JPS6337896B2 - - Google Patents

Info

Publication number
JPS6337896B2
JPS6337896B2 JP5497580A JP5497580A JPS6337896B2 JP S6337896 B2 JPS6337896 B2 JP S6337896B2 JP 5497580 A JP5497580 A JP 5497580A JP 5497580 A JP5497580 A JP 5497580A JP S6337896 B2 JPS6337896 B2 JP S6337896B2
Authority
JP
Japan
Prior art keywords
grain
moisture
flow rate
conveyor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5497580A
Other languages
Japanese (ja)
Other versions
JPS56150338A (en
Inventor
Toshihiko Satake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP5497580A priority Critical patent/JPS56150338A/en
Publication of JPS56150338A publication Critical patent/JPS56150338A/en
Publication of JPS6337896B2 publication Critical patent/JPS6337896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/10Starch-containing substances, e.g. dough

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水分測定器に供給される穀粒の流下
時間を適宜調節し、測定精度を向上するための水
分測定器の自動制御装置に関する。 従来の水分測定器において、供給される穀粒水
分を静電容量によつて測定するものは、陽極を内
蔵した計測室内の穀粒密度が穀粒の籾・麦の品質
または形状・粒面粗度等によつて著しく異なるた
め、例えば、計測室内に供給される穀粒の供給速
度が任意の所定時間よりも早い場合には、計測室
で検出する水分値を真の水分値よりも低く表示
し、反対に、供給速度を所定時間よりも時間を長
く要した場合には、真の水分値よりも高く表示し
て測定誤差を招来する問題点があつた。なお、真
の水分値の測定は、一般に乾燥法による測定方法
が主として用いられている。 そこで、計測室内に供給される穀粒を重量計に
よつて穀粒密度を測定し、静電容量により測定し
た水分値に穀粒密度測定値を補正し、測定精度を
正確にする必要があるため、例えば特開昭55−
23458号公報により、含水率計の電極板が検出す
る静電容量が変動しても、重量計により穀粒密度
を測定し、その測定出力により含水率計の出力を
補正し、測定精度を確保しようとする技術のもの
が提案されている。 ところで、穀物乾燥運動を水分測定器を用いて
効率よく、被害のない良質の穀粒に乾燥すること
に合せ、乾燥運転の自動化・省力化を図ること
は、従来から種々装置が提案されているが、実際
には水分測定器の精度の向上により実用化がなさ
れたのはつい最近のことである。 上記特開昭55−23458号公報に記載の技術によ
り、穀物乾燥運転の自動化はほぼ達成できるもの
であるが、このものには、含水率計あるいは重量
計に供給される穀粒水分の流動速度変化、あるい
は籾と麦との流動速度変化に対処するための流量
調節機構を備えておらず、穀粒水分の高低等によ
る穀粒流速の変動に対して、電極板に流動する穀
粒の摩耗抵抗値、あるいは重量計の計測値を一定
値に安定させることができず、今一足の改善が要
望される処であつた。 また、特開昭53−102097号公報に開示されるも
のは、高周波方式の水分検出器を装着した水分測
定容器を穀粒が所定重量で秤量的に上下動するよ
う水分測定器に形設し、また乾燥機壁部に一端部
を装着したスクリユーコンベヤの他端部を前記水
分測定器の上部に横架し、スクリユーコンベヤに
設けた減速モーターはタイマー等と電気的に連結
された構成により、タイマーが設定時間に達する
と、減速モーターを作動してスクリユーコンベヤ
を回転し、乾燥機から穀粒を取出して水分測定器
に供給し、穀粒が所定重量に達するとその水分を
測定するものであるが、このものにあつても穀粒
水分の高低等に対応してスクリユーコンベヤの回
転速度を制御する手段を備えておらず、穀粒水分
の高低等によつて水分測定容器にスクリユーコン
ベヤから落下する穀粒位置が変化し、水分検出器
による水分検出値と重量検出値に誤差を生じ、水
分測定値が不安定であり、また籾と麦とを併用し
て使用することもできない等の欠点があつた。 本発明は、上記の問題点を解消するために改善
を施すものであり、底部に排出弁を設けた計量用
容器の内壁部に水分センサーを装着し、前記計量
用容器に連結した秤量装置と前記水分センサーと
を制御回路に連結して静電容量式水分測定器に形
成し、前記計量用容器の上部に穀粒搬送器を配設
した水分測定器において、前記穀粒搬送器に穀粒
流量を増減に制御する流量調節機構を設け、前記
穀粒搬送器から前記計量用容器に流下する穀粒を
任意の所要流下時間に変更できるスイツチ装置
と、前記流量調節機構とを前記制御回路を介して
連結した構成により、穀粒搬送器から計量用容器
に流下する穀粒の品種、形状変化等の変動に対応
し、流量調節機構をスイツチ装置により作動さ
せ、穀粒搬送器から計量用容器に流下する穀粒を
所定流下時間に制御し、水分センサーと秤量装置
それぞれの測定値を正確とし、水分測定器による
穀粒水分の測定を高能率かつ高精度に確保する水
分測定器の自動制御装置を提供することを目的と
する。 本発明を実施例図について説明する。第1図に
おいて、上部一側に給穀口2を、また下部に排穀
口3をそれぞれ設けて機枠1に形設し、機枠1の
内部上側に装架した固定板4上に穀粒搬送樋6か
ら成る穀粒搬送器7を載置し、穀粒搬送器7には
流動調節機構と成す振動装置5を装着してある。
固定板4の下部に配設した秤量装置9を機枠1の
内部側壁面に装架し、穀粒搬送器7に形成した穀
粒搬送樋6の樋端下部に計測用容器10を配設
し、計測用容器10は秤量装置9に一体的に連結
してあり、穀粒搬送樋6の樋端下部と計測用容器
10との中間部の穀粒流下行程路を選別風路19
に形成し、選別風路19には流穀板20を配設し
てある。 秤量装置9は、吊杆部を上側に突出した固定枠
11と横杆部を側方に突出した移動枠12を並立
し、固定枠11、移動枠12、を連杆13,13
によつて連結し、移動枠12を上下移動自在に形
成し、また固定枠11、移動枠12間に発条秤1
4を設けて計測用容器10の重量を計測するよう
に形成してある。 計量用容器10は、上部を開放状にした筒体1
5の内壁面に穀粒の静電容量を計測する水分セン
サー16を装着し、筒体15の底部に設けた排出
弁17を開閉作動装置18に連結してある。制御
用箱枠21には制御回路21を内蔵し、制御用箱
