JPS6337578Y2 - - Google Patents

Info

Publication number
JPS6337578Y2
JPS6337578Y2 JP12623281U JP12623281U JPS6337578Y2 JP S6337578 Y2 JPS6337578 Y2 JP S6337578Y2 JP 12623281 U JP12623281 U JP 12623281U JP 12623281 U JP12623281 U JP 12623281U JP S6337578 Y2 JPS6337578 Y2 JP S6337578Y2
Authority
JP
Japan
Prior art keywords
diaphragm
fluid
rubber
hardness
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12623281U
Other languages
Japanese (ja)
Other versions
JPS5831470U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12623281U priority Critical patent/JPS5831470U/en
Publication of JPS5831470U publication Critical patent/JPS5831470U/en
Application granted granted Critical
Publication of JPS6337578Y2 publication Critical patent/JPS6337578Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、ダイヤフラムバルブ用のダイヤフ
ラムの改良、とくにスラリーに対する耐摩耗性に
優れ、耐真空性、耐圧性をも保有する強度の高い
ダイヤフラムに関する。
[Detailed Description of the Invention] This invention relates to an improved diaphragm for a diaphragm valve, and in particular to a high-strength diaphragm that has excellent wear resistance against slurry and also has vacuum resistance and pressure resistance.

ダイヤフラムバルブはゴム状弾性物質よりなる
ダイヤフラムによつてバルブ本体の堰部を開閉す
るバルブであり、流体の流通と遮断を目的とする
ものであつて、その構造が簡単、かつ前記開閉が
確実なため、各種流体の輸送配管に広く適用され
ている。
A diaphragm valve is a valve that opens and closes a dam part of a valve body using a diaphragm made of a rubber-like elastic material, and its purpose is to circulate and shut off fluid, and its structure is simple and the opening and closing are reliable. Therefore, it is widely applied to transportation piping for various fluids.

しかるに従来のダイヤフラムバルブのダイヤフ
ラムにおいては、鉱山で鉱石等の固体粒子を液体
とともに流体としてパイプ輸送したり、あるいは
土木工事で砂、泥などを水とともに排出したり、
また工場でたとえば石膏などの固形粒子を水など
の液体と混合してパイプ輸送するなど、いわゆる
スラリー状流体に適用する場合に、スラリーの固
体粒子による摩耗問題がつきまとい、しかも高真
空下あるいは、高圧下にも変形ないし破損せず、
十分その確実な流通、遮断効果を達成しなければ
ならないなどの問題があり、とくに、いちじるし
い摩耗と、サクシヨン配管の場合には真空圧、ポ
ンプによる圧力輸送の場合には高いデリベリー圧
を受けて変形を来しやすいという苛酷な使用条件
のため、ダイヤフラムのひんぱんな交換を必要と
する固有の欠点があつたものである。
However, the diaphragm of conventional diaphragm valves is used for transporting solid particles such as ore together with liquid through pipes in mines, or for discharging sand, mud, etc. along with water during civil engineering work.
In addition, when applied to so-called slurry-like fluids, such as when solid particles such as gypsum are mixed with liquids such as water and transported through pipes in factories, wear problems due to the solid particles of the slurry persist, and moreover, they are operated under high vacuum or under high pressure. The bottom will not be deformed or damaged,
There are problems such as having to achieve sufficient reliable flow and blocking effects, and in particular, there is significant wear and deformation due to vacuum pressure in the case of suction piping and high delivery pressure in the case of pressure transportation by pumps. Due to the harsh operating conditions in which the diaphragm tends to develop, it has the inherent disadvantage of requiring frequent replacement of the diaphragm.

たとえば、硬度が60゜〜70゜の均質な天然ゴムを
使用したダイヤフラムは摩耗による耐用日数は僅
かに10日であつた。また同一のダイヤフラムで耐
減圧強度のテストを行つたところ、750mmHgで材
質には異常はなかつたが、シール不良という結果
を見た。
For example, a diaphragm made of homogeneous natural rubber with a hardness of 60° to 70° has a service life of only 10 days due to wear. In addition, when the same diaphragm was tested for decompression strength at 750 mmHg, there was no abnormality in the material, but the seal was found to be defective.

そこで、硬度を下げて、40゜〜50゜の単昧・均一
質の天然ゴムを用いたダイヤフラムをテストした
ところ、摩耗による耐用日数は108日に延びたが、
耐減圧強度において500mmHgmHの減圧下におい
て変形を来たし、継続使用が不可能となつた。
Therefore, when we tested a diaphragm made of monolithic and homogeneous natural rubber with a hardness of 40° to 50°, the service life due to wear was extended to 108 days.
In terms of decompression resistance, deformation occurred under reduced pressure of 500 mmHgmH, making continued use impossible.

