JPS6337516Y2 - - Google Patents

Info

Publication number
JPS6337516Y2
JPS6337516Y2 JP1981023246U JP2324681U JPS6337516Y2 JP S6337516 Y2 JPS6337516 Y2 JP S6337516Y2 JP 1981023246 U JP1981023246 U JP 1981023246U JP 2324681 U JP2324681 U JP 2324681U JP S6337516 Y2 JPS6337516 Y2 JP S6337516Y2
Authority
JP
Japan
Prior art keywords
suction port
impeller
inner diameter
flow fan
mixed flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981023246U
Other languages
Japanese (ja)
Other versions
JPS57136897U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981023246U priority Critical patent/JPS6337516Y2/ja
Publication of JPS57136897U publication Critical patent/JPS57136897U/ja
Application granted granted Critical
Publication of JPS6337516Y2 publication Critical patent/JPS6337516Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【考案の詳細な説明】 本考案は、空気調和機等に用いられる斜流フア
ンに関するものである。
[Detailed Description of the Invention] The present invention relates to a mixed flow fan used in air conditioners and the like.

この種の斜流フアンとして、第1図および第2
図に示すように、円錐台形状のハブ1の周壁面1
aに、斜流加速を生ぜしめる複数枚の羽根2,2
……を等ピツチで植設してなる羽根車3と、前面
板4a中央部に該羽根車3に対向して設けた吸込
口5から吸込んだ空気の流れを制御するスクロー
ルからなる圧力回復装置4とを備えてなるものが
知られている。なお、符号6は外周面に接線方向
に突出して開口する吹出口である。
As this type of diagonal flow fan, the following are shown in Figs.
As shown in the figure, the peripheral wall surface 1 of the hub 1 has a truncated cone shape.
A plurality of blades 2, 2 which generate diagonal flow acceleration are provided at a.
A known compressor comprises an impeller 3 having an impeller with equal pitches and a pressure recovery device 4 consisting of a scroll for controlling the flow of air sucked in through an inlet 5 provided in the center of a front panel 4a facing the impeller 3. Reference numeral 6 denotes an outlet that protrudes tangentially from the outer circumferential surface and opens thereto.

そして、従来、このような斜流フアンにおいて
は、第3図に示すように、羽根車3の各羽根2,
2……の子午面形状は長方形とされ、且つ吸込口
5の内径D0は、羽根車3の入口部外径D1および
出口部外径D2に対してD1<D0<1.2D2の範囲に設
定されている。
Conventionally, in such a mixed flow fan, each blade 2 of the impeller 3, as shown in FIG.
The meridian plane shape of 2... is rectangular, and the inner diameter D 0 of the suction port 5 is D 1 <D 0 <1.2D with respect to the outer diameter D 1 of the inlet part and the outer diameter D 2 of the outlet part of the impeller 3. It is set to a range of 2 .

その理由は、この斜流フアンの使用態様が、吸
込管等の抱束空間からの空気吸込みではなく、自
由空間からの空気吸込みであるため、吸込口5の
内径D0が小さいと吸込口5背後において羽根2
先端部に剥離域が形成されることにより大きな圧
力損失が生ずるのを防止するためであり、また、
最近の空気調和装置において、省エネルギー化の
動向からの、熱交換器の大形化、熱交換器のフア
ン吸込口前面への配置等による機内抵抗の減少か
ら 比速度 Ns=N・Q1/2/(PT/γ)3/4 (ここに、N:回転数rpm,Q:風量m3
min,PT:全圧mmAq,γ:比重Kg/m3) が大きくなる方向にあり、この要求に応えるため
には、遠心力による圧力上昇を減らすために、大
口径の吸込口が要求される。
The reason for this is that this mixed flow fan is used to suck air from a free space rather than from a confined space such as a suction pipe, so if the inner diameter D 0 of the suction port 5 is small, the suction port 5 Feather 2 behind
This is to prevent large pressure loss from occurring due to the formation of a peeling area at the tip, and
In recent air conditioners, due to energy saving trends, the heat exchanger has become larger and the internal resistance has been reduced by placing the heat exchanger in front of the fan suction port. (P T /γ) 3/4 (where, N: rotation speed rpm, Q: air volume m 3 /
min, P T : total pressure mmAq, γ : specific gravity Kg/m 3 ) is increasing, and in order to meet this demand, a large-diameter suction port is required to reduce pressure rise due to centrifugal force. Ru.