枠21の前枠には、制御回路21に連結された水
分値を表示する表示器23を設け、振動装置5、
秤量装置9、水分センサー16および開閉作動装
置18のそれぞれは制御回路22と電気的に連結
して静電容量式水分測定器に形成してある。 第4図は、制御回路22のブロツク図で、パル
ス発振器35を分周器36を介して計数回路37
に接続し、また計数回路37はデコーダ38に連
絡されると共に、その出力側の各ピツトの端子を
任意個数の3組に分岐し、0〜3の各端子は
NAND1およびバツフアから成る論理回路39を
介してリレーR1に接続され、流量調節機構の振
動装置5の端子はワンシヨツト回路40に接続さ
れて表示器23にホールド信号を発するように
し、またばね8、秤量装置9の各端子はNAND2
およびバツフアから成る論理回路41を介してリ
レーR2に接続してある。 次に、第5図の電気回路は、前記制御回路22
にスイツチ装置41を関連的に、かつ電気的に連
結したものであり、デコーダ38出力側の0〜2
の端子を論理回路42に設けたNAND3の入力側
に接続してその出力側をNAND4の入力側に接続
し、またNAND4の入力側にはデコーダ38の3
の端子および給穀作用を任意の所要流速時間に切
換変更するスイツチ装置41の回路を接続し、ま
たNAND34の出力側をORゲートの入力側にそ
れぞれ接続すると共に、その出力側を穀粒搬送器
7の流量調節機構と成す振動装置5に連絡する前
記リレーR1に接続してある。 以下に、上記構成における作用につき説明す
る。穀槽から給穀口2を介して穀粒搬送樋6に流
下する試料穀粒は、制御回路22の給穀側回路の
信号によつてリレーR1が励磁して振動装置5を
作動し、その振動作用によつて穀粒搬送樋6の樋
端から穀粒は流下し、選別風路で風選されて整粒
のみが流穀板19に滑流して計測用容器10に流
下して供給されリレーR1の消磁によつて給穀作
用を停止する。次に、ワンシヨツト回路40から
のホールド信号によつて計測用容器10内の穀粒
水分を水分センサー16によつて測定し、その水
分センサー16の計測水分値と、秤量装置9によ
つて検出した穀粒の重量変化を制御回路22に連
絡し、計測水分値を補正して表示器23に表示さ
れる。次いで排穀側回路信号によつてリレーR2
が励磁し、開閉作動装置18の作動により排出弁
17を開口して排穀し、ま閉塞してその回次の水
分測定作用を改良し、順次この給穀・計測・排穀
の作用は一貫的にかつ反復的に継続される。上記
の穀粒搬送器7の給穀作用において、試料穀粒は
籾・麦などの品種による形状変化または乾燥度の
相異等によつて摩擦係数がそれぞれ変化し、ため
にその給穀作用の所要流下時間を適時に変更する
必要がある。 以下に示す表1〜表3について説明する。試料
穀粒の籾・麦などの品種による形状変化、または
乾燥度の相異による摩擦係数の変化等により、穀
粒搬送器7から計測用容器10に所定量が供給さ
れる試料穀粒の所要流下時間の変動に対し、試料
穀粒の水分値を絶乾法により測定した真の水分値
と、穀粒搬送器7に設けた流量調節機構をスイツ
チ装置によつて試料穀粒の所要流下時間を変更し
た場合の、水分センサー16の測定する水分値を
表示したものである。
The present invention relates to an automatic control device for a moisture measuring device that appropriately adjusts the flow time of grains supplied to the moisture measuring device to improve measurement accuracy. Conventional moisture measuring instruments that measure the supplied grain moisture by capacitance use a measurement chamber with a built-in anode that measures grain density based on the quality, shape, and grain surface roughness of the grain. For example, if the feeding speed of grains into the measuring chamber is faster than a certain predetermined time, the moisture value detected in the measuring chamber will be displayed lower than the true moisture value. However, on the other hand, if the supply rate is set longer than the predetermined time, there is a problem in that the moisture value is displayed higher than the true moisture value, resulting in a measurement error. Note that, in general, a drying method is mainly used to measure the true moisture value. Therefore, it is necessary to measure the grain density of the grains supplied into the measuring chamber using a weighing scale, and correct the grain density measurement value to the moisture value measured by capacitance to ensure accurate measurement accuracy. Therefore, for example, Japanese Patent Application Laid-Open No. 1983-
