JPS6337998B2 - - Google Patents
Info
- Publication number
- JPS6337998B2 JPS6337998B2 JP54112603A JP11260379A JPS6337998B2 JP S6337998 B2 JPS6337998 B2 JP S6337998B2 JP 54112603 A JP54112603 A JP 54112603A JP 11260379 A JP11260379 A JP 11260379A JP S6337998 B2 JPS6337998 B2 JP S6337998B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- phase
- video signal
- recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 8
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/92—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Television Signal Processing For Recording (AREA)
Description
【発明の詳細な説明】
本発明は映像信号記録方式に係り、映像信号を
周波数変調して記録するに際し、周波数変調され
た映像信号の各水平帰線期間での位相を相対的に
一致せしめることにより、安定した良質な画像を
得ることのできるように映像信号を記録しうる方
式を提供することを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a video signal recording method, and when recording a video signal by frequency modulating it, the phase of the frequency modulated video signal in each horizontal retrace period is made to match relatively. It is an object of the present invention to provide a method for recording video signals so as to obtain stable and high-quality images.
一般に2ヘツドヘリカルスキヤン方式のVTR
等における再生画質の劣化原因の一つとして、相
隣るトラツクからのクロストークがある。従来は
このクロストークによる再生画質の劣化の防止の
ために、相隣るトラツクを形成する回転ビデオヘ
ツドのギヤツプ角を互いに異ならしめ、磁気テー
プ上の相隣るトラツクの磁化方向を互いに異なら
しめて記録し、再生するアジマス記録、再生方式
を採用していた。 Generally, a 2-head helical scan VTR
Crosstalk from adjacent tracks is one of the causes of deterioration in reproduced image quality. Conventionally, in order to prevent the deterioration of the reproduced image quality due to this crosstalk, recording was performed by making the gap angles of the rotating video heads that form adjacent tracks different from each other, and by making the magnetization directions of the adjacent tracks on the magnetic tape different from each other. It adopted an azimuth recording and playback method.
しかしながら、限られた長さの磁気テープにで
きるだけ長時間の映像信号を記録し再生する上か
らは、磁気テープ走行速度の低速化に伴い、実質
的にトラツク幅が減少し再生出力レベルが低下す
るため、従来以上に高性能の記録再生特性が必要
とされるに至つた。本出願人は種々実験の結果、
映像信号レベルが急峻に変化する部分での再生画
像が、特に上記の長時間記録再生において明瞭で
なくなるという現象を発見し、これが周波数変調
波である記録映像信号の各水平帰線期間での相対
的な位相の相違から生ずることをつきとめた。ま
た上記のアジマス記録、再生方式によつても、長
時間記録再生時には、クロストークによる再生画
像の劣化が問題となり、上記のように映像信号レ
ベルが急峻に変化する部分での再生画像を特に劣
化させていた。 However, in order to record and reproduce video signals for as long as possible on a magnetic tape of limited length, as the magnetic tape running speed decreases, the track width actually decreases and the reproduction output level decreases. Therefore, there is a need for higher performance recording and reproducing characteristics than ever before. As a result of various experiments, the applicant found that
We discovered a phenomenon in which the reproduced image in parts where the video signal level changes sharply becomes unclear, especially during the long recording and playback described above. We found that this is caused by a difference in phase. Furthermore, even with the above-mentioned azimuth recording and playback method, during long-term recording and playback, there is a problem of deterioration of the reproduced image due to crosstalk, which particularly degrades the reproduced image in parts where the video signal level changes sharply as described above. I was letting it happen.