また大口径の吸込口を設置すれば、熱交換器の
空気流の偏流が小さくなり更に機内抵抗が下がる
ことになり、できるだけ大口径の吸込口が要求さ
れる。
Furthermore, if a suction port with a large diameter is installed, the uneven flow of the air flow in the heat exchanger will be reduced, and the internal resistance will further be reduced, so a suction port with a large diameter as possible is required.

しかしながら、従来構造の斜流フアンでは、吸
込口5の内径D0を (D1+D2)/2<D0<1.2D2 の範囲まで大きくすると、吸込口5内径直近を通
る流線ft′の通過する羽根部分2aが短かくなる
ため、羽根車3から与えられる下式で示されるヘ
ツドHt Ht=1/2g〔(u2t2−u1t2)+(w1t2−w2t2) +(c2t2−c1t2)〕 (ここに、g:重力加速度、u:周速度、w:
相対速度、c:絶対速度、添字1:羽根入口側、
添字2:羽根出口側) は、他の流線(例えば、平均流面上の流線fm′)
の羽根車3から与えられるヘツドHm Hm=1/2g〔(u2m2−u1m2)+(w1m2−w2m2) +(c2m2−c1m2)〕 に比較して小さくなり、ついには、吸込口5内径
直近部から逆流が発生することとなつて、全圧効
率の低下および運転音の増大を招くという問題点
があつた。なお、第6図a,bに実線Xで示すグ
ラフは、第3図図示の従来の斜流フアンの吸込口
内径D0の変化に対する全圧効率ηおよび全圧レ
ベルの比騒音Lsの変化の例を示したものである。
なお、比較は、風量20m3/minで静圧4mmAqを
通る代表機内抵抗曲線と各吸込口内径D0(A〜
D)に対応した単体性能(実線で示す)との交点
で行つている(第8図参照)。ここで、第8図は、
風量−静圧特性図である。
However, in the mixed flow fan of the conventional structure, when the inner diameter D 0 of the suction port 5 is increased to the range of (D 1 + D 2 )/2<D 0 <1.2D 2 , the streamline ft′ passing through the vicinity of the inner diameter of the suction port 5 Since the blade portion 2a through which the impeller 3 passes becomes shorter, the head Ht given by the impeller 3 is given by the following formula Ht = 1/2g [(u 2 t 2 - u 1 t 2 ) + (w 1 t 2 - 2 t 2 ) + (c 2 t 2 −c 1 t 2 )] (where, g: gravitational acceleration, u: circumferential velocity, w:
Relative speed, c: absolute speed, subscript 1: blade inlet side,
Subscript 2: blade exit side) is another streamline (for example, streamline fm′ on the mean flow surface)
The head Hm given by the impeller 3 of ], and eventually a backflow occurs from the inner diameter portion of the suction port 5, resulting in a decrease in total pressure efficiency and an increase in operating noise. The graphs indicated by solid lines X in Fig. 6a and b show the changes in the total pressure efficiency η and the specific noise Ls of the total pressure level with respect to the change in the suction port inner diameter D0 of the conventional mixed flow fan shown in Fig. 3. This is an example.
The comparison is based on the representative internal resistance curve passing through an air volume of 20 m 3 /min and a static pressure of 4 mmAq, and the inner diameter of each suction port D 0 (A~
This is done at the intersection with the standalone performance (shown by the solid line) corresponding to D) (see Figure 8). Here, Figure 8 shows
It is an air volume-static pressure characteristic diagram.