According to Publication No. 23458, even if the capacitance detected by the electrode plate of the moisture content meter fluctuates, the grain density is measured using a weighing scale, and the output of the moisture content meter is corrected based on the measurement output, ensuring measurement accuracy. Techniques that attempt to do this have been proposed. By the way, various devices have been proposed in the past to automate and save labor in the drying operation, in addition to efficiently drying the grain to high-quality grain without damage using a moisture measuring device. However, it has only recently been put into practical use due to improvements in the accuracy of moisture measuring instruments. The technology described in JP-A No. 55-23458 can almost completely automate the grain drying operation, but this method requires the flow rate of grain moisture supplied to the moisture content meter or weighing scale. It is not equipped with a flow rate adjustment mechanism to deal with changes in grain flow rate or changes in the flow rate between paddy and wheat. It was not possible to stabilize the resistance value or the value measured by the weight scale at a constant value, and there was a need for further improvement. Furthermore, Japanese Patent Application Laid-Open No. 53-102097 discloses a moisture measuring device in which a moisture measuring container equipped with a high-frequency moisture detector is mounted so that the grains move up and down at a predetermined weight. In addition, one end of a screw conveyor is attached to the wall of the dryer, and the other end is horizontally suspended above the moisture measuring device, and the deceleration motor provided on the screw conveyor is electrically connected to a timer, etc. When the timer reaches the set time, it activates the deceleration motor to rotate the screw conveyor, removes the grain from the dryer and feeds it to the moisture meter, and when the grain reaches a predetermined weight, its moisture is measured. However, even this device does not have a means to control the rotational speed of the screw conveyor in response to the level of grain moisture, etc., and the moisture measuring container The position of the grains falling from the screw conveyor changes, causing an error in the moisture detection value and weight detection value by the moisture detector, making the moisture measurement value unstable, and when using paddy and wheat together. There were drawbacks such as not being able to do anything. The present invention is an improvement to solve the above-mentioned problems, and includes a weighing device in which a moisture sensor is attached to the inner wall of a weighing container provided with a discharge valve at the bottom, and a weighing device is connected to the weighing container. In the moisture measuring device, the moisture sensor is connected to a control circuit to form a capacitive moisture measuring device, and a grain conveyor is disposed above the measuring container. A switch device is provided with a flow rate adjustment mechanism that controls the flow rate to increase or decrease the flow rate, and the flow rate adjustment mechanism is connected to the control circuit. With this structure, the flow rate adjustment mechanism is operated by a switch device in response to variations in the type of grain, changes in shape, etc. of the grains flowing down from the grain transporter to the weighing container. Automatic control of the moisture measuring device to control the grain flowing down to a specified time period, to ensure that the measured values of the moisture sensor and