JPS6337512Y2 - - Google Patents

Info

Publication number
JPS6337512Y2
JPS6337512Y2 JP1984139033U JP13903384U JPS6337512Y2 JP S6337512 Y2 JPS6337512 Y2 JP S6337512Y2 JP 1984139033 U JP1984139033 U JP 1984139033U JP 13903384 U JP13903384 U JP 13903384U JP S6337512 Y2 JPS6337512 Y2 JP S6337512Y2
Authority
JP
Japan
Prior art keywords
oil
bearing
upper bearing
outer diameter
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984139033U
Other languages
Japanese (ja)
Other versions
JPS6153595U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984139033U priority Critical patent/JPS6337512Y2/ja
Publication of JPS6153595U publication Critical patent/JPS6153595U/ja
Application granted granted Critical
Publication of JPS6337512Y2 publication Critical patent/JPS6337512Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は密閉電動送風機に係り、送風機の下側
に電動機を気密に一体に構成した密閉電動送風機
において、軸受潤滑油が電動機側から送風機側へ
漏出するのを阻止したものに関する。
[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) The present invention relates to a sealed electric blower, in which a motor is airtightly integrated at the bottom of the blower. This relates to something that prevents leakage from the motor side to the blower side.

(従来の技術) SF6ガス絶縁変圧器におけるSF6ガス循環用な
ど閉塞系装置に使用される送風機には、取扱ガス
の漏洩によつて装置の能力が低下したり、公害問
題を引き起こすなどの支障を生じるため、一般に
オイルシールやメカニカルシールなどの軸封部が
なく、送風機と電動機を気密に一体に構成して完
全無漏洩構造とした密閉電動送風機が用いられ
る。
(Prior art) Blower used in closed system equipment such as SF 6 gas circulation in SF 6 gas insulated transformers has the risk of reducing the performance of the equipment due to leakage of the handled gas or causing pollution problems. To avoid this problem, sealed electric blowers are generally used that do not have shaft seals such as oil seals or mechanical seals, and have a completely leak-free structure in which the blower and electric motor are airtightly integrated.

ところで、前記閉塞系装置に使用される密閉電
動送風機の分解点検後の再運転に当つては、装置
内を真空引きして大気を放出してから取扱ガスを
充填しなければならず多大の費用と労力および時
間を要するので、定期分解点検の期間を長くする
ことが要請される。
By the way, when restarting the sealed electric blower used in the closed system equipment after overhauling and inspection, the inside of the equipment must be evacuated and the atmosphere must be released before being filled with the gas to be handled, which costs a lot of money. Therefore, it is required to extend the period of periodic overhaul and inspection.

この定期分解点検の期間は主として回転部分の
寿命、とりわけ前記密閉電動送風機の軸受潤滑剤
の寿命で決定されることから、本実用新案登録出
願人は特開昭56−64177号公報に記載されている
ように、潤滑油を循環給油して軸受潤滑を行う密
閉電動送風機を提案した。
Since the period of periodic overhaul and inspection is mainly determined by the lifespan of the rotating parts, especially the lifespan of the bearing lubricant of the sealed electric blower, the applicant of this utility model registration is We proposed a sealed electric blower that lubricates the bearings by circulating lubricating oil.

