の使用が好ましい。 オレフイン中の活性化カルボニル基はたとえば
酸基、エステル基、アルデヒド基、またはケト基
の一部分を形成できる。適当なオレフインの例と
して次のものを挙げることができる。 アクリル酸、塩化アクリロイル、アクリル酸メ
チル、1,1―ビス(カルボキシエチル)プロピ
レン、クロトン酸メチル、メチルビニルケトン、
2―シクロヘキシルアクリル酸メチル、メシチル
オキシド、ケイ皮酸、メチルスチリルケトン、ケ
イ皮酸メチルエステル。 したがつて、上記方法はR1,R2の少なくとも
1つが次式 (ただしR5は炭素数1〜18のアルコキシを表
わす)を有する酸素含有基であるオレフインを使
つて実施する。 場合により、反応は溶媒中で実施できる。適当
な溶媒の例としてエーテル類、アルコール類、エ
ステル、塩素化炭化水素、または塩素化されてな
い炭化水素を挙げることができる。溶媒として過
剰のオレフインを使用することもできる。 金属スズはどんな形でも使用できる。原則的に
は粉末スズを使うのが好ましい。大きな有効スズ
表面の結果、反応速度が増すためである。しか
し、商業上入手できる粒状スズは直接使うことも
できる。後者の場合、反応速度を増すために反応
温度の適度の上昇が望ましい。 上記方法は、通常一般構造式(R)2SnHal2
有する官能基の置換した有機スズ二ハロゲン化物
を生成する。ただしRは 上記で定義した基 を表わす。 この化合物は、既知の技術によつて、ポリ塩化
ビニル用の法外に良好な新規な有機スズ安定剤製
造の原料を形成する。本発明の安定剤ではハロゲ
ン原子は酸、チオエステル、チオアルキル基のよ
うな通常の有機残基で置換されている。 アルキルスズ安定剤の技術から、ジアルキルス
ズとモノアルキルスズ安定剤の混合物は、相乗効
果をもつことが知られている。 本件出願人が行なつたこれまでの研究から、二
ハロゲン化スズとハロゲン化水素とカルボニルで
活性化されたオレフインとは互に反応して一般構
造式RSnHal3をもつ有機スズ三ハロゲン化物を
形成するようである。 金属スズの一部分をまず二ハロゲン化スズに変
え、ついで反応させて有機スズ三ハロゲン化物を
形成するように上記方法を制御できることが分か
つた。 こうして、金属スズを直接に(R)2SnHal2
RSnHal3の混合物にし、この混合物についで直
接に望ましい相乗効果をもつ安定剤混合物に変え
ることが可能となつた。 次の参考例から明らかなように、有機スズハロ
ゲン化物中の三ハロゲン化物の量は、たとえば0
〜95重量%と広い限度内で変化できる。混合物を
得ようとするときは、使用量はふつうは約5〜60
重量%の範囲内である。 反応生成物中に任意の量の三ハロゲン化物が同
時に生成するためには、一方ではスズとハロゲン
化水素間の他方では上記物質と活性化オレフイン
間の競争反応が前者の反応の有利なように影響さ
れることが必要である。 そこで上記の生成は反応物の割合、反応物を添
加する順序および(または)速度、有効スズ表
面、および一層少ない程度では温度を変えること
によつて特に促進できる。 そこで、たとえば過剰オレフインの使用、ハロ
ゲン化水素のゆつくりした添加、有効スズ表面の
減少は、二ハロゲン化物(R)2SnHal2の過度の
生成をきたす傾向がある。 反応条件を上記と逆に変えると三ハロゲン化物
RSnHal3の生成を増す。 所望により、R2SnHal3と混合した有機スズ二
ハロゲン化物R2SnHal2を常法で酸またはメルカ
プタンと反応させると、RSnX3との混合物であ
ることのできる一般式(R)2SnX2をもつすぐれ
た安定剤を生成する。酸残基Xを有するこの有機
スズ塩は、アルキルチオカルボン酸エステル、ア
ルキルチオール、モノカルボン酸、ポリカルボン
酸の部分エステルとの反応によつて形成するのが
好ましい。 上記有機スズ二ハロゲン化物から誘導される良
好な安定剤の特別な例として、次のものを挙げる
ことができる。 チオカルボン酸アルキルエステル (CH3OCOCH2CH22Sn〔S(CH2
nCOOC8H172 (BuOCOCH2CH22Sn〔S(CH2
nCOOC8H172 (C18H37OCOCH2CH2)2Sn〔S(CH2
nCOOC8H172 (BuOCOCH2CH22Sn〔S(CH2)nCOOBu〕2 ただし、n=1(チオ酢酸エステル)または2
(チオプロピオ酸エステル)。 アルキルメルカプチド (CH3OCOCH2CH22Sn(SC12H252 (BuOCOCH2CH22Sn(SC18H372 (C12H25OCOCH2CH22Sn(SC12H252 カルボン酸塩 (CH3OCOCH2CH22Sn(OCOC11H232 (BuOCOCH2CH22Sn(OCOC17H252 部分エステル (CH3OCOCH2CH22Sn(OCOCH=
CHCOOBu)2 (BuOCOCH2CH22Sn(OCOCH=
CHCOOCH32 尚、上記例示化合物中、及び以下本明細書にお
いて、化学式中の“―OCO―”は
The present invention relates to a stabilizer for polyvinyl chloride comprising an organotin compound having the following formula: [Representing an organic residue selected from the group consisting of] The organotin compound used in the stabilizer of the present invention can be produced using an organotin halide as a starting material. The organotin halides can be prepared by converting tin chloride to tetraalkyltin, which is then converted to alkyltin halides, using Grignard, aluminum alkyl, or Wurtz routes, or by reacting tin metal directly with alkyl halides. to form alkyltin halides (e.g. as described in Dutch Patent Specification No.
144283), etc.), but the applicant's application (Patent No. 113831)
It is advantageous to carry out the following procedure as described in Publication No. Metallic tin and hydrogen halide and the following formula (However, R 1 , R 2 , R 3 , and R 4 represent hydrogen or hydrocarbon groups, and at least one of R 1 and R 2 is an oxygen-containing group having a carbonyl group adjacent to an olefin double bond.) ) is reacted with olefin to form the following structural formula: Forms an organotin dihalide with . The reaction between metallic tin, hydrogen halides, and olefins activated by one or more carbonyl groups gives high yields calculated from tin without the use of catalysts at room temperature and pressure. . As hydrogen halide, it is preferred to use hydrogen chloride, which is relatively inexpensive. The activated carbonyl group in the olefin can, for example, form part of an acid group, ester group, aldehyde group, or keto group. Examples of suitable olefins include: Acrylic acid, acryloyl chloride, methyl acrylate, 1,1-bis(carboxyethyl)propylene, methyl crotonate, methyl vinyl ketone,
Methyl 2-cyclohexyl acrylate, mesityl oxide, cinnamic acid, methylstyryl ketone, cinnamic acid methyl ester. Therefore, in the above method, at least one of R 1 and R 2 is (wherein R 5 represents alkoxy having 1 to 18 carbon atoms), which is an oxygen-containing group, is used. Optionally, the reaction can be carried out in a solvent. Examples of suitable solvents include ethers, alcohols, esters, chlorinated or non-chlorinated hydrocarbons. It is also possible to use an excess of olefin as a solvent. Tin metal can be used in any form. In principle, it is preferable to use powdered tin. This is because the reaction rate increases as a result of the large available tin surface. However, commercially available granular tin can also be used directly. In the latter case, a moderate increase in reaction temperature is desirable to increase the reaction rate. The above methods typically produce functionally substituted organotin dihalides having the general structure (R) 2 SnHal 2 . However, R is the group defined above. represents. This compound forms an exceptionally good raw material for the production of novel organotin stabilizers for polyvinyl chloride by known techniques. In the stabilizers of the present invention, the halogen atoms are replaced with conventional organic residues such as acids, thioesters, thioalkyl groups. It is known from the alkyltin stabilizer art that mixtures of dialkyltin and monoalkyltin stabilizers have a synergistic effect. From previous studies conducted by the applicant, tin dihalides, hydrogen halides, and carbonyl-activated olefins react with each other to form organotin trihalides having the general structural formula RSnHal 3 . It seems that it does. It has been found that the above process can be controlled such that a portion of the metal tin is first converted to tin dihalide and then reacted to form organotin trihalide. In this way, metal tin can be directly converted into (R) 2 SnHal 2.
It is now possible to form a mixture of RSnHal 3 and then convert this mixture directly into a stabilizer mixture with the desired synergistic effect. As is clear from the following reference example, the amount of trihalide in the organotin halide is, for example, 0.
It can vary within wide limits from ~95% by weight. When trying to obtain a mixture, the amount used is usually about 5 to 60
Within the range of % by weight. In order for any amount of trihalide to form simultaneously in the reaction product, a competitive reaction between tin and hydrogen halide, on the one hand, and between said substance and the activated olefin, on the other hand, must occur in favor of the former reaction. It is necessary to be influenced. The formation can then be particularly facilitated by varying the proportions of the reactants, the order and/or rate of addition of the reactants, the available tin surface, and, to a lesser extent, the temperature. Thus, for example, use of excess olefin, slow addition of hydrogen halide, and reduction of available tin surface tend to result in excessive formation of dihalide (R) 2 SnHal 2 . If the reaction conditions are reversed to the above, trihalides are produced.
Increases production of RSnHal 3 . If desired, the organotin dihalide R 2 SnHal 2 mixed with R 2 SnHal 3 can be reacted in a conventional manner with an acid or a mercaptan to form the general formula (R) 2 SnX 2 which can be a mixture with RSnX 3 . It also produces an excellent stabilizer. The organotin salt having acid residues X is preferably formed by reaction with partial esters of alkylthiocarboxylic esters, alkylthiols, monocarboxylic acids, polycarboxylic acids. As particular examples of good stabilizers derived from the organotin dihalides mentioned above, mention may be made of the following: Thiocarboxylic acid alkyl ester (CH 3 OCOCH 2 CH 2 ) 2 Sn [S(CH 2 )
nCOOC 8 H 172 (BuOCOCH 2 CH 2 ) 2 Sn〔S(CH 2 )
nCOOC 8 H 172 (C 18 H 37 OCOCH 2 CH 2 )2Sn〔S(CH 2 )
nCOOC 8 H 172 (BuOCOCH 2 CH 2 ) 2 Sn〔S(CH 2 )nCOOBu〕 2 However, n = 1 (thioacetic acid ester) or 2
(thiopropionic acid ester). Alkyl mercaptide (CH 3 OCOCH 2 CH 2 ) 2 Sn (SC 12 H 25 ) 2 (BuOCOCH 2 CH 2 ) 2 Sn (SC 18 H 37 ) 2 (C 12 H 25 OCOCH 2 CH 2 ) 2 Sn (SC 12 H 25 ) 2 carboxylate (CH 3 OCOCH 2 CH 2 ) 2 Sn (OCOC 11 H 23 ) 2 (BuOCOCH 2 CH 2 ) 2 Sn (OCOC 17 H 25 ) 2 Partial ester (CH 3 OCOCH 2 CH 2 ) 2 Sn (OCOCH=
CHCOOBu) 2 (BuOCOCH 2 CH 2 ) 2 Sn (OCOCH=
CHCOOCH 3 ) 2In the above exemplary compounds and hereinafter in this specification, "-OCO-" in the chemical formula is