weighing device are accurate, and to ensure that the moisture measuring device can measure grain moisture with high efficiency and accuracy. The purpose is to provide equipment. The present invention will be explained with reference to embodiment figures. In Fig. 1, a grain feeding port 2 is provided on one side of the upper part, and a grain discharging port 3 is provided on the lower part of the machine frame 1. A grain conveyor 7 consisting of a grain conveying gutter 6 is placed thereon, and a vibration device 5 serving as a flow adjustment mechanism is mounted on the grain conveyor 7.
A weighing device 9 arranged at the lower part of the fixed plate 4 is mounted on the inner side wall surface of the machine frame 1, and a measuring container 10 is arranged at the lower part of the gutter end of the grain transport gutter 6 formed in the grain transporter 7. The measuring container 10 is integrally connected to the weighing device 9, and the grain flow path in the middle between the lower end of the grain conveying gutter 6 and the measuring container 10 is connected to the sorting air path 19.
A grain flow board 20 is arranged in the sorting air passage 19. The weighing device 9 has a fixed frame 11 with a hanging rod part protruding upward and a movable frame 12 with a horizontal rod part protruding laterally, which are arranged side by side, and the fixed frame 11 and the movable frame 12 are connected to the connecting rods 13,13.
The movable frame 12 is formed to be vertically movable, and the spring scale 1 is connected between the fixed frame 11 and the movable frame 12.
4 is provided to measure the weight of the measurement container 10. The measuring container 10 has a cylindrical body 1 with an open top.
A moisture sensor 16 for measuring the capacitance of grains is attached to the inner wall of the cylinder 5, and a discharge valve 17 provided at the bottom of the cylinder 15 is connected to an opening/closing actuator 18. The control box frame 21 has a built-in control circuit 21, and the front frame of the control box frame 21 is provided with a display 23 connected to the control circuit 21 to display the moisture value.
The weighing device 9, the moisture sensor 16, and the opening/closing device 18 are each electrically connected to a control circuit 22 to form a capacitive moisture measuring device. FIG. 4 is a block diagram of the control circuit 22, in which a pulse oscillator 35 is connected to a counting circuit 37 via a frequency divider 36.
The counting circuit 37 is connected to the decoder 38, and the terminals of each pit on the output side are branched into an arbitrary number of three sets, and each terminal of 0 to 3 is connected to the decoder 38.
It is connected to the relay R 1 through a logic circuit 39 consisting of NAND 1 and a buffer, the terminal of the vibration device 5 of the flow rate adjustment mechanism is connected to a one-shot circuit 40 to issue a hold signal to the display 23, and the spring 8 , each terminal of the weighing device 9 is NAND 2
It is connected to relay R 2 via a logic circuit 41 consisting of a buffer and a buffer. Next, the electric circuit of FIG.