このようなテストを広範に実施した結果、本考
案者は次の事実を見出した。
As a result of conducting such tests extensively, the present inventor discovered the following fact.

本来、ダイヤフラムの摩耗は、とくに閉弁直前
とか半開弁の際に被処理流体がダイヤフラムと弁
の堰部との間を激流のようになつて流れ、そのと
きにダイヤフラムの接流体面(下部)を流体内の
固体微粒子が激しく擦過することによつて、激し
く、かつ急速な摩耗を招来するものである。とこ
ろで、技術常識としては、内燃機関のシリンダラ
イナの内面に硬質クロムメツキをするように、極
力硬質の内面層を形成させることのみが、もつと
も有力な耐摩耗効果を達成するものであると考え
られてきた。そこでテストを行つた結果、たとえ
ば硬度75゜のゴムを使つたダイヤフラムでは、僅
か数日で、却つて摩耗が激しくて使用不可能とな
つた。そこで、逆に接流体面がいちじるしく軟質
のゴムであるものであるものに切替えて見たとこ
ろ、約6か月にわたり、交換の必要がなく連続使
用が可能であることが見い出された。
Originally, diaphragm wear occurs when the fluid to be treated flows like a torrent between the diaphragm and the dam of the valve, especially just before the valve closes or when the valve is half-open, and at that time, the fluid-contact surface (lower part) of the diaphragm The solid particles in the fluid rub against each other violently, resulting in severe and rapid wear. By the way, as common technical knowledge, it is believed that only forming an extremely hard inner layer, such as hard chrome plating on the inner surface of the cylinder liner of an internal combustion engine, can achieve the most effective anti-wear effect. Ta. As a result of testing, we found that, for example, a diaphragm made of rubber with a hardness of 75 degrees wore out so severely that it became unusable after just a few days. Therefore, we switched to a model whose fluid-contact surfaces were made of significantly softer rubber, and found that it could be used continuously for about 6 months without the need for replacement.

しかしながら、ダイヤフラム素材の全体を比較
的柔らかな材質で造つたとすると、もちろん、前
述したようなスラリー給送時の圧力に耐えること
が出来なくなる。
However, if the entire diaphragm material is made of a relatively soft material, it will naturally not be able to withstand the pressure during slurry feeding as described above.

この考案は、スラリー送給用ダイヤフラム弁の
上述したような相反する苛酷な使用条件に長期間
耐えうるようにしたダイヤフラムを提供すること
をその目的とするもので、該目的を達成するため
の、この考案の構成は、接流体部はシヨアジユロ
メータによる硬度が40゜〜50゜であるゴム状弾性体
層からなり、非接流体部はシヨアジユロメータに
よる硬度が60゜〜70゜である前記接流体部と同種の
ゴム弾性体層からなり、これら2層を一体構造と
したことを特徴とするスラリー状流体輸送に用い
るダイヤフラムバルブ用ダイヤフラムである。
The purpose of this invention is to provide a diaphragm for a slurry feeding diaphragm valve that can withstand the contradictory and harsh usage conditions mentioned above for a long period of time. The structure of this device is that the part in contact with the fluid is made of a rubber-like elastic material layer with a hardness of 40° to 50° as measured by a shoal length meter, and the part not in contact with the fluid has a hardness of 60° to 70° as measured by a shoal length meter. This diaphragm for a diaphragm valve used for transporting a slurry-like fluid is characterized in that it is made of a rubber elastic layer of the same type as a certain fluid-contacting part, and that these two layers have an integral structure.

以下図面にしたがつて本考案を説明する。 The present invention will be explained below with reference to the drawings.