【式】 を表わすものとする。 本発明による有機スズ安定剤は、一般に伝統的
なブチルスズ安定剤よりも一層良いポリ塩化ビニ
ルを生じる。 硫黄含有安定剤の場合には、臭いがかなり改良
されることが分かつた。特に食品の分野(包装フ
イルムなど)では、安定剤の毒性が著しく重要で
ある。この点に関し、本発明による種々の安定剤
は伝統的なブチルスズ安定剤よりもかなり好まし
いことが分かつた。 そこで、ラツトに対する伝統的安定剤の
(C4H92Sn(SCH2COOC8H172のLD50値(すなわ
ち実験動物の50%が死ぬ投薬量)は約500mg/体
重Kgである。しかし、化合物 (CH3OCOCH2CH22Sn(SCH2COOC8H172では
この種は12000mg/Kgの程度である。 次の実施例は、本発明の例である 参考例1〜12は三ハロゲン化物の同時の形成ま
たは形成なしで本発明に用いる有機スズ化合物の
原料である有機スズ二ハロゲン化物の製造を記載
する。参考例13〜16はこれらハロゲン化物から本
発明の安定剤に用いる有機スズ化合物の製造に関
する。実施例1はポリ塩化ビニルに添加した本発
明の有機スズ化合物から安定剤の比較試験を記載
している。 参考例 1 冷浴につけ、かきまぜ機、温度計、冷却器、ガ
ス入口管を備えた500mlの三ツフラスコに、粉末
スズ60gとアクリル酸メチル87.4gと溶媒としてジ
エチルエーテル140mlを仕込んだ。約3時間にわ
たり、20℃で、かきまぜながら乾燥塩化水素ガス
87gを上記混合物に導入した。 ついで、エーテルを留去し、残留物を熱クロロ
ホルム300mlで抽出した。痕跡の塩化スズ()
と共に未反応スズ約0.5gが残つた。 クロロホルム抽出液から100℃、4mmHgでクロ
ロホルムを除去後、帯白色固体177.2gが残つた。 分析(核磁気共鳴分光分析)で、この物質は有
機スズ二ハロゲン化物と三ハロゲン化物の混合
物、すなわちCl2Sn(CH2CH2COOCH32と27重量
%のCl3SnCH2CH2COOCH3の混合物であること
が分かつた。 収率は転化スズ基準で定量的であつた。混合物
を上記三塩化物がよく溶けるジエチルエーテルで
洗つた後、白色結晶性物質が残り、くり返し分析
(赤外、核磁気共鳴分光分析、および元素分析)
で融点132℃をもつ純粋なCl2Sn
(CH2CH2COOCH32であることが分かつた。 参考例 2 参考例1で使つた方法によつて、粉末スズ60g
とアクリル酸メチル95.7gとジエチルエーテル110
mlをフラスコに仕込んだ。約14時間にわたり20℃
で乾燥塩化水素ガス42gを上記混合物に通した。 参考例1のように、溶媒を除去し、残留物を抽
出し、その後未反応スズ3.7gが残つた白色固体物
質167.2gが抽出液から得られた。この物質Cl2Sn
(CH2CH2COOCH32と3.5重量%の
Cl3SnCH2CH2COOCH3の混合物であることが分
かつた。使つたスズ量から計算し、収率は98%で
あつた。 参考例 3 参考例1の方法によつて、粉末スズ60gとアク
リル酸メチル37.1gとヘキサン140mlをフラスコに
仕込み、121/2時間にわたり乾燥塩化水素ガス 46gを導入した。反応混合物を過し、ヘキサン
100mlで洗い、熱クロロホルムで抽出後未反応ス
ズ1.5gが残り、抽出液から固体物質173gを得た。 分析でこの物質はCl2Sn(CH2CH2COOCH32
15.9重量%のCl3SnCH2CH2COOCH3の混合物で
あることが分かつた。転化したスズから計算し、
収率は99%であつた。 参考例 4 参考例1のフラスコに粉末スズ50gとアクリル
酸メチル95.7gを導入した。45分にわたり塩酸
(35.4%)115gをかきまぜながら加え、その後か
きまぜを4時間続けた。ついで、反応混合物を
別し、水洗し、クロロホルムで抽出した。未反応
スズ14.9gが残り、抽出液から固体物質103.5gが
得られ、分析により純粋なCl2Sn
(CH2CH2COOCH32であることが分かつた。残
りは洗浄水中に塩化スズとして含まれていた。 参考例 5 参考例1の方法により粉末スズ60gとアクリル
酸メチル(溶媒としても働らく)174.2gをフラス
コに入れた。15時間にわたり乾燥塩化水素ガス
40gを導入した。反応混合物を過し、アクリル
酸メチル20gで洗つた。 クロロホルム抽出により未反応スズ5.0gが残
り、抽出液から転化スズで計算し84.6%収率で純
粋なCl2Sn(CH2CH2COOCH32の結晶性生成物
141.2gが得られた。液はなお上記生成物17.3g
を含むことが分かり、最終収率は95%であつた。 参考例 6 参考例1で使つた操作によつて、粉末スズ60g
とアクリル酸メチル95.7gとジエチルエーテル140
mlをフラスコに仕込んだ。ついで、101/2時間に わたり乾燥臭化水素ガス110gを導入した。 溶媒の除去後、残留物を熱クロロホルム300ml
で抽出し、末反応スズ9.5gが残つた。 抽出液を蒸発して固体物質196.0gが得られ、こ
れは融点137℃のBr2Sn(CH2CH2COOCH32
19.7重量のBr3SnCH2CH2COOCH3の混合物と分
析された。転化スズから計算し収率は定量的であ
つた。 参考例 7 参考例1のフラスコに粉末スズ60gとメシチル
オキシド99.2gとジエチルエーテル140mlを入れ
た。ついで、101/2時間にわたり乾燥塩化水素ガ ス70gを導入した。過し氷冷エーテル150mlで
洗つた後、残留物をクロロホルム300mlで抽出し
た。スズは全く残らず、抽出液から淡かつ色結晶
性物質84.69が得られ、これは融点158℃を有する
純粋なCl2Sn(C(CH32CH2COCH32であつた。 転化スズから計算し、収率は43%であつた。蒸
発後エーテル液から暗かつ色生成物89.5gが得
られ、これは約40重量%の Cl2Sn(C(CH32CH2COCH32と40重量%の
Cl3SnC(CH32CH2COCH3を含むことが分かつ
た。 したがつて、有機スズ化合物の最終全収率は約
80%であつた。 参考例 8 参考例1のフラスコに粉末スズ60gとメチルビ
ニルケトン78.0gとジエチルエーテル140mlを入れ
た。ついで14時間にわたり乾燥塩化水素ガス54g
を導入した。反応混合物を過して痕跡の未反応
スズ(約0.1g)を除去し、ついで100℃で4mmHg
で蒸発し、暗かつ色固体物質162.4gが残つた。分
析によりこの物質は約40重量%のCl2Sn
(CH2CH2COCH32と40重量%の
Cl3SnCH2CH2COCH3を含むことが分かつた。 有機スズ化合物の全収率は転化スズから計算
し、約80%であつた。 参考例 9 参考例1のフラスコに粉末スズ60gと塩化アク
リロイル91.5gとジエチルエーテル140mlを仕込ん
だ。191/2時間にわたり、乾燥塩化水素ガス60g を導入した。過して反応混合物から未反応スズ
24gを除去し、ついで蒸発させた。残留物を熱ク
ロロホルム300mlで抽出後、抽出液を濃縮し、か
つ色固体物質103gを得た。分析でこの物質は幾
分のCl2Sn(CH2CH2COCl)2のほかに主として
Cl3SnCH2CH2COClを含むことが分かつた。有機
物の存在のために、収率の正確な決定は十分にで
きなかつた。 参考例 10 参考例1のフラスコに粉末スズ60gとアクリル
酸n―ブチル129.6gとジエチルエーテル140mlを
仕込んだ。20時間にわたり乾燥塩化水素ガス54g
を導入した。反応混合物を過し未反応スズ0.2g
を除去し、その後液を濃縮して透明な無色液
224gを得、これは分析で少量の
Cl3SnCH2CHCOOC4H9と共に主としてCl2Sn
(CH2CH2COOC4H92からなることが分かつた。
全収率は転化スズから計算し約97%であつた。こ
の場合反応生成物が液体であるから、本参考例で
使つた方法は連続式操作によく適している。 参考例 11 参考例1のフラスコに粉末スズ60gとメタクリ
ル酸メチル101.2gとジエチルエーテル140mlを仕
込んだ。ついで22時間にわたり乾燥塩化水素ガス
44gを導入した。反応混合物を蒸発させ、残留物
を熱クロロホルム300mlで抽出した。こうして未
反応スズ33.3gが残り、抽出液から最後に結晶性
物質67.3gが得られ、これは分析により融点111℃
をもつCl2Sn(CH2CH(CH3)COOCH32と57.5重
量%のCl3SnCH(CH3)COOCH3からなることが
分かつた。全収率は転化スズから計算し、84%で
あつた。 参考例 12 参考例1のフラスコに加熱ジヤケツトをつけ、
粒状スズ60gとアクリル酸n―ブチル129.6gを入
れた。ついでフラスコ内容物を120℃に加熱後、
12時間にわたり乾燥塩化水素ガス78gを導入し
た。反応混合物を過して未反応スズ(9.8g)を
分離し、液を蒸発して残存アクリル酸ブチルと
副生物の塩化水素化アクリル酸エステルを除去し
た。透明な実際上無色の液体179.8gが残り、分析
によつて、主として Cl2Sn(CH2CH2COOBu)2からなることが分かつ
た。収率は転化スズから計算し95%であつた。生
成物はポリアクリル酸ブチルによりわずかに汚染
されていた。 参考例 13 かきまぜ機、温度計、加熱板を備えた600mlビ
ーカーに、Cl2Sn(CH2CH2COOCH32(参考例1
のように単離した)54.6gとチオグリコール酸イ
ソオクチル64.3gと溶媒としてテトラヒドロフラ
ン200mlとを入れた。この混合物にかきまぜなが
ら無水の重炭酸ナトリウム26.6gを加え、ついで
2時間50〜60℃で加熱した。生成塩化ナトリウム
を別し、液を濃縮して無色液体104.8gを得
た。この熱い液体を再び過し、分析により
(CH3OCOCH2CH22Sn(SCH2COOC8H172と同
定された。 IR(cm-1): 2950(s),2920(sh)(s),2870(w),1730
(s) 1460(w),1440(w),1380(w),1360(m), 1290(m),1210(m),1180(sh)(m),1140
(m) 1035(w),985(w),920(w),870(w),830
(w), 750(w), s:強 m:中間 w:弱 sh:シヨルダー 元素分析:実測値(計算値) % Sn16.89(16.97),% S9.21(9.17) % C 47.91(48.07),% H7.52(7.49) % O 18.03(18.30) 上記の合成によつて、有機スズの二ハロゲン化
物と三ハロゲン化物の混合物から相当するチオグ
リコール酸エステルスズ化合物の混合物をつくる
ことも可能であつた。 参考例 14 参考例1による三つ口フラスコにラウリン酸
64.5gと水250mlに溶かした水酸化ナトリウム12g
を仕込んだ。温度を70〜80℃に上げ、ついで
Cl2Sn(CH2CH2COOCH3254.6gを加え、上記温
度に1時間保つた。ついで、トルエン150mlを加
え、更に5分かきまぜを続けた。生成トルエン層
を分離し、濃縮して (CH3OCOCH2CH22Sn(OOCC11H232を含む淡
黄色液102gを得た。 上記と同一操作によつて、有機スズ二ハロゲン
化物および三ハロゲン化物の混合物を相当するラ
ウリン酸塩スズ化合物混合物にすることができ
た。 参考例 15 600mlビーカーにCl2Sn
(CH2CH2COOCH3272.7gとラウリルチオール
80.8gと溶媒としてテトラヒドロフラン250mlを仕
込んだ。かきまぜて無水炭酸ナトリウム42.4gを
添加後、混合物を60℃で1時間加熱した。ついで
塩化ナトリウムを別し、液を濃縮して無色液
137gを得、これは分析により (CH3OCOCH2CH22Sn(S―C12H252からなる
ことが分かつた。 IR(cm-1): 2595(sh)(m),2592(s),2585(s),1725
(m), 1460(w),1440(m),1375(sh)(m),1360