本考案は、上記問題点に鑑みて考案されたもの
で、円錐台形状のハブの周壁面に斜流加速を生ぜ
しめる複数枚の長方形の羽根を植設してなる羽根
車と、該羽根車に対向する吸込口から吸込んだ空
気の流れを制御する圧力回復装置とを有し且つ前
記吸込口の円筒部内径D0が羽根車の入口部外径
D1および出口部外径D2に対して (D1+D2)/2<D0<1.2D2 の範囲に設定されている斜流フアンにおいて、前
記各羽根の外端面には、この外端面と前記吸込口
の円筒部とにより形成される断面仮想略三角形の
空間領域にあつて、外縁の一部が前記吸込口の円
筒部内径面に対して羽根車の半径方向に若干の隙
間を介して沿う断面略三角形状の板状の膨出部を
一体に形成した構成を特徴とするものであり、熱
交換器を吸込口前面に設置した高風量、低機内抵
抗の高比速度設計の空気調和機等に組込んだ場合
に、高効率、低運転音が計られ得る斜流フアンを
提供することを目的とするものである。
The present invention was devised in view of the above-mentioned problems, and includes an impeller in which a plurality of rectangular blades are installed on the peripheral wall surface of a truncated cone-shaped hub to generate diagonal flow acceleration, and the impeller. and a pressure recovery device for controlling the flow of air sucked in from the suction port opposite to
In a mixed flow fan that is set in the range of (D 1 + D 2 )/2 < D 0 < 1.2D 2 with respect to D 1 and outlet outer diameter D 2 , the outer end surface of each blade has this outer diameter. In a spatial region having an imaginary substantially triangular cross section formed by the end face and the cylindrical portion of the suction port, a part of the outer edge has a slight gap in the radial direction of the impeller with respect to the inner diameter surface of the cylindrical portion of the suction port. It is characterized by a structure in which a plate-shaped bulge with a substantially triangular cross section is integrally formed along the inlet, and the heat exchanger is installed in front of the suction port, resulting in a high specific speed design with high air volume and low internal resistance. The object of the present invention is to provide a mixed flow fan that can achieve high efficiency and low operating noise when incorporated into an air conditioner or the like.

以下、第4図および第5図を参照して、本考案
の実施例にかかる斜流フアンを説明する。
Hereinafter, a mixed flow fan according to an embodiment of the present invention will be described with reference to FIGS. 4 and 5.

第4図は、本考案の第1実施例であるスクロー
ル付の斜流フアンを示しており、その基本構造は
第1図および第2図によつて既述したので、同一
部分については同一の符号を付して詳細な説明は
省略する。即ち、この斜流フアンは、円錐台形状
のハブ1の周壁面1aに斜流加速を生ぜしめる複
数枚の長方形の羽根2,2…を等ピツチで植設し
てなる羽根車3と、該羽根車3に対向する吸込口
5から吸込んだ空気の流れを制御するスクロール
からなる圧力回復装置4とによつて構成されてお
り、前記吸込口5の内径D0は前記羽根車3の入
口部外径D1および出口部外径D2に対して、 (D1+D2)/2<D0<1.2D2 の範囲に設定されている。
FIG. 4 shows a scroll-equipped mixed flow fan which is the first embodiment of the present invention, and since its basic structure has already been described in FIGS. 1 and 2, the same parts will be the same. Reference numerals are given and detailed explanations are omitted. That is, this mixed flow fan includes an impeller 3, which is made up of a plurality of rectangular blades 2, 2, etc., planted at equal pitches on the circumferential wall surface 1a of a truncated conical hub 1, for generating diagonal flow acceleration. The pressure recovery device 4 is composed of a scroll that controls the flow of air sucked in from a suction port 5 facing the impeller 3, and the inner diameter D 0 of the suction port 5 is equal to the inlet portion of the impeller 3. The outer diameter D 1 and the outlet outer diameter D 2 are set in the range of (D 1 +D 2 )/2<D 0 <1.2D 2 .

しかして、前記各羽根2の外端面2bには、こ
の外端面2bと前記吸込口5の円筒部とにより形
成される断面仮想略三角形の空間領域にあつて、
外縁の一部が前記吸込口5の円筒部内径面に対し
て羽根車3の半径方向に若干の隙間Sを介して沿
う断面略三角形状の板状の膨出部7がそれぞれ一
体に形成されている。該隙間Sは、羽根車3の回
転時に、羽根2,2……の膨出部7,7……先端
と吸込口5内径面とが摺接しない程度でよい。
Therefore, in the outer end surface 2b of each of the blades 2, in a spatial region having an imaginary substantially triangular cross section formed by the outer end surface 2b and the cylindrical portion of the suction port 5,
A plate-shaped bulge 7 having a substantially triangular cross section is integrally formed, and a part of the outer edge thereof extends in the radial direction of the impeller 3 with a slight gap S between them and the inner diameter surface of the cylindrical portion of the suction port 5. ing. The gap S may be such that the tips of the bulging portions 7, 7, . . . of the blades 2, 2, .

又、前記膨出部7は、吸込口5の外端面より突
出しないように形成されている。
Further, the bulging portion 7 is formed so as not to protrude from the outer end surface of the suction port 5.