これを第6図により簡単に説明すると、縦型電
動機1の上側に送風機2を一体に構成して軸封部
のない密閉構造とし、前記電動機1の固定子3と
回転子4の上側に上部油溜室5を下側に下部油溜
室6をそれぞれ設け、この両油溜室5,6内に前
記電動機1の上部軸受7および下部軸受8をそれ
ぞれ配設するとともに軸受潤滑油9を封入し、下
部油溜室6の下側に前記電動機1にて駆動される
密閉構造の循環ポンプ10を隣接し、この循環ポ
ンプ10により下部油溜室6の軸受潤滑油9を一
方の循環パイプ11を経て上部油溜室5へ汲み上
げ、この上部油溜室5の軸受潤滑油9を他方の循
環パイプ12から下部油溜室6へ重力落下させ、
再び前記ポンプ10にて上部油溜室5へと汲み上
げて軸受潤滑油9を循環させながら前記両軸受
7,8の潤滑を行うもので、この構造によると上
部油溜室5の軸受潤滑油9と下部油溜室6の軸受
潤滑油9の温度および劣化の程度が前記循環によ
つて平均化されるので、また軸受潤滑油9が放熱
器を兼ねた循環パイプ11,12を通過する際に
冷却されて降温されるので、特に高温となる上部
軸受7の潤滑および冷却効果が上がることとな
り、高温下で流出するおそれのあるグリス潤滑を
採用した構造に比べて、また軸受潤滑油を兼ねた
絶縁油が電動機の主たる発熱部である固定子およ
び回転子に直に接しているため前記絶縁油の劣化
が早いことに加えてこの絶縁油中で前記回彫子が
回転する損失のために電動機効率が低下する欠点
のある油浸漬電動機を採用した構造のものに比べ
て、軸受寿命が増大するとともに軸受潤滑油9の
交換期間が大幅に延長され、また前記電動機効率
の低下も殆んどない経済的な密閉電動送風機が得
られる。
To briefly explain this with reference to FIG. 6, the blower 2 is integrated with the upper side of the vertical electric motor 1 to form a sealed structure without a shaft seal, and the upper side is placed above the stator 3 and rotor 4 of the electric motor 1. A lower oil reservoir chamber 6 is provided below the oil reservoir chamber 5, and an upper bearing 7 and a lower bearing 8 of the electric motor 1 are disposed in both oil reservoir chambers 5 and 6, respectively, and bearing lubricating oil 9 is sealed therein. A closed-structure circulation pump 10 driven by the electric motor 1 is adjacent to the lower side of the lower oil reservoir chamber 6, and this circulation pump 10 supplies the bearing lubricating oil 9 in the lower oil reservoir chamber 6 to one of the circulation pipes 11. The bearing lubricating oil 9 in the upper oil reservoir chamber 5 is caused to fall by gravity from the other circulation pipe 12 to the lower oil reservoir chamber 6.
Both bearings 7 and 8 are lubricated while the bearing lubricating oil 9 is pumped up again to the upper oil reservoir chamber 5 by the pump 10 and circulated. According to this structure, the bearing lubricating oil 9 in the upper oil reservoir chamber 5 The temperature and degree of deterioration of the bearing lubricating oil 9 in the lower oil sump chamber 6 are averaged by the circulation, and when the bearing lubricating oil 9 passes through the circulation pipes 11 and 12 which also serve as radiators, Since it is cooled and the temperature is lowered, the lubrication and cooling effect of the upper bearing 7, which is particularly high temperature, is improved, and compared to a structure that uses grease lubrication, which may leak out at high temperatures, it also doubles as bearing lubricating oil. Since the insulating oil is in direct contact with the stator and rotor, which are the main heat generating parts of the electric motor, the insulating oil deteriorates quickly, and the rotor rotates in this insulating oil, causing losses in the electric motor. Compared to a structure employing an oil-immersed motor, which has the drawback of reduced efficiency, the bearing life is increased, the period for replacing the bearing lubricating oil 9 is significantly extended, and there is almost no reduction in the motor efficiency. An economical sealed electric blower is obtained.

(考案が解決しようとする問題点) ところが、この第6図に示す密閉電動送風機を
大気運転した場合には特に支障がないにもかかわ
らず、SF6ガスにて実ガス運転すると、 SF6ガスのガス密度や風量、吐出圧力、回転数
などの送風機仕様および構造、寸法などの相違に
より、機種によつては軸受潤滑油9が電動機1側
から送風機2側へ漏出するという不具合が生じ
た。
(Problem to be solved by the invention) However, although there is no particular problem when the sealed electric blower shown in Fig. 6 is operated in atmospheric air, when it is operated with actual SF 6 gas, SF 6 gas Due to differences in blower specifications such as gas density, air volume, discharge pressure, and rotational speed, as well as structure and dimensions, problems have occurred in some models in which bearing lubricating oil 9 leaks from the motor 1 side to the blower 2 side.