(m), 1260(w),1210(m),1180(w),1140(w), 1035(w),970(w),915(w),745(w),720
(w), 元素分析:実測値(計算値) % Sn 16.91(17.06),% S 9.07(9.22) % C 55.41(55.25),% H 9.06(9.27), % O 9.38(9.20) 同一方法で、ジおよびトリチオラウリルスズ化
合物の混合物を得ることができた。 参考例 16 60mlビーカーにCl2Sn
(CH2CH2COOCH3272.7gとマレイン酸モノブチ
ル68.8gと溶媒としてテトラヒドロフラン250mlを
仕込んだ。無水重炭酸ナトリウム33.6gを添加後、
温度を60℃に1時間保つた。塩化ナトリウムを
別し、液を濃縮し(CH3OCOCH2CH22Sn
(OCOCH=CHCOOBu)2を含む無色液124gを得
た。 IR(cm-1): 2960(m),2920(sh)(m),2875(w),1730
(s), 1690(sh)(s),1680(s),1580(m), 1440(sh)(m),1420(m),1360(m),1265
(m), 1220(s),1170(s),1060(w),1030(w), 1020(w),920(w),885(w),845(w),820
(w), 775(w). 元素分析:実測値(計算値) % Sn 18.74(18.69) % C 45.23,% H 5.49(5.71), % O 30.37(30.22) 同一方法で相当する有機スズ二ハロゲン化物お
よび三ハロゲン化物をジおよびトリマレイン酸塩
スズ化合物の混合物にすることができた。 実施例 1 参考例13〜16で得た一般構造式
(CH3OCOCH2CH22SnX2をもつ有機スズ化合物
について、安定化効果をポリ塩化ビニルで試験
し、既知のジブチル安定剤(C4H92SnX2と比較
した。各々の場合に、(可塑化)ポリ塩化ビニル
から計算し2重量%の安定剤を添加し、185℃で
時間による変色に基づき耐熱性を決めた。 相当するRSnX3化合物10重量%を含んでいる
参考例13の安定剤混合物1重量%を含んでいるポ
リ塩化ビニルびん、およびRSnX3のみ1重量%
を含んでいる上記びんでも試験を行なつた。 結果を次表に総活する。
[Formula] shall be expressed as follows. Organotin stabilizers according to the present invention generally yield better polyvinyl chloride than traditional butyltin stabilizers. It has been found that in the case of sulfur-containing stabilizers, the odor is considerably improved. Particularly in the food field (packaging films, etc.), the toxicity of stabilizers is of great importance. In this regard, the various stabilizers according to the invention have been found to be significantly more preferable than traditional butyltin stabilizers. Therefore, the LD 50 value of the traditional stabilizer (C 4 H 9 ) 2 Sn (SCH 2 COOC 8 H 17 ) 2 (i.e., the dose that kills 50% of experimental animals) for rats is approximately 500 mg/Kg of body weight. . However, for the compound (CH 3 OCOCH 2 CH 2 ) 2 Sn (SCH 2 COOC 8 H 17 ) 2 this species is on the order of 12000 mg/Kg. The following examples are examples of the present invention. Reference Examples 1 to 12 describe the preparation of organotin dihalides, which are the raw materials for the organotin compounds used in the present invention, with or without the simultaneous formation of trihalides. . Reference Examples 13 to 16 relate to the production of organotin compounds used in the stabilizer of the present invention from these halides. Example 1 describes a comparative study of stabilizers from organotin compounds of the invention added to polyvinyl chloride. Reference Example 1 A 500 ml three-necked flask placed in a cold bath and equipped with a stirrer, a thermometer, a condenser, and a gas inlet tube was charged with 60 g of powdered tin, 87.4 g of methyl acrylate, and 140 ml of diethyl ether as a solvent. Dry hydrogen chloride gas with stirring at 20°C for about 3 hours.
87 g were introduced into the above mixture. Then, the ether was distilled off and the residue was extracted with 300 ml of hot chloroform. Traces of tin chloride ()
Along with this, about 0.5 g of unreacted tin remained. After removing chloroform from the chloroform extract at 100° C. and 4 mmHg, 177.2 g of a whitish solid remained. Analysis (Nuclear Magnetic Resonance Spectroscopy) reveals that this material is a mixture of organotin dihalides and trihalides , namely Cl2Sn ( CH2CH2COOCH3 ) 2 and 27% by weight of Cl3SnCH2CH2COOCH It turned out to be a mixture of 3 . The yield was quantitative based on tin conversion. After washing the mixture with diethyl ether in which the above trichloride is well soluble, a white crystalline material remains and is subjected to repeated analysis (infrared, nuclear magnetic resonance spectroscopy, and elemental analysis).
Pure Cl 2 Sn with melting point 132℃ at
It was found that (CH 2 CH 2 COOCH 3 ) 2 . Reference example 2 By the method used in reference example 1, 60g of powdered tin
and methyl acrylate 95.7g and diethyl ether 110g
ml was placed in a flask. 20℃ for about 14 hours
42 g of dry hydrogen chloride gas was passed through the above mixture. As in Reference Example 1, the solvent was removed and the residue was extracted, after which 167.2 g of white solid material with 3.7 g of unreacted tin remaining was obtained from the extract. This substance Cl 2 Sn
( CH2CH2COOCH3 ) 2 and 3.5% by weight
It was found to be a mixture of Cl 3 SnCH 2 CH 2 COOCH 3 . Calculated from the amount of tin used, the yield was 98%. Reference Example 3 According to the method of Reference Example 1, 60 g of tin powder, 37.1 g of methyl acrylate, and 140 ml of hexane were placed in a flask, and 46 g of dry hydrogen chloride gas was introduced over a period of 121/2 hours. Filter the reaction mixture with hexane
After washing with 100 ml and extracting with hot chloroform, 1.5 g of unreacted tin remained and 173 g of solid material was obtained from the extract. Analysis shows that this substance is Cl 2 Sn (CH 2 CH 2 COOCH 3 ) 2.
It was found to be a mixture of 15.9% by weight Cl 3 SnCH 2 CH 2 COOCH 3 . Calculated from converted tin,
The yield was 99%. Reference Example 4 50 g of tin powder and 95.7 g of methyl acrylate were introduced into the flask of Reference Example 1. 115 g of hydrochloric acid (35.4%) was added with stirring over 45 minutes, after which stirring was continued for 4 hours. The reaction mixture was then separated, washed with water, and extracted with chloroform. 14.9 g of unreacted tin remained, and the extract yielded 103.5 g of solid material, which was analyzed to be pure Cl2Sn .