すなわち、例えば第1図Aに示すように画面の
左側が黒部分1で、画面の右側が白部分2よりな
りそれらの境界線が画面の縦方向である画像を記
録、再生するものとすると、記録時の任意の水平
走査線における再生画像上黒部分1から白部分2
へ移行する位置付近での映像信号は第1図Bに示
す如くになり、急峻に立上る波形部分4を有す
る。この映像信号を周波数変調して磁気テープに
記録し、これを再生した復調前の周波数変調波で
ある映像信号(以下FM映像信号という)の波形
は、ある水平走査期間では第1図Cに示す如くに
なり、その水平走査期間前後の各水平走査期間で
は同図Dに示す如くになり、夫々の過渡部の相対
位相がT1,T2で示す如く相違する。なお、第1
図CはnフイールドのFM映像信号、同図Dは
(n±1)フイールドのFM映像信号でも同様で
ある。 That is, if an image is to be recorded and played back, for example, as shown in FIG. 1A, the left side of the screen is a black area 1, the right side of the screen is a white area 2, and the boundary line between them is in the vertical direction of the screen. Black portion 1 to white portion 2 on the reproduced image in any horizontal scanning line during recording
The video signal in the vicinity of the transition position becomes as shown in FIG. 1B, and has a waveform portion 4 that rises steeply. This video signal is frequency-modulated and recorded on a magnetic tape, and the waveform of the video signal (hereinafter referred to as FM video signal), which is a frequency-modulated wave before demodulation and reproduced, is shown in Figure 1C during a certain horizontal scanning period. The horizontal scanning periods before and after the horizontal scanning period are as shown in FIG . In addition, the first
The same applies to the FM video signal of n fields in Figure C, and the FM video signal of (n±1) fields in Figure D.
この第1図Cに示すFM映像信号を復調すると
同図Eに5で示す映像信号が復調され、同図Dに
示すFM映像信号を復調すると同図Eに6で示す
映像信号が復調され、上記T1,T2の位相の差異
に応じて異なる過渡応答を示し、同図Eに△E,
△E′で示す異なる不特定な変動分が1水平走査期
間毎にランダムに現われ、画面上では第1図Aに
3で示す如く白部分1と黒部分2との境界線にお
いてノイズ状のちらつき3となつて見える。これ
はクロストークが多いほどちらついて見える。 When the FM video signal shown in FIG. 1C is demodulated, the video signal shown at 5 in E in the same figure is demodulated, and when the FM video signal shown in FIG. 1D is demodulated, the video signal shown at 6 in FIG. Different transient responses are shown depending on the phase difference between T 1 and T 2 , and △E,
Different unspecified fluctuations indicated by △E' appear randomly every horizontal scanning period, and on the screen, a noise-like flicker appears at the boundary line between white part 1 and black part 2, as shown by 3 in Figure 1A. It looks like 3. The more crosstalk there is, the more the image appears to be distorted.
本発明は上記の欠点を除去したものであり、以
下第2図乃至第4図と共にその各実施例について
説明する。 The present invention eliminates the above-mentioned drawbacks, and embodiments thereof will be described below with reference to FIGS. 2 to 4.
第2図は本発明になる映像信号記録方式の一実
施例のブロツク系統図、第3図A〜Fは夫々第2
図の動作説明用信号波形図を示す。第2図におい
て、入力端子10に入来したカラー映像信号は、
帯域フイルタ11、低域フイルタ12、水平同期
信号分離回路13に夫々供給される。帯域フイル
タ11により周波数選択されて取り出された入力
カラー映像信号中の搬送色信号は、記録カラー回
路14により後述する周波数変調輝度信号の帯域
よりも低域へ周波数変換された後、後述する混合
器へ供給される。 FIG. 2 is a block system diagram of one embodiment of the video signal recording method according to the present invention, and FIGS.