The switch device 41 is connected electrically to the decoder 38 output side.
The terminal of is connected to the input side of NAND 3 provided in the logic circuit 42, and its output side is connected to the input side of NAND 4 , and the input side of NAND 4 is connected to the input side of NAND 3 of the decoder 38.
, and the circuit of the switch device 41 that switches the grain feeding action to any required flow rate time, and also connect the output sides of NAND 3 and 4 to the input side of the OR gate, and connect the output side to the grain feeding operation. It is connected to the relay R 1 which communicates with the vibration device 5 which constitutes the flow rate adjustment mechanism of the grain conveyor 7 . The effects of the above configuration will be explained below. The sample grains flowing from the grain tank to the grain conveying gutter 6 through the grain feeding port 2 are excited by the relay R 1 by a signal from the grain feeding side circuit of the control circuit 22 and actuating the vibrating device 5. Due to the vibration action, the grains flow down from the gutter end of the grain conveying gutter 6, are air-selected in the sorting air passage, and only the sized grains slide onto the grain flow plate 19 and flow down into the measuring container 10 to be supplied. The feeding action is stopped by demagnetizing relay R1 . Next, the grain moisture in the measurement container 10 is measured by the moisture sensor 16 based on the hold signal from the one-shot circuit 40, and the moisture value measured by the moisture sensor 16 and the moisture value detected by the weighing device 9 are measured. The change in grain weight is communicated to the control circuit 22, and the measured moisture value is corrected and displayed on the display 23. Next, relay R2 is activated by the grain removal side circuit signal.
is excited, and the opening/closing actuator 18 is operated to open the discharge valve 17 to discharge the grain, and then close it to improve the moisture measurement function for the next time. It is continued repeatedly and repeatedly. In the grain feeding action of the grain conveyor 7 mentioned above, the coefficient of friction of the sample grains changes due to changes in shape depending on the variety of rice, wheat, etc. or differences in dryness, and therefore the grain feeding action is affected. It is necessary to change the required flow time in a timely manner. Tables 1 to 3 shown below will be explained. The required amount of sample grains to be supplied from the grain conveyor 7 to the measurement container 10 in a predetermined amount is determined by changes in the shape of the sample grains depending on their varieties such as paddy or wheat, or by changes in the coefficient of friction due to differences in dryness. In response to fluctuations in flow time, the true moisture value of the sample grain measured using the bone-dry method and the required flow time of the sample grain are determined using a switch device that controls the flow rate adjustment mechanism provided in the grain conveyor 7. The figure shows the moisture value measured by the moisture sensor 16 when the value is changed.