It was found that (CH 2 CH 2 COOCH 3 ) 2 . The remainder was contained in the wash water as tin chloride. Reference Example 5 According to the method of Reference Example 1, 60 g of tin powder and 174.2 g of methyl acrylate (which also acts as a solvent) were placed in a flask. Dry hydrogen chloride gas for 15 hours
Introduced 40g. The reaction mixture was filtered and washed with 20 g of methyl acrylate. Chloroform extraction left 5.0 g of unreacted tin, and the extract yielded a crystalline product of pure Cl 2 Sn (CH 2 CH 2 COOCH 3 ) 2 with a yield of 84.6% calculated as converted tin.
141.2g was obtained. The liquid still contains 17.3g of the above product.
The final yield was 95%. Reference Example 6 Using the procedure used in Reference Example 1, 60g of powdered tin
and methyl acrylate 95.7g and diethyl ether 140g
ml was placed in a flask. Then 110 g of dry hydrogen bromide gas was introduced over a period of 101/2 hours. After removing the solvent, heat the residue with 300 ml of chloroform.
9.5g of terminally reacted tin remained. Evaporation of the extract gave 196.0 g of a solid material, which was composed of Br 2 Sn(CH 2 CH 2 COOCH 3 ) 2 with a melting point of 137°C.
A mixture of Br 3 SnCH 2 CH 2 COOCH 3 and 19.7 wt. The yield was quantitative as calculated from the tin conversion. Reference Example 7 In the flask of Reference Example 1, 60 g of tin powder, 99.2 g of mesityl oxide, and 140 ml of diethyl ether were placed. Then 70 g of dry hydrogen chloride gas was introduced over a period of 101/2 hours. After washing with 150 ml of filtered, ice-cold ether, the residue was extracted with 300 ml of chloroform. No tin remained and the extract yielded a pale, colored crystalline material 84.69, which was pure Cl 2 Sn(C(CH 3 ) 2 CH 2 COCH 3 ) 2 with a melting point of 158°C. The yield, calculated from the converted tin, was 43%. After evaporation, 89.5 g of a dark and colored product were obtained from the ether solution, which contained approximately 40% by weight of Cl 2 Sn(C(CH 3 ) 2 CH 2 COCH 3 ) 2 and 40% by weight of
It was found that it contained Cl 3 SnC (CH 3 ) 2 CH 2 COCH 3 . Therefore, the final total yield of organotin compounds is approximately
It was 80%. Reference Example 8 In the flask of Reference Example 1, 60 g of tin powder, 78.0 g of methyl vinyl ketone, and 140 ml of diethyl ether were placed. Then 54 g of dry hydrogen chloride gas for 14 hours.
introduced. The reaction mixture was filtered to remove traces of unreacted tin (approximately 0.1 g) and then heated to 4 mmHg at 100°C.
evaporation at 50° C., leaving 162.4 g of a dark, colored solid material. Analysis reveals that this material contains approximately 40% Cl2Sn by weight.
( CH2CH2COCH3 ) 2 and 40 % by weight
It was found that it contained Cl 3 SnCH 2 CH 2 COCH 3 . The total yield of organotin compound, calculated from the converted tin, was about 80%. Reference Example 9 The flask of Reference Example 1 was charged with 60 g of tin powder, 91.5 g of acryloyl chloride, and 140 ml of diethyl ether. Over a period of 191/2 hours, 60 g of dry hydrogen chloride gas were introduced. Unreacted tin is removed from the reaction mixture by
24g was removed and then evaporated. After extracting the residue with 300 ml of hot chloroform, the extract was concentrated and 103 g of a colored solid material was obtained. Analysis shows that this material contains mainly Cl 2 Sn (CH 2 CH 2 COCl) 2 as well as some Cl 2 Sn (CH 2 CH 2 COCl) 2
It was found that it contained Cl 3 SnCH 2 CH 2 COCl. Due to the presence of organic matter, an accurate determination of the yield was not possible. Reference Example 10 The flask of Reference Example 1 was charged with 60 g of tin powder, 129.6 g of n-butyl acrylate, and 140 ml of diethyl ether. 54g dry hydrogen chloride gas over 20 hours
introduced. 0.2g of unreacted tin after filtering the reaction mixture
is removed and the solution is then concentrated to produce a clear colorless liquid.
224g was obtained, which was analyzed in a small amount.
Mainly Cl 2 Sn with Cl 3 SnCH 2 CHCOOC 4 H 9
It was found that it consists of (CH 2 CH 2 COOC 4 H 9 ) 2 .
The overall yield was approximately 97% calculated from the tin conversion. In this case, since the reaction product is a liquid, the method used in this reference example is well suited for continuous operation. Reference Example 11 The flask of Reference Example 1 was charged with 60 g of tin powder, 101.2 g of methyl methacrylate, and 140 ml of diethyl ether. followed by dry hydrogen chloride gas for 22 hours.
Introduced 44g. The reaction mixture was evaporated and the residue was extracted with 300ml of hot chloroform. 33.3 g of unreacted tin thus remained, and the extract finally yielded 67.3 g of a crystalline material, which by analysis had a melting point of 111 °C.
It was found that it consisted of Cl 2 Sn(CH 2 CH(CH 3 )COOCH 3 ) 2 with 57.5% by weight of Cl 3 SnCH(CH 3 )COOCH 3 . The overall yield was 84%, calculated from the tin conversion. Reference Example 12 Attach a heating jacket to the flask of Reference Example 1,