A signal waveform diagram for explaining the operation of the figure is shown. In FIG. 2, the color video signal input to the input terminal 10 is
The signal is supplied to a band filter 11, a low-pass filter 12, and a horizontal synchronization signal separation circuit 13, respectively. The carrier color signal in the input color video signal whose frequency is selected and extracted by the band filter 11 is frequency-converted by the recording color circuit 14 to a frequency lower than the band of the frequency modulated luminance signal, which will be described later, and then sent to the mixer, which will be described later. supplied to
第2図において、低域フイルタ12より取り出
された輝度信号はペデスタル・クランプ回路32
に供給されてペデスタルレベルが一定値にクラン
プされた後混合器33に供給される。このペデス
タル・クランプ回路32の出力輝度信号は、第3
図Aにaで示す如くになる。 In FIG. 2, the luminance signal extracted from the low-pass filter 12 is sent to the pedestal clamp circuit 3
After the pedestal level is clamped to a constant value, it is supplied to the mixer 33. The output luminance signal of this pedestal clamp circuit 32 is
It becomes as shown by a in Figure A.
一方、水平同期信号分離回路13で分離された
第3図Bに示す如き水平同期信号bは、235逓倍
器34に供給され、ここで235倍逓倍されてペデ
スタルレベルに相当するFM輝度信号の周波数
3.7MHzとされる一方、カウンタ35のリセツト
端子に供給され、水平同期信号の前縁でリセツト
し、その前縁より輝度信号の水平帰線期間のフロ
ントポーチ前端部までの時間(第3図A,BにT
で示す)に相当する計数値まで、上記235逓倍器
34よりの3.7MHzのパルスc(第3図Cに示す)
を計数させる。カウンタ35はこの設定した計数
値を計数終了した時にフリツプフロツプ36のセ
ツト入力端子にパルスを印加してこれをセツト状
態とする。セツト状態とされたフリツプフロツプ
36はハイレベルの信号を混合器33に供給し、
ここで上記輝度信号aの水平帰線期間内のフロン
トポーチに重畳される。このフリツプフロツプ3
6のハイレベルの信号は、ホワイトレベルに相当
する値が望ましい。これは後述する記録輝度回路
37により周波数変調して得られたFM輝度信号
は、そのホワイトレベルが最も高い搬送波周波数
4.4MHzとなるような周波数変調波であり、従つ
てホワイトレベルとすると後述する位相検波回路
38において3.7MHzの235逓倍器34の出力パル
スcと位相が早く一致することとなり、輝度信号
aに重畳されるフリツプフロツプ36の出力パル
ス幅が短かくなり、輝度信号に悪影響を及ぼさな
いからである。 On the other hand, the horizontal synchronizing signal b, as shown in FIG.
3.7MHz, it is supplied to the reset terminal of the counter 35, and is reset at the leading edge of the horizontal synchronizing signal, and the time from that leading edge to the front end of the front porch during the horizontal retrace period of the luminance signal (Fig. 3A) , B to T
3.7MHz pulse c from the 235 multiplier 34 (shown in Figure 3C) until the count value corresponds to
have them counted. When the counter 35 finishes counting the set count value, it applies a pulse to the set input terminal of the flip-flop 36 to bring it into the set state. The flip-flop 36 in the set state supplies a high level signal to the mixer 33,
Here, the luminance signal a is superimposed on the front porch within the horizontal retrace period. This flip flop 3
It is desirable that the high level signal of 6 has a value corresponding to the white level. This means that the FM brightness signal obtained by frequency modulation by the recording brightness circuit 37, which will be described later, has the highest white level at the carrier wave frequency.
It is a frequency modulated wave with a frequency of 4.4MHz, and therefore, when it is set as a white level, the phase quickly matches the output pulse c of the 3.7MHz 235 multiplier 34 in the phase detection circuit 38, which will be described later, and is superimposed on the luminance signal a. This is because the output pulse width of the flip-flop 36 is shortened, and the luminance signal is not adversely affected.