ダイヤフラム1において、非接流体部層3はボ
ルト2の頭部が埋設された上方突出部5を有し、
かつシヨアジユロメータによる硬度が60゜〜70゜で
あるゴム状弾性体であり、接流体部層4はシヨア
ジユロメータによる硬度が40゜〜50゜であるゴム状
弾性体によつて構成されている。ダイヤフラム1
の接流体部層4と非接流体部層3の厚さは別に限
定しないが、非接流体部層3が全体厚みの約2/3
〜3/4、接流体部層4が残りの約1/3〜1/4を占め
たものがもつとも良好である。この上下の2層
3,4より構成されているダイヤフラム1は3,
4それぞれの層を接着することなく両層を一体に
成形したものである。
In the diaphragm 1, the non-fluid contact layer 3 has an upward protrusion 5 in which the head of the bolt 2 is embedded;
The rubber-like elastic body has a hardness of 60° to 70° as measured by a shoal sillometer, and the fluid contact layer 4 is made of a rubber-like elastic body that has a hardness of 40° to 50° as measured by a shoal sillometer. has been done. Diaphragm 1
The thickness of the fluid contact layer 4 and non-fluid contact layer 3 is not particularly limited, but the non-fluid contact layer 3 is approximately 2/3 of the total thickness.
~3/4, and the fluid contact layer 4 occupies about 1/3 to 1/4 of the remaining portion, which is very good. The diaphragm 1 is composed of the upper and lower two layers 3 and 4.
4 Both layers are integrally molded without bonding each layer.

なお、本考案によるダイヤフラムの材料である
ゴム状弾性体としては、天然ゴムおよび合成ゴム
が挙げられ、合成ゴムとしては、ブタジエンゴム
(SBR、NBR)、イソプレンゴム、クロロプレン
ゴム等のジエン系ゴム、ブチルゴム、EPT、ク
ロロスルホン化ポリエチレン(CSM)等のオレ
フイン系ゴム等が挙げられる。ただし、必要に応
じカーボンのような充填剤の適量を混和すること
があるのは、いう迄もない。なお、ダイヤフラム
各個毎には、両層は異種ではなく同種のゴムを使
用する。このように同種の材料とすることによ
り、両層3,4間の剥離不可能な強力な密着性が
確保される。そのようにすると、両層3,4間の
剥離不可能な密着性が確保されるので、きわめて
都合がよい。
The rubber-like elastic body that is the material of the diaphragm according to the present invention includes natural rubber and synthetic rubber. Examples of synthetic rubber include diene rubbers such as butadiene rubber (SBR, NBR), isoprene rubber, and chloroprene rubber; Examples include olefin rubbers such as butyl rubber, EPT, and chlorosulfonated polyethylene (CSM). However, it goes without saying that an appropriate amount of filler such as carbon may be mixed in if necessary. In addition, for each diaphragm, both layers use the same type of rubber rather than different types of rubber. By using the same kind of materials in this way, strong adhesion between both layers 3 and 4 that cannot be peeled off is ensured. This is extremely convenient because it ensures non-separable adhesion between both layers 3 and 4.

なお、本案品のダイヤフラムを組込んだ第1図
に図示のダイヤフラムバルブの他の構成部分は従
来のものと格別に変りがないので、単なる図示の
みにとどめ、その詳細な説明は省略する。なお、
弁本体の堰部6は、ダイヤフラム1と協働して流
体の流通遮断作用を達成するための弁内突起部で
ある。
The other components of the diaphragm valve shown in FIG. 1, in which the diaphragm of the present invention is incorporated, are not particularly different from those of the conventional one, so they will only be shown in the drawings and detailed explanations thereof will be omitted. In addition,
The dam 6 of the valve body is a protrusion inside the valve that cooperates with the diaphragm 1 to achieve a fluid flow blocking effect.

なお、本案品の構成について、さらに充分な理
解を与えるために、製法実施例について説明する
が、これは例示であつて、それのみに本考案を限
定する趣旨のものではない。
Incidentally, in order to provide a more thorough understanding of the structure of the present product, examples of the manufacturing method will be described, but these are merely examples and are not intended to limit the present invention to these examples.

製造実施例 これは、A工程とB工程とに分かれる。A工程
は硬度40゜〜50゜層を半加硫・予備成型するもの
で、配合カーボンの少ない天然ゴムの適量を取
り、所要の金型に入れて100℃程度の温度で10分
間処理する。この場合、いわゆる「のび」を出す
ためにプロセスオイルの量を通常よりも少くする
とよい。
Manufacturing Example This is divided into an A process and a B process. Step A involves semi-vulcanizing and pre-molding a layer with a hardness of 40° to 50°, in which an appropriate amount of natural rubber with low blended carbon is taken, placed in the required mold, and treated at a temperature of about 100°C for 10 minutes. In this case, it is recommended to use a smaller amount of process oil than usual in order to achieve so-called "spreading."