60g of granular tin and 129.6g of n-butyl acrylate were added. Then, after heating the contents of the flask to 120℃,
78 g of dry hydrogen chloride gas was introduced over a period of 12 hours. The reaction mixture was filtered to separate unreacted tin (9.8 g), and the liquid was evaporated to remove residual butyl acrylate and by-product hydrochlorinated acrylic ester. 179.8 g of a clear, virtually colorless liquid remained, which analysis showed to consist primarily of Cl 2 Sn(CH 2 CH 2 COOBu) 2 . The yield was 95% calculated from the converted tin. The product was slightly contaminated with polybutyl acrylate. Reference example 13 In a 600ml beaker equipped with a stirrer, thermometer, and heating plate, Cl 2 Sn (CH 2 CH 2 COOCH 3 ) 2 (Reference example 1)
54.6 g (isolated as above), 64.3 g of isooctyl thioglycolate, and 200 ml of tetrahydrofuran as a solvent were added. 26.6 g of anhydrous sodium bicarbonate was added to the mixture with stirring and then heated at 50-60° C. for 2 hours. The sodium chloride produced was separated and the liquid was concentrated to obtain 104.8 g of a colorless liquid. The hot liquid was filtered again and identified by analysis as ( CH3OCOCH2CH2 ) 2Sn ( SCH2COOC8H17 ) 2 . IR (cm -1 ): 2950 (s), 2920 (sh) (s), 2870 (w), 1730
(s) 1460 (w), 1440 (w), 1380 (w), 1360 (m), 1290 (m), 1210 (m), 1180 (sh) (m), 1140
(m) 1035 (w), 985 (w), 920 (w), 870 (w), 830
(w), 750 (w), s: strong m: medium w: weak sh: shoulder Elemental analysis: Actual value (calculated value) % Sn16.89 (16.97), % S9.21 (9.17) % C 47.91 (48.07) ), % H7.52 (7.49) % O 18.03 (18.30) Through the above synthesis, it is also possible to prepare a mixture of corresponding tin thioglycolate compounds from a mixture of organotin dihalides and trihalides. It was hot. Reference example 14 Add lauric acid to the three-necked flask according to reference example 1.
64.5g and 12g of sodium hydroxide dissolved in 250ml of water
I prepared it. Raise the temperature to 70-80℃, then
54.6 g of Cl 2 Sn(CH 2 CH 2 COOCH 3 ) 2 was added and kept at the above temperature for 1 hour. Then, 150 ml of toluene was added and stirring was continued for an additional 5 minutes. The produced toluene layer was separated and concentrated to obtain 102 g of a pale yellow liquid containing (CH 3 OCOCH 2 CH 2 ) 2 Sn(OOCC 11 H 23 ) 2 . By the same operation as above, a mixture of organotin dihalides and trihalides could be converted into the corresponding tin laurate compound mixture. Reference example 15 Cl 2 Sn in a 600ml beaker
( CH2CH2COOCH3 ) 2 72.7g and laurylthiol
80.8g and 250ml of tetrahydrofuran as a solvent were charged. After stirring and adding 42.4 g of anhydrous sodium carbonate, the mixture was heated at 60° C. for 1 hour. Then, remove the sodium chloride and concentrate the liquid to a colorless liquid.
137 g were obtained, which by analysis was found to consist of (CH 3 OCOCH 2 CH 2 ) 2 Sn(S—C 12 H 25 ) 2 . IR (cm -1 ): 2595 (sh) (m), 2592 (s), 2585 (s), 1725
(m), 1460 (w), 1440 (m), 1375 (sh) (m), 1360
(m), 1260 (w), 1210 (m), 1180 (w), 1140 (w), 1035 (w), 970 (w), 915 (w), 745 (w), 720
(w), Elemental analysis: Actual value (calculated value) % Sn 16.91 (17.06), % S 9.07 (9.22) % C 55.41 (55.25), % H 9.06 (9.27), % O 9.38 (9.20) By the same method, A mixture of di- and trithiolauryltin compounds could be obtained. Reference example 16 Cl 2 Sn in a 60ml beaker
72.7 g of (CH 2 CH 2 COOCH 3 ) 2 , 68.8 g of monobutyl maleate, and 250 ml of tetrahydrofuran as a solvent were charged. After adding 33.6 g of anhydrous sodium bicarbonate,
The temperature was kept at 60°C for 1 hour. Separate the sodium chloride and concentrate the solution (CH 3 OCOCH 2 CH 2 ) 2 Sn
124 g of a colorless liquid containing (OCOCH=CHCOOBu) 2 was obtained. IR (cm -1 ): 2960 (m), 2920 (sh) (m), 2875 (w), 1730
(s), 1690 (sh) (s), 1680 (s), 1580 (m), 1440 (sh) (m), 1420 (m), 1360 (m), 1265
(m), 1220 (s), 1170 (s), 1060 (w), 1030 (w), 1020 (w), 920 (w), 885 (w), 845 (w), 820
(w), 775 (w). Elemental analysis: Actual values (calculated values) % Sn 18.74 (18.69) % C 45.23, % H 5.49 (5.71), % O 30.37 (30.22) Corresponding organotin dihalides and trihalides were prepared using the same method as di- and trimalein. It was possible to form a mixture of acid salt tin compounds. Example 1 The stabilizing effect of the organotin compound having the general structural formula (CH 3 OCOCH 2 CH 2 ) 2 SnX 2 obtained in Reference Examples 13 to 16 was tested with polyvinyl chloride, and the known dibutyl stabilizer (C 4H9 ) compared with 2SnX2 . In each case, 2% by weight of stabilizer, calculated from the (plasticized) polyvinyl chloride, was added and the heat resistance was determined on the basis of the color change over time at 185°C. A polyvinyl chloride bottle containing 1% by weight of the stabilizer mixture of Reference Example 13 containing 10% by weight of the corresponding RSnX 3 compound, and 1% by weight of RSnX 3 alone.
Tests were also conducted on the above bottles containing . The results are summarized in the table below.