混合器33より取り出されたフロントポーチに
ホワイトレベルのパルスが重畳された輝度信号
は、記録輝度回路37に供給され、ここで搬送波
周波数がホワイトレベルで4.4MHz、ペデスタル
レベルで3.7MHzとなるような被周波数変調波と
された後、低域変換搬送色信号帯域の周波数成分
が高域フイルタで除去される。この結果、記録輝
度回路37より第3図Eに示すFM輝度信号eが
取り出されて混合器21に供給される一方、位相
検波回路38に供給される。 The brightness signal with white level pulses superimposed on the front porch taken out from the mixer 33 is supplied to the recording brightness circuit 37, where the brightness signal is adjusted such that the carrier frequency is 4.4MHz at the white level and 3.7MHz at the pedestal level. After being made into a frequency modulated wave, the frequency component of the low-pass conversion carrier color signal band is removed by a high-pass filter. As a result, the FM luminance signal e shown in FIG.
位相検波回路38はFM輝度信号eの位相と
235逓倍器34よりの一定周波数3.7MHz(ペデス
タルレベルに相当する周波数)と位相比較され、
位相が一致した時フリツプフロツプ36のリセツ
ト端子にリセツトパルスを印加し、これをリセツ
トする。これにより、フリツプフロツプ36の出
力はローレベルとなる。従つて、フリツプフロツ
プ36の出力には第3図Dに示す如く輝度信号a
のフロントポーチに相当する期間ホワイトレベル
のパルスdが発生し、これが位相補償用パルスと
して混合器33で輝度信号aに重畳されるため、
混合器33の出力信号は第3図Fにで示す如く
になる。この位相補償用パルスは水平同期信号や
カラーバースト信号及び映像信号に悪影響を与え
ない水平帰線期間内のフロントポーチに挿入する
ことが望ましい(カウンタ35で調整する)。 The phase detection circuit 38 detects the phase of the FM luminance signal e.
The phase is compared with a constant frequency of 3.7MHz (frequency corresponding to the pedestal level) from the 235 multiplier 34,
When the phases match, a reset pulse is applied to the reset terminal of flip-flop 36 to reset it. As a result, the output of flip-flop 36 becomes low level. Therefore, the output of the flip-flop 36 contains a luminance signal a as shown in FIG. 3D.
A white level pulse d is generated for a period corresponding to the front porch of , and this is superimposed on the luminance signal a by the mixer 33 as a phase compensation pulse.
The output signal of the mixer 33 is as shown in FIG. 3F. It is desirable that this phase compensation pulse be inserted into the front porch within the horizontal retrace period so as not to adversely affect the horizontal synchronizing signal, color burst signal, and video signal (adjusted by the counter 35).
なお、位相検波回路38においてFM輝度信号
と位相検波するための信号周波数として、ペデス
タルレベルに相当する3.7MHzにしたのは、両者
の位相が一致した直後よりFM輝度信号周波数は
ペデスタルレベルの3.7MHzとなり両信号の周波
数が夫々等しくなり、回路動作上好ましいからで
ある。 The reason why the signal frequency for phase detection with the FM luminance signal in the phase detection circuit 38 was set to 3.7MHz, which corresponds to the pedestal level, is that immediately after the phases of both coincide, the FM luminance signal frequency changes to 3.7MHz, which is the pedestal level. This is because the frequencies of both signals are equal to each other, which is preferable in terms of circuit operation.
本実施例によれば、位相検波回路38の2入力
信号のうち、一方の入力信号は水平同期信号に位
相同期したペデスタルレベル相当周波数の信号c
であり、他方の入力信号はFM輝度信号eであ
り、このFM輝度信号eの位相補償用パルスdで
変調された信号区間の周波数は4.4MHzに向けて
急峻に高くなり、位相の変化が加速されるので、
信号cの位相とフロントポーチ内で両入力信号の
位相が一致する。 According to this embodiment, one of the two input signals of the phase detection circuit 38 is a signal c having a frequency corresponding to the pedestal level and phase-synchronized with the horizontal synchronization signal.
The other input signal is the FM brightness signal e, and the frequency of the signal section modulated by the phase compensation pulse d of this FM brightness signal e increases sharply toward 4.4MHz, and the phase change accelerates. Because it is done,
The phase of signal c matches the phase of both input signals within the front porch.