次に、図示の第1実施例の斜流フアンの作用を
説明すると、吸込口5から吸い込まれた空気Wは
羽根車3の回転に伴つて羽根2,2…で斜流加速
された後、スクロールからなる圧力回復装置4内
で流れを制御されつつ、吹出口6から吹き出され
る。
Next, to explain the operation of the mixed flow fan of the first embodiment shown in the figure, the air W sucked in from the suction port 5 is accelerated by the blades 2, 2, etc. as the impeller 3 rotates, and then The flow is controlled in a pressure recovery device 4 made of a scroll and is blown out from an outlet 6.

この時、吸込口5の内径面直近を通る流線ftの
通過する羽根部分2aは、第3図図示の従来例の
ものに比べて膨出部7を形成した分だけ大きくな
る。従つて、各羽根2面上での相対速度の変化が
なめらかに行なわれることとなつて、損失が小さ
くなるとともに、次式で示される滑り率ν H=νH∞ (ここに、H:羽根数有限の場合の理論全圧ヘ
ツド、H∞:羽根数無限の場合の理論全圧ヘツ
ド)が、前記羽根部分2aの長さに比例して大き
くなり、吸込口5を大きくしても逆流が発生しに
くくなるとともに、膨出部7があることによる有
効羽根作用面の増加により、第8図において、各
吸込口内径D0(A〜D)におけるフアン単体性能
の比較(点線:従来例、実線:本実施例)で示し
たように、高性能化および運転範囲の拡大が図ら
れている(第8図において、×印は逆流限界を示
し、この点より小風量では逆流が発生する)。
At this time, the blade portion 2a through which the streamline ft passing close to the inner diameter surface of the suction port 5 passes is larger than that of the conventional example shown in FIG. 3 by the amount by which the bulge 7 is formed. Therefore, the change in relative velocity on the two surfaces of each blade occurs smoothly, the loss is reduced, and the slip ratio ν H = νH∞ (where H: number of blades) is expressed by the following formula. The theoretical total pressure head in a finite case (H∞: theoretical total pressure head in the case of an infinite number of blades) increases in proportion to the length of the blade portion 2a, and even if the suction port 5 is enlarged, backflow occurs. In addition, due to the increase in the effective blade action surface due to the presence of the bulging portion 7, in Fig. 8, a comparison of the fan unit performance at each suction port inner diameter D 0 (A to D) (dotted line: conventional example, solid line As shown in Embodiment 2), the performance has been improved and the operating range has been expanded (in Fig. 8, the x mark indicates the backflow limit, and backflow occurs when the air volume is smaller than this point).

滑り率νが大きい場合に逆流が発生しにくい理
由は次式から明白である。
The reason why backflow is less likely to occur when the slip ratio ν is large is clear from the following equation.

これは第7図に示すように、従来の流線ft′に
よるヘツド H′=1/2g〔(u2t2−u1t2)+(w1t2−w2t2) +c2t2−c1t2)〕 と本考案の流線ftによるヘツド H=1/2g〔(u2t2−u1t2)+(w1t2−w2t2) +(c2t2−c1t2)〕 とにおいて、 w1t≒w1t′ C1t≒c1t′ w2t<w2t′ c2t<c2t′ であるから、H′<H であることより明白である。
As shown in Fig. 7, the head H' = 1/2g [(u 2 t 2 - u 1 t 2 ) + (w 1 t 2 - w 2 t 2 ) + c 2 due to the conventional streamline ft' t 2 −c 1 t 2 )] and the head H = 1/2g [(u 2 t 2 −u 1 t 2 ) + (w 1 t 2 −w 2 t 2 ) + (c 2 t 2 −c 1 t 2 )], then w 1 t≒w 1 t′ C 1 t≒c 1 t′ w 2 t<w 2 t′ c 2 t<c 2 t′, so H This is clear from the fact that ′<H.