【表】 実施例 2 実施例1と同様にして、
(C4H9OCOCH2CH22SnX2及び
(C18H37OCOCH2CH22SnX2で示される化合物に
ついてポリ塩化ビニルの安定性試験を行つた。結
果を第2表に示す。
[Table] Example 2 Same as Example 1,
Polyvinyl chloride stability tests were conducted on the compounds represented by (C 4 H 9 OCOCH 2 CH 2 ) 2 SnX 2 and (C 18 H 37 OCOCH 2 CH 2 ) 2 SnX 2 . The results are shown in Table 2.

【表】 表から本発明の安定剤は改良された安定性を与
えることが分かる。これはかなり改良された「初
期色」、すなわち最初の加熱期間中殆んどまたは
全く色変化のないことから明らかである。
TABLE It can be seen from the table that the stabilizer of the present invention provides improved stability. This is evidenced by a considerably improved "initial color", ie little or no color change during the initial heating period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、化学式 で表わされる化合物(参考例13)の赤外線吸収ス
クトルである。 第2図は、化学式 で表わされる化合物(参考例15)の赤外線吸収ス
ペクトルである。 第3図は、化学式 で表わされる化合物(参考例16)の赤外線吸収ス
ペクトルである。
Figure 1 shows the chemical formula This is the infrared absorption spectrum of the compound represented by (Reference Example 13). Figure 2 shows the chemical formula This is an infrared absorption spectrum of the compound represented by (Reference Example 15). Figure 3 shows the chemical formula This is an infrared absorption spectrum of the compound represented by (Reference Example 16).