そして、両入力信号の位相が一致すると、位相
補償用パルスdが立下り、上記の位相の変化の加
速が停止される。この位相補償用パルスdのパル
ス幅は、該パルスdの立上り時点直前の絵柄によ
つてFM輝度信号eの周波数が異なるから、FM
輝度信号eと信号cとの位相一致時点が異なるた
め、絵柄によつて変化するが、位相補償用パルス
dの立下り時点は必ずフロントポーチ内にあり、
該立下り時点以降のFM輝度信号eの水平帰線期
間の位相は各水平走査線で一致することになる。 Then, when the phases of both input signals match, the phase compensation pulse d falls, and the acceleration of the above-mentioned phase change is stopped. The pulse width of this phase compensation pulse d is determined by the frequency of the FM luminance signal e depending on the picture immediately before the rise of the pulse d.
Since the time point at which the luminance signal e and the signal c match in phase is different, it changes depending on the picture, but the falling point of the phase compensation pulse d is always within the front porch.
The phase of the horizontal retrace period of the FM luminance signal e after the falling point is the same for each horizontal scanning line.
従つて、FM輝度信号eのバツクポーチの最終
位置(映線期間の始端位置)の位相は各水平走査
線において常に一致するという位相補償が施され
たものとなる。 Therefore, the phase of the final position of the back porch (the starting position of the video line period) of the FM luminance signal e is always the same in each horizontal scanning line, so that the phase is compensated.
このFM輝度信号eは混合器21に供給され、
ここで低域変換搬送色信号と周波数分割多重され
る。この混合器21より取り出された周波数分割
多重信号は、記録増幅器22で増幅された後ロー
タリートランス23を経て回転ビデオヘツド24
に供給され、これにより磁気テープ(図示せず)
の長手方向上傾斜したトラツクを形成して記録さ
れる。従つて、磁気テープ上の各々の水平帰線期
間でのFM輝度信号の位相は一致されて(特にバ
ツクポーチでは正確に位相が一致している)記録
されることとなる。 This FM luminance signal e is supplied to the mixer 21,
Here, it is frequency-division multiplexed with the low-pass converted carrier color signal. The frequency division multiplexed signal taken out from the mixer 21 is amplified by a recording amplifier 22 and then passed through a rotary transformer 23 to a rotating video head 24.
is supplied to the magnetic tape (not shown).
It is recorded by forming a track that is inclined upward in the longitudinal direction. Therefore, the phases of the FM luminance signals during each horizontal retrace period on the magnetic tape are matched (particularly in the back porch, the phases are precisely matched) and recorded.
このため、上記の如くにして記録された磁気テ
ープを再生すると、例えば第4図Aに示す如く画
面の左側が黒部分1、右側が白部分2よりなるラ
イン相関のある画像(フイールド相関のある画像
の場合も同様)を記録した場合、その記録映像信
号の黒部分1と白部分2との境界線付近の或る水
平走査期間の波形は第4図Bに示す如く急激に立
上るため、再生映像信号(再生輝度信号)の波形
は立上り部の過渡応答により、減衰振動を生じる
が、少なくとも記録FM輝度信号の映像期間の始
端位置の位相が各水平走査期間で一致して記録さ
れているので、境界線付近における或る水平走査
期間での再生FM輝度信号と、これと相隣る水平
走査期間での再生FM輝度信号とは夫々第4図
C,Dに示す如く相対的に位相が一致し、よつて
その復調波形は同図Eに実線と破線で示す如く相
隣る水平走査期間で略一致する。従つて、再生画
像は第4図Aに示す如くに再生され、従来のよう
に境界線でちらついたノイズは発生せず、静止し
た線7が再生されるので視覚的な悪影響を防止で
きる。 Therefore, when a magnetic tape recorded in the above manner is reproduced, an image with line correlation (with field correlation) is formed, for example, as shown in FIG. (Similarly in the case of images), when recording video signals, the waveform of the recorded video signal in a certain horizontal scanning period near the boundary line between black portion 1 and white portion 2 rises rapidly as shown in FIG. 4B. The waveform of the reproduced video signal (reproduced brightness signal) causes damped oscillation due to the transient response at the rising edge, but at least the phase of the start position of the video period of the recorded FM brightness signal is recorded in the same manner in each horizontal scanning period. Therefore, the reproduced FM luminance signal in a certain horizontal scanning period near the boundary line and the reproduced FM luminance signal in the adjacent horizontal scanning period have a relative phase difference as shown in FIGS. 4C and D, respectively. Therefore, the demodulated waveforms substantially match in adjacent horizontal scanning periods, as shown by solid lines and broken lines in FIG. Therefore, the reproduced image is reproduced as shown in FIG. 4A, and a static line 7 is reproduced without causing flickering noise at the boundary line as in the conventional case, so that an adverse visual effect can be prevented.