なお、第6図a,bに点線Yで示すグラフは、
第4図図示の斜流フアンの吸込口内径D0の変化
に対する全圧効率ηおよび全圧レベルの比騒音
LSAの変化の例を示したものである。なお、比較
は、風量20m3/minで静圧4mmAqを通る代表機
内抵抗曲線と各吸込口内径D0(A〜D)に対応し
た単体性能(実線で示す)との交点で行つている
(第8図参照)。これによると、本考案の斜流フア
ンは (D1+D2)/2<D0<1.2D2 の範囲内において、従来例のものに比べて著しく
全圧効率ηが向上するとともに、低騒音化が図ら
れることがわかり、高風量、低静圧の高比速度設
計の空気調和装置にマツチしたより広い運転範囲
を持つフアンを供給することができる。
In addition, the graph shown by the dotted line Y in FIGS. 6a and b is
Specific noise of total pressure efficiency η and total pressure level with respect to changes in suction port inner diameter D 0 of the mixed flow fan shown in Figure 4
This shows an example of changes in L SA . The comparison is made at the intersection of the representative in-machine resistance curve passing through an air volume of 20 m 3 /min and a static pressure of 4 mmAq and the individual performance (shown as a solid line) corresponding to each suction port inner diameter D 0 (A to D) ( (See Figure 8). According to this, in the range of (D 1 + D 2 )/2 < D 0 < 1.2D 2 , the mixed flow fan of the present invention significantly improves the total pressure efficiency η compared to the conventional example, and also has low noise. As a result, it is possible to supply a fan with a wider operating range that is compatible with air conditioners with high air volume, low static pressure, and high specific speed design.

次に、第5図は本考案の第2実施例である半径
移行形デイフユーザ付の斜流フアンを示してい
る。この場合圧力回復装置4として、半径方向全
方位に開口する吹出口6から空気を吹き出すよう
にした半径移行形デイフユーザが採用されてい
る。しかも、本実施例においては、吸込口5の内
径D0を羽根車3の出口部外径D2に対して、 D1+D2/2<D0 とするとともに D2<D0<1.2D2 の範囲に設定している。
Next, FIG. 5 shows a mixed flow fan with a radius transition type diffuser, which is a second embodiment of the present invention. In this case, as the pressure recovery device 4, a radial transition type diff user is employed which blows out air from an air outlet 6 that opens in all radial directions. Moreover, in this embodiment, the inner diameter D 0 of the suction port 5 is set to D 1 +D 2 /2<D 0 with respect to the outer diameter D 2 of the outlet portion of the impeller 3, and D 2 <D 0 <1.2D. It is set to a range of 2 .

従つて、羽根2外端に一体形成される膨出部7
は羽根2の外端面2bの全長に亘つて形成されて
いる。
Therefore, the bulge 7 integrally formed on the outer end of the blade 2
is formed over the entire length of the outer end surface 2b of the blade 2.

この場合の全圧効率ηおよび全圧レベルの比騒
音LSAは、第6図a,bに鎖線Zで示すように、
スクロールの場合に比し、内部圧力損失が小さく
て済むのでより一層向上し、この斜流フアンは特
に高風量、低静圧の高比速度設計の使用点におい
て良好な性能を示す。
In this case, the total pressure efficiency η and the specific noise L SA at the total pressure level are as shown by the dashed line Z in Fig. 6a and b.
Compared to a scroll, the internal pressure loss is smaller, which further improves the performance, and this mixed flow fan exhibits good performance, especially at the point of use in a high specific speed design with high air volume and low static pressure.

又、本実施例の場合、吸込口5の内径D0を羽
根車3の出口部外径D2より若干大きくしても、
逆流の発生はなく、高効率、低運転音となるとと
もに、組立時に吸込口5に羽根2が接触すること
がないので、羽根車3の組込が容易となる。
In addition, in the case of this embodiment, even if the inner diameter D 0 of the suction port 5 is slightly larger than the outer diameter D 2 of the outlet part of the impeller 3,
There is no backflow, resulting in high efficiency and low operating noise, and since the blades 2 do not come into contact with the suction port 5 during assembly, the impeller 3 can be easily assembled.

続いて本考案の斜流フアンの効果を述べる。 Next, the effects of the mixed flow fan of the present invention will be described.