Claims (1)

【特許請求の範囲】 1 式(R)2SoX2 〔ただし、Rは、【式】 【式】又は、【式】 (式中、R1及びR2は式【式】(ただし、 R5は炭素数1〜18のアルコキシを表わす)を有
する酸素含有基である)を表わし、R3及びR4
いずれも水素でありかつXは
【式】(n=1又は2)、 ―S―アルキル、【式】及び 【式】からなる群から 選ばれる有機残基を表わす〕 を有する有機スズ化合物からなるポリ塩化ビニル
用安定剤。 2 式RSnX3 〔ただし、Rは、【式】 【式】又は【式】 (式中、R1及びR2は式【式】(ただし、 R5は炭素数1〜18のアルコキシを表わす)を有
する酸素含有基である)を表わし、R3及びR4
いずれも水素でありかつXは
【式】(n=1又は2)、 ―S―アルキル、【式】及び 【式】からなる群から 選ばれる有機残基を表わす〕 を有する有機スズ化合物をさらに含有する特許請
求の範囲第1項記載のポリ塩化ビニル用安定剤。
[ Claims] 1 Formula ( R) 2 S o R 5 represents an oxygen-containing group (representing alkoxy having 1 to 18 carbon atoms), R 3 and R 4 are both hydrogen, and X is [Formula] (n = 1 or 2), - S-alkyl, representing an organic residue selected from the group consisting of [Formula] and [Formula]] A stabilizer for polyvinyl chloride comprising an organic tin compound having the following. 2 Formula RSnX 3 [However, R is [Formula] [Formula] or [Formula] (wherein R 1 and R 2 are the formula [Formula] (however, R 5 represents alkoxy having 1 to 18 carbon atoms) is an oxygen - containing group having The stabilizer for polyvinyl chloride according to claim 1, further comprising an organotin compound having an organic residue selected from the group .
JP58035699A 1975-03-17 1983-03-04 Organotin compound Granted JPS58180495A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL7503116 1975-03-17
NL7503116A NL7503116A (en) 1975-03-17 1975-03-17 PROCEDURE FOR PREPARING ORGANOTIN DIHALOGENIDES AND ORGANOTIN STABILIZERS DERIVED FROM THEREOF.