このような予備処理を行うのは、これにより、
あとのB工程において高硬度層との一体成型加硫
時に、両層をよく密着させ、かつ寸法を合わせる
必要があるためで、半加硫をしないと両層の密着
が悪く、偏肉ができることが多い。
This pre-processing is done by:
This is because when molding and vulcanizing the high-hardness layer in the subsequent step B, it is necessary to make both layers adhere well and match the dimensions.If semi-vulcanization is not performed, the adhesion between the two layers will be poor and uneven thickness will occur. There are many.

次に、B工程においては、A工程で出来た半加
硫層とカーボン配合量の多い同系ゴムとを、その
間に予め接着剤処理した粗目の布(たとえば粗い
寒冷沙など)をはさんで同時成型加硫をする。そ
の態様は第3図のグラフに例示したように、でき
るだけ段階的に行う。135゜〜145℃から165゜〜170
℃まで、25〜30分かけ、2段階あるいは図示の如
き3段階にて昇温する。後者の場合、中間の温度
はグラフより推定できる程度のものでよい。
Next, in the B process, the semi-vulcanized layer made in the A process and the same type of rubber with a high carbon content are simultaneously sandwiched between them with a rough cloth (for example, coarse cold sand) that has been treated with an adhesive. Perform molding and vulcanization. The process is carried out in as many steps as possible, as illustrated in the graph of FIG. 135°~145°C to 165°~170
℃ in 2 steps or 3 steps as shown in the figure over 25 to 30 minutes. In the latter case, the intermediate temperature may be something that can be estimated from the graph.

このようにして得られた製品は4〜6か月間、
交換の必要がなくて連続して使用することが出
来、洩れはなかつた。まさに驚異的な実績を示し
た。
The product thus obtained will last for 4-6 months.
There was no need to replace it, it could be used continuously, and there were no leaks. It was a truly astonishing achievement.

なお、中間に介在させた布は省略してもよく、
いずれにしても、両層の境界面は両層の物質が互
いに入り込んで混じりあい、緊密な結合状態を示
し、使用中に剥離するようなことはなかつた。し
たがつて、第2図に示したのは単なる模式図であ
つて、両層が明確な分界面を示しているという意
味を示すものではない。
In addition, the cloth interposed in the middle may be omitted,
In any case, the materials of both layers penetrated and mixed with each other at the interface between the two layers, exhibiting a tight bond, and did not peel off during use. Therefore, what is shown in FIG. 2 is merely a schematic diagram, and does not mean that the two layers show a clear dividing surface.

なお、本考案において、接流体部に用いるゴム
状弾性体のシヨアジユロメータによる硬度を40゜
〜50゜と規定した理由は、硬度が50゜より大きい場
合は、ゴム状弾性体のスラリーによる摩耗が非常
に大きくなり、また硬度が40゜より小さくなると
摩耗が却つて極端にはげしくなり使用不可である
ためである。
In addition, in this invention, the reason why the hardness of the rubber-like elastic body used in the fluid-contact parts is defined as 40° to 50° by a shoadyrometer is that if the hardness is greater than 50°, the hardness is determined by the slurry of the rubber-like elastic body. This is because the wear becomes extremely large, and if the hardness is less than 40°, the wear becomes even more severe and it becomes unusable.

同様に非接流体部に用いるゴム状弾性体の硬度
を60゜〜70゜と規定した理由は、硬度が70゜より大き
い場合は、耐真空性、耐圧性はすぐれているが、
反面シール性が非常に悪くなり、一方硬度が60゜
より小さくなると耐真空性、耐圧性が硬度60゜〜
70゜のものに比較して2〜5割悪くなるからであ
る。なお本案品は微粒子を含むガス状流体を制御
するダイヤフラムバルブにも使用しうる。
Similarly, the reason why the hardness of the rubber-like elastic body used in non-fluid contact parts is specified as 60° to 70° is that if the hardness is greater than 70°, the vacuum resistance and pressure resistance are excellent, but
On the other hand, the sealing performance becomes very poor, and on the other hand, if the hardness is less than 60°, the vacuum resistance and pressure resistance will be lower than the hardness of 60°.
This is because it is 20 to 50% worse than the 70° angle. This product can also be used in diaphragm valves that control gaseous fluids containing fine particles.