この漏出による軸受潤滑油9の不足によつて、
軸受7,8および軸受潤滑油9が温度上昇してそ
の寿命が短くなり、また送風機2側へ漏出した軸
受潤滑油9が直接にあるいは劣化された後に前記
密閉電動送風機が採用された閉塞系装置に悪影響
を及ぼす怖れもある。
Due to the lack of bearing lubricating oil 9 due to this leakage,
A closed system device in which the sealed electric blower is used after the bearings 7, 8 and the bearing lubricating oil 9 have increased in temperature and their lifespan has been shortened, and the bearing lubricating oil 9 has leaked to the blower 2 side either directly or after it has deteriorated. There is also the fear that it may have a negative impact on

この油漏出の原因としては、上部油溜室5の軸
受潤滑油9が上部軸受7での回転遠心力によつて
上方へ飛散されて油溜室蓋体13と中空回転軸1
4との間隙15から直接送風機2のケーシング1
6側へ飛び出すことが考えられるが、大気運転に
おいては前記油漏出がないことからこの可能性は
極めて薄いと思われる。
The cause of this oil leakage is that the bearing lubricating oil 9 in the upper oil reservoir chamber 5 is scattered upward by the centrifugal force of the rotation in the upper bearing 7, causing the oil reservoir chamber cover 13 and the hollow rotating shaft 1
4 and the casing 1 of the blower 2 directly from the gap 15
It is conceivable that the oil may jump out to the 6 side, but since there is no oil leakage in atmospheric operation, this possibility is considered to be extremely slim.

次に考えられる原因としては、中空回転軸14
の回転によつて上記油溜室5に生起された取扱ガ
スの旋回流に、上部軸受7にて飛散された前記潤
滑油9が衝突して霧状に微粒化されて前記取扱ガ
スの旋回流中に混在されており、この取扱ガスの
旋回流中に混在された霧状の軸受潤滑油9が油溜
室蓋体13に接触してこの蓋体13の下面に付着
され、あるいは上部軸受7にて飛散された前記潤
滑油9が油溜室蓋体13へ直接飛来してこの蓋体
13の下面に付着され、そして、送風機2のケー
シング16の渦室の圧力脈動に起因した羽根車1
7の主板18と油溜室蓋体13との間の圧力脈動
によつて前記蓋体13と中空回転軸14との間隙
15の円周上の圧力分布が不均衡となつて周期的
に変化するため、取扱ガスが前記間隙15を出入
りし、この間隙15を出入りする取扱ガスによつ
て、前記旋回流中に混在された軸受潤滑油9や蓋
体13の内径部に付着されおよびこの蓋体13の
下面を伝わつて内径部に移動された軸受潤滑油9
がケーシング16側へ運ばれることである。この
場合、大気運転において油漏室がないのは、取扱
ガスとしての空気の密度がSF6ガス運転における
ガス密度に比べて極め低いため(空気の密度は、
同温同圧のSF6ガスの約1/5であるが、実ガス運
転においては一般に絶対圧2Kg/cm2以上でSF6
スを密閉するため実ガス運転時の1/10以下とな
る。)、前記羽根車17の主板18と油溜室蓋室1
3との間の圧力分布の不均衡の差も極めて小さ
く、すなわち前記間隙15の円周上の圧力分布の
不均衡も極めて小さくなつて、この間隙15に出
入りする取扱ガスが前記潤滑油9をケーシング1
6側へ漏出させるに至らないものと思われる。
The next possible cause is that the hollow rotating shaft 14
The lubricating oil 9 scattered by the upper bearing 7 collides with the swirling flow of the handled gas generated in the oil reservoir chamber 5 by the rotation of the handler, and is atomized into mist, thereby creating a swirling flow of the handled gas. The atomized bearing lubricating oil 9 mixed in the swirling flow of the handled gas comes into contact with the oil reservoir chamber lid 13 and adheres to the lower surface of this lid 13, or the upper bearing 7. The lubricating oil 9 splashed by the oil sump chamber lid 13 flies directly to the bottom surface of the lid 13, and the impeller 1 is caused by pressure pulsations in the swirl chamber of the casing 16 of the blower 2.
Due to pressure pulsations between the main plate 18 of No. 7 and the oil reservoir chamber lid 13, the pressure distribution on the circumference of the gap 15 between the lid 13 and the hollow rotating shaft 14 becomes unbalanced and changes periodically. Therefore, the handled gas flows in and out of the gap 15, and due to the handled gas flowing in and out of the gap 15, it adheres to the bearing lubricating oil 9 mixed in the swirling flow and the inner diameter part of the lid 13, and this lid Bearing lubricating oil 9 transferred to the inner diameter portion through the lower surface of the body 13
is carried to the casing 16 side. In this case, the reason why there is no oil leakage chamber in atmospheric operation is because the density of air as the handled gas is extremely low compared to the gas density in SF 6 gas operation (the density of air is
This is approximately 1/5 of SF 6 gas at the same temperature and pressure, but in actual gas operation, the SF 6 gas is generally sealed at an absolute pressure of 2 kg/cm 2 or more, so it is less than 1/10 of that of actual gas operation. ), the main plate 18 of the impeller 17 and the oil sump chamber lid chamber 1
3, the difference in pressure distribution imbalance on the circumference of the gap 15 is also extremely small. Casing 1
It seems that this does not lead to leakage to the 6th side.