またクロストークが生じたとしても、クロスト
ーク分の信号も各水平走査期間毎に上記のような
画像の場合は相対位相が一致しているため、ちら
ついたノイズ状には再生されず、よつて第4図A
の7の部分は極めて見易い安定した画像として再
生される。 Furthermore, even if crosstalk occurs, the relative phase of the crosstalk signal is the same for each horizontal scanning period in the case of images like the one above, so it will not be reproduced as a flickering noise. Figure 4A
7 is reproduced as a stable image that is extremely easy to see.
なお、上記の各実施例では輝度信号を周波数変
調し、搬送色信号を低域へ周波数変換し、これら
両信号を周波数分割多重して磁気テープに記録す
る方式に適用する場合について説明したが、映像
信号全体を周波数変調して記録する記録系にも本
発明方式を適用しうる。 In each of the above embodiments, a case has been described in which the luminance signal is frequency modulated, the carrier color signal is frequency-converted to a lower frequency band, and these two signals are frequency-division multiplexed and recorded on a magnetic tape. The method of the present invention can also be applied to a recording system in which the entire video signal is frequency-modulated and recorded.
上述の如く、本発明になる映像信号記録方式
は、映像信号の水平帰線期間に、予め設定したレ
ベルの位相補償用パルスを重畳する手段と、位相
補償用パルスが重畳された映像信号で搬送波を周
波数変調して被周波数変調波を得る周波数変調手
段と、映像信号中の水平同期信号と位相同期した
一定周波数の信号を発生する信号発生手段と、信
号発生手段よりの一定周波数の信号と被周波数変
調波との位相検波を行ない、一定周波数の信号の
位相と被周波数変調波の位相補償用パルス信号区
間の位相とが一致した時点で位相補償用パルスの
出力を停止させる手段と、周波数変調手段の出力
被周波数変調波を記録媒体に記録する記録手段と
よりなるため、映像信号の急峻なレベル変化部分
での再生画像に従来発生していたちらつくノイズ
は発生せず、またクロストークが発生したり復調
信号波形に減衰振動が生じても、前記位相補償用
パルスの後縁以降の各水平帰線期間の相対位相が
夫々一致しているため、相隣る水平走査期間及び
各フイールド毎の映像信号の急峻なレベル変化部
分の位相はライン相関やフイールド相関がある場
合は一致するのでちらついたノイズ状には再生さ
れず、極めて見易い安定した画像を得ることがで
き、また再生系に何らの特別な回路を設けること
なく安定な再生画像を得るための被周波数変調映
像信号を記録でき、更に前記映像信号のホワイト
レベルに相当するレベルの前記位相補償用パルス
を発生して、前記映像信号の水平帰線期間に重畳
するようにしたため、前記位相検波による位相一
致検出時点を速めることができる等の特長を有す
るものである。 As described above, the video signal recording method according to the present invention includes a means for superimposing a phase compensation pulse of a preset level in the horizontal retrace period of a video signal, and a means for superimposing a phase compensation pulse of a preset level on a carrier wave with the video signal superimposed with the phase compensation pulse. frequency modulation means for frequency modulating the signal to obtain a frequency modulated wave; signal generation means for generating a signal of a constant frequency that is phase synchronized with the horizontal synchronization signal in the video signal; means for detecting the phase of the frequency modulated wave and stopping the output of the phase compensation pulse when the phase of the constant frequency signal matches the phase of the phase compensation pulse signal section of the frequency modulated wave; Since the recording