【表】【table】

【表】【table】

【表】 上記各表からも判るように、表1においては、
試料穀粒が籾である場合には、穀粒搬送器7から
計測用容器10に流下する穀粒の所要流下時間を
切換レンジ1に設定したものが絶乾法によつて測
定した真の水分値に近く、同様に、試料穀粒が大
麦である場合には表2に示す切換レンジ2に、ま
た試料穀粒が小麦である場合には表3に示す切換
レンジ3にそれぞれスイツチ装置41を切換える
ことにより、絶乾法による真の水分値に近い測定
精度を得ることが理解できる。 したがつて、前記穀粒搬送器7の振動装置5の
給穀作用において、デコーダ38の0〜2の端子
から論理回路42に設けたNAND3にL信号が流
れる間はその出力側にH信号を発してOR回路に
入力し、またNAND4はスイツチ装置41の接点
が開成してL信号を入力しその出力側にH信号を
発してOR回路に入力し、ためにOR回路はH信
号を発してリレーR1を励磁し、穀粒搬送器7の
振動装置5を作動して所定流下時間の流下速度と
した給穀作用を続行する。また、給穀作用を任意
穀粒流下時間に延長せんとするときは、スイツチ
装置41の接点を閉成することにより、スイツチ
装置41側はL信号を発し、この信号と、デコー
ダ38の4の端子からのL信号をNAND4はそれ
ぞれ入力してその出力側からH信号をOR回路に
入力し、ためにリレーR1の励磁時間は延長して
その給穀作用は任意流下時間に延長させる。 次に、第2図によつて穀粒搬送器7に設けた流
量調節機構の別実施例につき説明する。機枠1の
上部にスクリユーコンベア24を横架状に配設
し、コンベア24筒体の一端側に供給口25を設
けて穀槽内部に嵌挿し、その他端側に排出口26
を設けて下部の計測用容器10に臨設させてあ
る。27はスクリユーコンベア24を回転する流
量調節機構に形成した電動機、28は機枠側壁に
設けた吸風窓、29は容器10上部の選別風路に
設けた流穀板であり、スクリユーコンベア24に
設けた電動機27は制御回路22に連結してあ
る。その他の構成および作用は前記実施例と同様
であるので、その詳細は省略する。 第3図に示すものは穀粒搬送器7のさらに別の
実施例であり、穀粒搬送器7は、穀槽壁部の開窓
30と機枠1上部を傾斜状流下樋31で連結し、
該流下樋31の樋体上端に、駆動装置32と流量
調節弁33とよりなる流量調節機構を設けると共
に、樋体下端に規正板34を設けてある。流下樋
31を流下する穀粒は規正板34に当接して下方
に流れて風選別され、整粒は流穀板29面を滑流
して下部の計測用容器10に供給され、その構造
が簡単で製作費を廉価にできる効果がある。 上記に述べたように本発明は、穀粒搬送器から
計測用容器に流下する試料穀粒を、籾・麦などの
品種による形状変化または乾燥度の相異等に対応
し、計測用容器内に任意の所要流下時間に変更す
るように、スイツチ装置を制御回路を介して穀粒
搬送器に設けた流量調節機構に連絡したので、ス
イツチ装置を切換えて穀粒搬送器から流下する穀
粒流速を流量調節機構によつて穀粒の供給作用を
制御し、計測用容器に流下する穀粒を任意の所定
流下時間に制御でき、計測用容器で測定する水分
センサーの水分測定精度を正確とすることに合
せ、水分測定の高能率に実施できる効果を奏す
る。
[Table] As can be seen from the above tables, in Table 1,
When the sample grain is paddy, the required flow time for the grain to flow down from the grain conveyor 7 to the measurement container 10 set in switching range 1 is the true moisture measured by the bone-dry method. Similarly, when the sample grain is barley, the switch device 41 is set to the switching range 2 shown in Table 2, and when the sample grain is wheat, the switch device 41 is set to the switching range 3 shown in Table 3. It can be seen that by switching, measurement accuracy close to the true moisture value obtained by the bone-dry method can be obtained. Therefore, in the grain feeding operation of the vibrating device 5 of the grain conveyor 7, while the L signal flows from the terminals 0 to 2 of the decoder 38 to the NAND 3 provided in the logic circuit 42, the H signal is output to the output side. The contact of the switch device 41 opens and NAND 4 inputs an L signal, and an H signal is generated on its output side, which is input to the OR circuit. Therefore, the OR circuit outputs an H signal. Then, the grain conveyor 7 vibrates the vibration device 5 of the grain conveyor 7 to continue the grain feeding operation at a flow rate of a predetermined flow time. Further, when the grain feeding action is to be extended to an arbitrary grain flow time, by closing the contact of the switch device 41, the switch device 41 side emits an L signal, and this signal and the 4 of the decoder 38 The L signal from the terminal is input to each NAND 4 , and the H signal is input from the output side to the OR circuit, so that the excitation time of the relay R1 is extended and its grain feeding action is extended to an arbitrary flow time. Next, another embodiment of the flow rate adjustment mechanism provided in the grain conveyor 7 will be described with reference to FIG. A screw conveyor 24 is arranged horizontally on the upper part of the machine frame 1, and a supply port 25 is provided at one end of the cylindrical body of the conveyor 24 to be inserted into the grain tank, and a discharge port 26 is provided at the other end.