Publications (2)

Publication Number Publication Date
JPS58180495A JPS58180495A (en) 1983-10-21
JPS6338064B2 true JPS6338064B2 (en) 1988-07-28

Family

ID=19823379

Family Applications (2)

Application Number Title Priority Date Filing Date
JP51024933A Expired JPS5946959B2 (en) 1975-03-17 1976-03-08 Method for producing organic tin halide
JP58035699A Granted JPS58180495A (en) 1975-03-17 1983-03-04 Organotin compound

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP51024933A Expired JPS5946959B2 (en) 1975-03-17 1976-03-08 Method for producing organic tin halide

Country Status (16)

Country Link
JP (2) JPS5946959B2 (en)
AT (1) AT346363B (en)
AU (1) AU498143B2 (en)
BE (1) BE843387A (en)
BR (1) BR7601571A (en)
CA (1) CA1073465A (en)
CH (1) CH623333A5 (en)
DD (1) DD125550A5 (en)
DE (2) DE2660040C3 (en)
ES (1) ES446112A1 (en)
FR (1) FR2306208A1 (en)
GB (1) GB1502073A (en)
IT (1) IT1057046B (en)
NL (1) NL7503116A (en)
SU (1) SU751326A3 (en)
ZA (1) ZA761598B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152446A (en) 1976-06-14 1977-12-17 Adeka Argus Chem Co Ltd Rubber-modified styrene resin compositions
JPS52152445A (en) 1976-06-14 1977-12-17 Adeka Argus Chem Co Ltd Stabilized halogen-containing resin compositions
JPS535126A (en) * 1976-07-01 1978-01-18 Nitto Kasei Kk Preparation of organotin dihalides having functional group
JPS5316749A (en) 1976-07-30 1978-02-16 Adeka Argus Chem Co Ltd Stabilized halogen-containing resin compositions
JPS5337623A (en) * 1976-09-20 1978-04-06 Nitto Kasei Kk Preparation of organotin trichlorides having functional groups
US4158669A (en) * 1977-05-06 1979-06-19 Ciba-Geigy Corporation Organo-tin compounds
DE2735757A1 (en) * 1977-08-09 1979-02-15 Hoechst Ag NEW ORGANOCIN HALOGENIDES AND PROCESS FOR THEIR PRODUCTION
DE2735810B2 (en) * 1977-08-09 1981-01-29 Hoechst Ag, 6000 Frankfurt Mixtures of organotin compounds and their use as stabilizers for chlorine-containing polymers
EP0015606B1 (en) * 1979-02-28 1982-12-22 Akzo N.V. Process for the preparation of bis-(cyanoethyl)tin dihalides
GB2046762A (en) * 1979-04-17 1980-11-19 Akzo Chemie Uk Ltd Resin stabilizer compositions containing sulphur-containing ester tin compounds and ortho-dihydric phenols
FR2457298A1 (en) * 1979-05-23 1980-12-19 Elf Aquitaine ORGANOSTANNIC STABILIZER COMPOSITIONS FOR HALOGENO-VINYL RESINS
FR2458554A1 (en) * 1979-05-23 1981-01-02 Elf Aquitaine PROCESS FOR THE PREPARATION OF ORGANOSTANNIC TRIHALOGENURES
US4701486A (en) * 1981-02-26 1987-10-20 Morton Thiokol, Inc. Stabilizer compositions for PVC resins
US4576984A (en) * 1982-02-04 1986-03-18 Morton Thiokol, Inc. Stabilizer compositions for PVC resins
PL147517B1 (en) * 1985-09-25 1989-06-30 Politechnika Warszawska Method of obtaining cyanoorganic compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398114A (en) * 1964-01-10 1968-08-20 Argus Chem Light and heat stability of polyvinyl chloride resins

Also Published As

Publication number Publication date
ATA142576A (en) 1978-03-15
ES446112A1 (en) 1977-06-01
AU498143B2 (en) 1979-02-15
GB1502073A (en) 1978-02-22
JPS58180495A (en) 1983-10-21
IT1057046B (en) 1982-03-10
ZA761598B (en) 1977-04-27
FR2306208B1 (en) 1980-02-29
DE2607178C3 (en) 1983-03-03
BE843387A (en) 1976-10-18
AT346363B (en) 1978-11-10
DE2660040C3 (en) 1983-05-11
NL7503116A (en) 1976-09-21
AU1196676A (en) 1977-09-15
CA1073465A (en) 1980-03-11
JPS5946959B2 (en) 1984-11-15
SU751326A3 (en) 1980-07-23
DE2607178A1 (en) 1976-10-14
DD125550A5 (en) 1977-05-04
BR7601571A (en) 1976-09-14
JPS51113831A (en) 1976-10-07
FR2306208A1 (en) 1976-10-29
CH623333A5 (en) 1981-05-29
DE2607178B2 (en) 1978-04-13
DE2660040B1 (en) 1979-11-22

Similar Documents

Publication Publication Date Title
JPS6338064B2 (en)
Umemoto et al. New method for trifluoromethylation of enolate anions and applications to regio-, diastereo-and enantioselective trifluoromethylation
US4080363A (en) Process for making organotin dihalides and trihalides and stabilizers prepared therefrom
US4080362A (en) Organotin stabilizers
KR830002500B1 (en) Vinyl Chloride Polymer Composition
Brandsma et al. Dimetallation of phenylacetylene. Synthesis of ortho‐substituted derivatives of phenylacetylene, benzo [b] selenophene and benzo [b] tellurophene
Sommer et al. Aliphatic Organo-functional Siloxanes. V. Synthesis of Monomers by Platinum-catalyzed Addition of Methyldichlorosilane to Unsaturated Esters and Nitriles1
DE2814327A1 (en) METHOD FOR PRODUCING ORGANOSILICIUM COMPOUNDS
Cohen et al. [2, 3]-Sigmatropic rearrangement of an in situ prepared ylide and a thio ether to thio ester conversion as key steps in short syntheses of sarkomycin and its phenyl thio ester
US4105684A (en) Process for the preparation of organotin trihalides
Rosenberg et al. The Disproportionation of Tetravinyltin with Tin Tetrachloride and the Cleavage of Some Vinyltin Compounds with Bromine
SEYFERTH et al. Vinyl Derivatives of the Metals. IX. Cleavage Reactions of Perfluorovinyltin Compounds1, 2
US4130573A (en) Process for making organotin dihalides and trihalides
CA1081243A (en) Process for the preparation of organotin dihalides, and the organotin stabilizers derived therefrom
Kuwajima et al. Conversion of carbon-sulfur linkages into carbon-silicon ones via reductive silylation. Preparation of silyl enol ethers of acyltrimethylsilanes.
EP0001870B1 (en) Process for the preparation of organotin compounds
US4231949A (en) Process for preparing organotin esters
US6376693B2 (en) Synthesis of organotin oxides
US3631082A (en) Novel process for preparing sulfur-containing organotin compounds
US6215010B1 (en) Synthesis of organotin oxides
US3268566A (en) Process for the production of tetramethyl titanate
US4167520A (en) Process for preparing organotin trihalides
EP0154867B1 (en) 2-substituted-1,3-butadiene derivatives and process for producing same
US2886579A (en) Organotitanium compounds and method for preparing the same
Sekiguchi et al. Synthesis of silyldiazoketones from lithium pentamethyldisilanyldiazomethane with acid chlorides.