means records the output frequency modulated wave of the means on the recording medium, the flickering noise that conventionally occurs in the reproduced image at a sharp level change part of the video signal does not occur, and crosstalk does not occur. Even if damped oscillation occurs in the demodulated signal waveform, the relative phases of each horizontal retrace period after the trailing edge of the phase compensation pulse are the same, so that the relative phases of each horizontal scanning period and each field are the same. The phase of the sharp level change part of the video signal will match if there is line correlation or field correlation, so it will not be reproduced as a flickering noise, and a stable image that is extremely easy to see can be obtained. It is possible to record a frequency-modulated video signal to obtain a stable reproduced image without providing a special circuit, and furthermore, it is possible to generate the phase compensation pulse at a level corresponding to the white level of the video signal, thereby improving the quality of the video signal. Since it is arranged to overlap with the horizontal retrace period, it has the advantage that the time point at which phase coincidence is detected by the phase detection can be accelerated.
第1図A〜Eは夫々従来方式による再生画像及
び記録信号波形、再生信号波形を示す図、第2図
は本発明方式の一実施例を示すブロツク系統図、
第3図は第2図の動作説明用信号波形図、第4図
は本発明方式による再生画像及び記録信号波形、
再生信号波形を示す図である。
10……カラー映像信号入力端子、11……搬
送色信号分離用帯域フイルタ、12……輝度信号
分離用低域フイルタ、13……水平同期信号分離
回路、17……周波数変調器、19……位相制御
回路、25……再生輝度信号入力端子、27……
再生水平同期信号入力端子、34……235逓倍器、
35……カウンタ、36……フリツプフロツプ、
37……記録輝度回路、38……位相検波回路。
1A to 1E are diagrams showing reproduced images, recorded signal waveforms, and reproduced signal waveforms, respectively, according to the conventional method, and FIG. 2 is a block system diagram showing an embodiment of the present invention method.
3 is a signal waveform diagram for explaining the operation of FIG. 2, and FIG. 4 is a reproduced image and recording signal waveform according to the method of the present invention,
FIG. 3 is a diagram showing a reproduced signal waveform. 10...Color video signal input terminal, 11...Band filter for carrier color signal separation, 12...Low pass filter for luminance signal separation, 13...Horizontal synchronization signal separation circuit, 17...Frequency modulator, 19... Phase control circuit, 25... Reproduction brightness signal input terminal, 27...
Reproduction horizontal synchronization signal input terminal, 34...235 multiplier,
35...Counter, 36...Flip-flop,
37...recording brightness circuit, 38...phase detection circuit.