本考案によれば、円錐台形状のハブ1の周壁面
1aに斜流加速を生ぜしめる複数枚の長方形の羽
根2,2……を植設してなる羽根車3と、該羽根
車3に対向する吸込口5から吸込ん空気の流れを
制御する圧力回復装置4とを有し且つ前記吸込口
5の円筒部内径D0が羽根車3の入口部外径D1
よび出口部外径D2に対して (D1+D2)/2<D0<1.2D2 の範囲に設定されている斜流フアンにおいて、前
記各羽根2,2……の外端面2b,2b……に、
この外端面2bと前記吸込口5の円筒部とにより
形成される断面仮想略三角形の空間領域にあつ
て、外縁の一部が前記吸込口5の円筒部内径面に
対して羽根車3の半径方向に若干の隙間Sを介し
て沿う断面略三角形状の板状の膨出部7をそれぞ
れ一体に形成したので、吸込口5の内径D0を可
及的に大きくしても、吸込空気流の逆流を防止で
きることにより、高風量、低静圧の高比速度設計
点で高効率でしかも低騒音の斜流フアンを提供す
ることができるという実用的な効果がある。
According to the present invention, there is provided an impeller 3 in which a plurality of rectangular blades 2, 2, . and a pressure recovery device 4 that controls the flow of air sucked in from the opposing suction ports 5, and the inner diameter D0 of the cylindrical portion of the suction port 5 is equal to the outer diameter D1 of the inlet portion and the outer diameter D2 of the outlet portion of the impeller 3. In a mixed flow fan set in the range of (D 1 +D 2 )/2<D 0 <1.2D 2 , the outer end surfaces 2b, 2b... of each of the blades 2, 2...
In a spatial region having a virtual triangular cross section formed by the outer end surface 2b and the cylindrical portion of the suction port 5, a part of the outer edge is located at a radius of the impeller 3 relative to the inner diameter surface of the cylindrical portion of the suction port 5. Since the plate-shaped bulges 7 with a substantially triangular cross section extending along the direction with a slight gap S are formed integrally with each other, even if the inner diameter D 0 of the suction port 5 is made as large as possible, the suction air flow is This has the practical effect of being able to provide a mixed flow fan with high efficiency and low noise at a high specific speed design point with high air volume and low static pressure.

なお、第2実施例の如く、吸込口5の内径D0
を羽根車3の出口部外径D2に対して D2<D0<1.2D2 の範囲に設定し、各羽根2の外端面2bの全長に
亘つて膨出部7を形成すれば、全圧効率ηのより
一層の向上を計り得るとともに、羽根車3の組込
をも容易にすることができる利点がある。
Note that, as in the second embodiment, the inner diameter D 0 of the suction port 5
is set in the range D 2 <D 0 <1.2D 2 with respect to the outer diameter D 2 of the outlet part of the impeller 3, and the bulge 7 is formed over the entire length of the outer end surface 2b of each blade 2. This has the advantage that the total pressure efficiency η can be further improved and the impeller 3 can be easily assembled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の斜流フアンの正面図、第2図は
第1図の−線断面図、第3図は従来例の吸込
口付近における空気流れの説明図、第4図は本考
案の第1実施例にかかる斜流フアンの吸込口付近
における空気流れを説明した要部断面図、第5図
は本考案の第2実施例にかかる斜流フアンの縦断
面図、第6図は吸込口内径D0の大きさに対する
全圧効率ηの特性を従来例、第1実施例および第
2実施例について示したグラフ、第7図は従来と
本考案の流線の比較速度三角形図、第8図は従来
例と本考案第1実施例とを比較した風量−静圧特
性図である。 1……ハブ、1a……ハブ周壁面、2……羽
根、2b……羽根外端面、3……羽根車、4……
圧力回復装置、5……吸込口、7……膨出部、
D0……吸込口内径、D1……羽根車の入口部外径、
D2……羽根車の出口部外径、S……隙間。
Fig. 1 is a front view of a general mixed flow fan, Fig. 2 is a sectional view taken along the - line in Fig. 1, Fig. 3 is an explanatory diagram of air flow near the suction port of the conventional example, and Fig. 4 is a diagram of the present invention. A cross-sectional view of essential parts explaining the air flow near the suction port of the mixed flow fan according to the first embodiment, FIG. 5 is a longitudinal cross-sectional view of the mixed flow fan according to the second embodiment of the present invention, and FIG. A graph showing the characteristics of the total pressure efficiency η with respect to the size of the inner diameter D 0 for the conventional example, the first example, and the second example. FIG. 8 is an air volume-static pressure characteristic diagram comparing the conventional example and the first embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Hub, 1a...Hub peripheral wall surface, 2...Blade, 2b...Blade outer end surface, 3...Impeller, 4...
Pressure recovery device, 5... Suction port, 7... Swelling part,
D 0 ... Inner diameter of the suction port, D 1 ... Outer diameter of the inlet of the impeller,
D 2 ... Outer diameter of the impeller outlet, S ... Gap.