is installed in the measurement container 10 at the bottom. Reference numeral 27 designates an electric motor formed into a flow rate adjustment mechanism that rotates the screw conveyor 24, reference numeral 28 designates an air intake window provided on the side wall of the machine frame, and reference numeral 29 designates a grain board provided in the sorting air passage above the container 10, which rotates the screw conveyor 24. An electric motor 27 provided in the control circuit 22 is connected to the control circuit 22 . The other configurations and operations are the same as those of the previous embodiment, so the details will be omitted. What is shown in FIG. 3 is yet another embodiment of the grain conveyor 7, in which the grain conveyor 7 connects the fenestration 30 in the grain tank wall and the upper part of the machine frame 1 with an inclined flow down trough 31. ,
A flow rate adjustment mechanism consisting of a drive device 32 and a flow rate control valve 33 is provided at the upper end of the gutter body of the downflow gutter 31, and a regulation plate 34 is provided at the lower end of the gutter body. The grains flowing down the flow gutter 31 come into contact with the regulation plate 34 and flow downward to be air sorted, and the regulated grains slide on the flow grain plate 29 surface and are supplied to the measurement container 10 at the bottom, and the structure is simple. This has the effect of reducing production costs. As described above, the present invention allows the sample grains flowing down from the grain conveyor to the measuring container to accommodate changes in shape or dryness depending on the variety of rice, wheat, etc. The switch device was connected to the flow rate adjustment mechanism provided in the grain transporter via the control circuit so that the flow rate of grains flowing down from the grain transporter could be changed to any required flow time by changing the switch device. The grain feeding action is controlled by the flow rate adjustment mechanism, and the grains flowing down into the measuring container can be controlled at any predetermined flow time, making the moisture measurement accuracy of the moisture sensor that measures in the measuring container accurate. In conjunction with this, moisture measurement can be carried out with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例図である。第1図は本装
置の側断面図、第2図は実施例(その2)の側断
面図、第3図は実施例(その3)の側断面図、第
4図はその制御回路図、第5図はその要部の電気
回路図である。 1……機枠、2……給穀口、3……排穀口、4
……固定板、5……振動装置、6……穀粒搬送
樋、7……穀粒搬送器、8……ばね、9……秤量
装置、10……計測用容器、11……固定枠、1
2……移動枠、13……連杆、14……発条秤、
15……筒体、16……センサー、17……排出
弁、18……開閉作動装置、19……流穀板、2
0……選別風路、21……箱枠、22……制御回
路、23……表示器、24……スクリユーコンベ
ア、25……供給口、26……排出口、27……
回転装置、28……吸風窓、29……流穀板、3
0……開窓、31……流下樋、32……駆動装
置、33……流量調節弁、34……規正板、35
……パルス発振器、36……分周器、37……計
数回路、38……デコーダ、39……論理回路、
40……ワンシヨツト回路、41……スイツチ装
置、42……論理回路。
The drawings are illustrations of embodiments of the present invention. Fig. 1 is a side sectional view of the present device, Fig. 2 is a side sectional view of the embodiment (part 2), Fig. 3 is a side sectional view of the embodiment (part 3), and Fig. 4 is its control circuit diagram. FIG. 5 is an electrical circuit diagram of the main part. 1... Machine frame, 2... Grain feeding port, 3... Grain discharging port, 4
... Fixed plate, 5 ... Vibration device, 6 ... Grain transport gutter, 7 ... Grain transporter, 8 ... Spring, 9 ... Weighing device, 10 ... Measuring container, 11 ... Fixed frame ,1
2...Moving frame, 13...Running rod, 14...Spring scale,
15... Cylindrical body, 16... Sensor, 17... Discharge valve, 18... Opening/closing actuator, 19... Grain plate, 2
0... Sorting air path, 21... Box frame, 22... Control circuit, 23... Display, 24... Screw conveyor, 25... Supply port, 26... Discharge port, 27...
Rotating device, 28...Air intake window, 29... Grain board, 3
0... Window opening, 31... Downflow gutter, 32... Drive device, 33... Flow control valve, 34... Regulation plate, 35
... Pulse oscillator, 36 ... Frequency divider, 37 ... Counting circuit, 38 ... Decoder, 39 ... Logic circuit,
40... One shot circuit, 41... Switch device, 42... Logic circuit.