以上のように本考案のダイヤフラムバルブ用ダ
イヤフラムは、非接流体部により、高真空下ある
いは高圧下においても、変形あるいは破壊に対し
十分なる強さをもち、また接流体部により、流体
中の固形粒子による摩耗に耐え、かつ弁閉塞時の
確実なシールを達成することができ、また接流体
部と非流体部間の剥離不可能な強力な密着性が確
保される、ダイヤフラムが得られる。
As described above, the diaphragm for the diaphragm valve of the present invention has sufficient strength against deformation or destruction even under high vacuum or high pressure due to the non-contact part, and also has sufficient strength against deformation or breakage even under high vacuum or high pressure. A diaphragm can be obtained that can withstand wear caused by particles, can achieve reliable sealing when the valve is closed, and ensures strong, non-separable adhesion between the fluid-contacting part and the non-fluid part.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図はダイヤフラムバルブの縦断面図、
第2図はダイヤフラムの模式的縦断面図、第3図
はダイヤフラム製作の最終工程の加熱態様を縦軸
に温度、横軸に時間を取つて表わしたグラフであ
る。 これらの図において、1…ダイヤフラム、2…
ボルト、3…非接流体部、4…接流体部、5…ボ
ルト嵌合用突起、6…堰部。
Figure 1 is a longitudinal cross-sectional view of the diaphragm valve.
FIG. 2 is a schematic vertical cross-sectional view of the diaphragm, and FIG. 3 is a graph showing the heating mode in the final step of manufacturing the diaphragm, with temperature on the vertical axis and time on the horizontal axis. In these figures, 1... diaphragm, 2...
Bolt, 3... Non-fluid contact part, 4... Fluid contact part, 5... Bolt fitting projection, 6... Weir part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 接流体部はシヨアジユロメータによる硬度が
40゜〜50゜であるゴム状弾性体層からなり、非接流
体部はシヨアジユロメータによる硬度が60゜〜70゜
である前記接流体部と同種のゴム弾性体層からな
り、これら2層を一体構造としたことを特徴とす
るスラリー状流体輸送に用いるダイヤフラムバル
ブ用ダイヤフラム。
The hardness of the parts in contact with fluid is determined by a shoadilometer.
The non-fluid-contact part is made of a rubber-like elastic layer of the same type as the fluid-contact part and has a hardness of 60-70° as measured by a shoadyrometer, and these two A diaphragm for a diaphragm valve used for transporting slurry fluid, characterized by having an integral structure of layers.
JP12623281U 1981-08-26 1981-08-26 diaphragm Granted JPS5831470U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12623281U JPS5831470U (en) 1981-08-26 1981-08-26 diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12623281U JPS5831470U (en) 1981-08-26 1981-08-26 diaphragm

Publications (2)

Publication Number Publication Date
JPS5831470U JPS5831470U (en) 1983-03-01
JPS6337578Y2 true JPS6337578Y2 (en) 1988-10-04

Family

ID=29920027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12623281U Granted JPS5831470U (en) 1981-08-26 1981-08-26 diaphragm

Country Status (1)

Country Link
JP (1) JPS5831470U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051233Y2 (en) * 1988-05-10 1993-01-13

Also Published As

Publication number Publication date
JPS5831470U (en) 1983-03-01

Similar Documents

Publication Publication Date Title
US3133723A (en) Gas valves
US6065736A (en) Ball valve having a non-integral upstream seat and at least one integral downstream seat
US3356334A (en) Gate valve and seal
US3233861A (en) Butterfly valve having reinforced seat structure
US5653423A (en) Knife gate valve with mechanically retained gate seat
US3695576A (en) Reinforced boot for slurry type pinch valve
US4773625A (en) Corrosion-resistant overlay for the edge of butterfly valves
FR2580035A1 (en)
US4223868A (en) Resilient seated gate valve
JPS6337578Y2 (en)
US3848849A (en) Fluid control valve
CN210141367U (en) Close valve that gas tightness is good
US2533868A (en) Pressure seal for flanged pipes
US2884224A (en) Shaft seal for a valve
US3346233A (en) Seating ring for valves for the control of fluids
US3603341A (en) Lined disc valve and mold for forming the lining
US20190107211A1 (en) Ball valve seat with triple seal
US6745999B1 (en) Gate valve for high-density slurries, and a valve body assembly, and a solids-containing wall lining means therefor
CN109386622A (en) Rubber-lined sluice valve
CN203009855U (en) Internal-pressure self-sealing type valve cover stop valve
EP0118457A1 (en) Fire safe plug valve.
CN210739401U (en) Three-eccentric bidirectional hard seal butterfly valve
US3057595A (en) Resilient sealed valve
CN218625442U (en) Ultra-low temperature stop valve combined sealing structure
CN220470646U (en) Butterfly valve double-floating sealing structure