Claims (1)

【実用新案登録請求の範囲】 円錐台形状のハブ1の周壁面1aに、斜流加速
を生ぜしめる複数枚の長方形の羽根2,2……を
植設してなる羽根車3と、該羽根車3に対向する
吸込口5から吸込んだ空気の流れを制御する圧力
回復装置4とを有し且つ前記吸込口5の円筒部内
径D0が羽根車3の入口部外径D1および出口部外
径D2に対して (D1+D2)/2<D0<1.2D2 の範囲に設定されている斜流フアンにおいて、前
記各羽根2,2…の外端面2b,2b……には、
この外端面2bと前記吸込口5の円筒部とにより
形成される断面仮想略三角形の空間領域にあつ
て、外縁の一部が前記吸込口5の円筒部内径面に
対して羽根車3の半径方向に若干の隙間Sを介し
て沿う断面略三角形状の板状の膨出部7,7……
を一体に形成したことを特徴とする斜流フアン。
[Claims for Utility Model Registration] An impeller 3 comprising a plurality of rectangular blades 2, 2, . It has a pressure recovery device 4 that controls the flow of air sucked in from the suction port 5 facing the wheel 3, and the inner diameter D0 of the cylindrical portion of the suction port 5 is equal to the outer diameter D1 of the inlet portion and the outlet portion of the impeller 3 . In a mixed flow fan set in the range of (D 1 + D 2 ) /2<D 0 <1.2D 2 with respect to the outer diameter D 2, the outer end surfaces 2b, 2b... of each of the blades 2, 2... teeth,
In a spatial region having a virtual triangular cross section formed by the outer end surface 2b and the cylindrical portion of the suction port 5, a part of the outer edge is located at a radius of the impeller 3 relative to the inner diameter surface of the cylindrical portion of the suction port 5. Plate-like bulges 7, 7 with a substantially triangular cross section along the direction with a slight gap S therebetween...
A mixed flow fan characterized by being integrally formed with.
JP1981023246U 1981-02-19 1981-02-19 Expired JPS6337516Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981023246U JPS6337516Y2 (en) 1981-02-19 1981-02-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981023246U JPS6337516Y2 (en) 1981-02-19 1981-02-19

Publications (2)

Publication Number Publication Date
JPS57136897U JPS57136897U (en) 1982-08-26
JPS6337516Y2 true JPS6337516Y2 (en) 1988-10-04

Family

ID=29821005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981023246U Expired JPS6337516Y2 (en) 1981-02-19 1981-02-19

Country Status (1)

Country Link
JP (1) JPS6337516Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063955A (en) * 2020-10-13 2022-04-25 株式会社日立製作所 Open type diagonal flow impeller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160666A (en) * 1936-06-01 1939-05-30 Gen Electric Fan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399610U (en) * 1977-01-18 1978-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160666A (en) * 1936-06-01 1939-05-30 Gen Electric Fan

Also Published As

Publication number Publication date
JPS57136897U (en) 1982-08-26

Similar Documents

Publication Publication Date Title
KR100934556B1 (en) Centrifugal fan and air conditioner using it
JP2001271790A (en) Centrifugal impeller and air cleaner
JPS63124900A (en) Axial blower
JPH10122188A (en) Centrifugal blower
JP3801162B2 (en) Propeller fan
JPH05321891A (en) Multiblade fan
CN110914553B (en) Impeller, blower and air conditioner
JP4505885B2 (en) Blower, air conditioner using the same, and air purifier
JPS6043193A (en) Tangent blower
JPS6337516Y2 (en)
JPH0539930A (en) Air conditioner
JP3488126B2 (en) Air curtain
JPH05149297A (en) Centrifugal fan
AU2002217482B2 (en) Blower and Air Conditioner with the Blower
JP2753182B2 (en) Axial fan
JPH0121198Y2 (en)
JPH07233798A (en) Multiblade air blower
JP3231679B2 (en) Multi-wing blower
JP3191516B2 (en) Electric blower impeller
JP2002357194A (en) Cross-flow fan
JP3938252B2 (en) Multi-blade blower
JPH07286598A (en) Centrifugal fan provided with fluid deflector
JPH06299994A (en) Multiblade fan
JP2762884B2 (en) Blow mechanism
JPH06330894A (en) Centrifugal blower