Claims (1)

【特許請求の範囲】 1 底部に排出弁を設けた計量用容器の内壁部に
水分センサーを装着し、前記計量用容器に連結し
た秤量装置と前記水分センサーとを制御回路に連
結して静電容量式水分測定器に形成し、前記計量
用容器の上部に穀粒搬送器を配設した水分測定器
において、前記穀粒搬送器に穀粒流量を増減に制
御する流量調節機構を設け、前記穀粒搬送器から
前記計量用容器に流下する穀粒を任意の所要流下
時間に変更できるスイツチ装置と、前記流量調節
機構とを前記制御回路を介して連結したことを特
徴とする水分測定器の自動制御装置。 2 前記穀粒搬送器を、振動装置を備えた穀粒搬
送樋に形成した特許請求の範囲第1項記載の水分
測定器の自動制御装置。 3 前記穀粒搬送器を、回転装置を備えたコンベ
ア装置に形成した特許請求の範囲第1項記載の水
分測定器の自動制御装置。 4 前記計量用容器に供給する穀粒を籾または麦
に切換えるスイツチを前記スイツチ装置に設けた
特許請求の範囲第1項〜第3項のいずれかに記載
の水分測定器の自動制御装置。
[Claims] 1. A moisture sensor is attached to the inner wall of a measuring container provided with a discharge valve at the bottom, and a weighing device connected to the measuring container and the moisture sensor are connected to a control circuit to generate static electricity. In the moisture measuring device formed as a capacitive moisture measuring device and having a grain conveyor disposed above the measuring container, the grain conveyor is provided with a flow rate adjustment mechanism for controlling the grain flow rate to increase or decrease, and the A moisture measuring device characterized in that a switch device capable of changing the flow rate of grains flowing down from the grain conveyor to the measuring container at an arbitrary required flow time and the flow rate adjustment mechanism are connected via the control circuit. Automatic control device. 2. The automatic control device for a moisture measuring instrument according to claim 1, wherein the grain conveyor is formed as a grain conveying gutter equipped with a vibration device. 3. The automatic control device for a moisture measuring device according to claim 1, wherein the grain conveyor is formed as a conveyor device equipped with a rotating device. 4. The automatic control device for a moisture measuring instrument according to any one of claims 1 to 3, wherein the switch device is provided with a switch for switching the grain to be supplied to the measuring container between paddy and wheat.
JP5497580A 1980-04-24 1980-04-24 Automatic control device for moisture measuring device Granted JPS56150338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5497580A JPS56150338A (en) 1980-04-24 1980-04-24 Automatic control device for moisture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5497580A JPS56150338A (en) 1980-04-24 1980-04-24 Automatic control device for moisture measuring device

Publications (2)

Publication Number Publication Date
JPS56150338A JPS56150338A (en) 1981-11-20
JPS6337896B2 true JPS6337896B2 (en) 1988-07-27

Family

ID=12985647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5497580A Granted JPS56150338A (en) 1980-04-24 1980-04-24 Automatic control device for moisture measuring device

Country Status (1)

Country Link
JP (1) JPS56150338A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982851U (en) * 1982-11-26 1984-06-04 株式会社山本製作所 Grain moisture content detection device in grain drying equipment
FR2677764B1 (en) * 1991-06-13 1993-10-15 Tripette Renaud HUMIDIMETER FOR GRANULAR OR POWDERY PRODUCTS AND METHOD FOR MEASURING THE MOISTURE RATE.

Also Published As

Publication number Publication date
JPS56150338A (en) 1981-11-20

Similar Documents

Publication Publication Date Title
EP0034459B1 (en) Cereal grain moisture content measuring apparatus
US4590795A (en) Process and device for continuously determining the moisture content of spoilable foodstuffs
US4499111A (en) Process for continuously determining the moisture content of spoilable grain products
US2366075A (en) Weighing and feeding device
US4688177A (en) Chocolate feeding device for chocolate refiners
JPS6337896B2 (en)
GB2039052A (en) Apparatus for measuring the moisture content of grain
JPH05139543A (en) Constant amount carrying device
JPS6314776B2 (en)
JPS6324255B2 (en)
JPS6148658B2 (en)
JPH0113046B2 (en)
JPS6213000Y2 (en)
JPS6314774B2 (en)
JPS6314777B2 (en)
JPS6346376B2 (en)
JPH0614853Y2 (en) Beer barley adjuster wind force controller
JPS6338661B2 (en)
JPH04263918A (en) Material feed device
JPS6411900B2 (en)
JPS6218013B2 (en)
US748644A (en) Automatic weighing apparatus
JPS60218038A (en) Weighing and bagging device for grain
JPH05240687A (en) Instrument for weighting constant-amount of boiled rice
JPS6124923Y2 (en)