Claims (1)
ベルの位相補償用パルスを重畳する手段と、 該位相補償用パルスが重畳された映像信号で搬
送波を周波数変調して被周波数変調波を得る周波
数変調手段と、 該映像信号中の水平同期信号と位相同期した一
定周波数の信号を発生する信号発生手段と、 該信号発生手段よりの一定周波数の信号と該被
周波数変調波との位相検波を行ない、該一定周波
数の信号の位相と該被周波数変調波の該位相補償
用パルス信号区間の位相とが一致した時点で該位
相補償用パルスの出力を停止させる手段と、 該周波数変調手段の出力被周波数変調波を記録
媒体に記録する記録手段とよりなることを特徴と
する映像信号記録方式。 2 前記重畳手段は、前記映像信号のホワイトレ
ベルに相当するレベルの前記位相補償用パルスを
発生して、前記映像信号の水平帰線期間に重畳す
ることを特徴とする特許請求の範囲第1項記載の
映像信号記録方式。[Claims] 1. Means for superimposing a phase compensation pulse of a preset level on the horizontal retrace period of a video signal, and a means for frequency modulating a carrier wave with the video signal on which the phase compensation pulse is superimposed. Frequency modulation means for obtaining a frequency modulated wave; Signal generation means for generating a constant frequency signal that is phase synchronized with a horizontal synchronization signal in the video signal; A constant frequency signal from the signal generation means and the frequency modulated wave. means for performing phase detection of the constant frequency signal and stopping the output of the phase compensation pulse at the time when the phase of the signal of the constant frequency matches the phase of the phase compensation pulse signal section of the frequency modulated wave; A video signal recording method comprising a recording means for recording a frequency modulated wave output from a frequency modulating means on a recording medium. 2. Claim 1, wherein the superimposing means generates the phase compensation pulse at a level corresponding to the white level of the video signal and superimposes it on the horizontal retrace period of the video signal. Video signal recording method described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11260379A JPS5636277A (en) | 1979-09-03 | 1979-09-03 | Video signal recording system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11260379A JPS5636277A (en) | 1979-09-03 | 1979-09-03 | Video signal recording system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5636277A JPS5636277A (en) | 1981-04-09 |
JPS6337998B2 true JPS6337998B2 (en) | 1988-07-27 |
Family
ID=14590856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11260379A Granted JPS5636277A (en) | 1979-09-03 | 1979-09-03 | Video signal recording system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5636277A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185177A (en) * | 1987-01-27 | 1988-07-30 | Sony Corp | Frequency modulation circuit |
JP2507821B2 (en) * | 1990-03-13 | 1996-06-19 | シャープ株式会社 | Carrier reset FM modulator |
JPH0420087U (en) * | 1990-06-12 | 1992-02-19 |
-
1979
- 1979-09-03 JP JP11260379A patent/JPS5636277A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5636277A (en) | 1981-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06501367A (en) | Method and apparatus for modifying video signals to prevent unauthorized copying | |
US3846819A (en) | Method for recording two separate signals | |
KR100454617B1 (en) | Method and device for preventing copying of analog color video signal, anti-copy recording medium | |
US2892022A (en) | Color television signal recording and reproducing apparatus | |
KR920003937B1 (en) | Detecting method and device for jitter of vtr recording and reproducing video signal | |
US4134126A (en) | Color recorder having means for reducing luminance crosstalk in displayed image | |
US4208673A (en) | Color recorder for reducing crosstalk | |
KR850001655B1 (en) | Recording system in vtr | |
CA1062806A (en) | Pilot signal luminance correction means for video recording apparatus | |
JPS6337998B2 (en) | ||
JP3038932B2 (en) | Clamping device | |
JPS63274290A (en) | Detecting method for jitter of vtr recording and reproducing video signal | |
US5377053A (en) | Magnetic reproduction apparatus for reproducing a video signal | |
JPS6364117B2 (en) | ||
JPH0654970B2 (en) | Video signal recording / reproducing device | |
JP2675441B2 (en) | Magnetic recording / reproducing device | |
JPS6029099A (en) | Record reproducing device | |
JPS5816388B2 (en) | Video signal recording method and recording/playback method | |
JPS5816395B2 (en) | Seishigasingouki Rokusaiseisouchi | |
JPS5812794B2 (en) | Eizousingoudensouhoushiki | |
JPH01248896A (en) | Dubbing device | |
JPS6011513B2 (en) | Recorded recording medium | |
JPS6010475B2 (en) | Video signal recording method | |
JPS6145914B2 (en) | ||
JPH03184485A (en) | Reproducing signal processing circuit |