そこで、本出願人は、第7図に示す如く、油溜
室蓋体13と中空回転軸14との間隙15の円周
上の圧力分布が不均衡とならないよう、すなわち
ケーシング16の渦室の圧力脈動の影響を受けな
いように、羽根車17の下面すなわち前記主板1
8の下面と前記蓋体13の下面とにそれぞれ環状
突起部18a,13aを設け、この両環状突起部
18a,13aを狭い間隙19を介して対向させ
てオリフイス20を形成し、また前記蓋体13と
中空回転軸14との間隙15の流路抵抗を高めて
この間隙15から取扱ガスが出入りするのを抑制
するように、前記間隙15部にラビリンス15a
を形成し、および前記蓋体13の下面に付着した
軸受潤滑油9が前記下面を伝わつて内径部へ移動
しないように、前記蓋体13の下面を外径側が低
くなるよう傾斜させ、かつ前記蓋体13の内径部
に付着した前記潤滑油9が前記ラビリンス15a
側へ移動せずに下方へ滴下するように、前記蓋体
13の内径部に下方へ突出する環状突起部13b
を設けてその下面を外径側が低くなるように傾斜
させるとともに前記環状突起部13bの外周端に
さらに下方へ突出する薄肉の環状突縁部13cを
設けることにより、SF6ガスによる30日間の実ガ
ス連続運転において、前記潤滑油9のケーシング
16側への漏出量が数10c.c.あつたものがわずか
0.05〜0.1c.c.程度にまで減少されることを確認し
たが、この第7図に示す改良の範囲においては、
すなわち前記オリフイス20の間隙19の長さ、
幅および直径や前記ラビリンス15aの構造、寸
法などを変更しても漏出量を前記0.05〜0.1c.c.程
度よりさらに減少することができなかつた。
Therefore, as shown in FIG. 7, the present applicant has taken measures to prevent the pressure distribution on the circumference of the gap 15 between the oil reservoir chamber cover 13 and the hollow rotating shaft 14 from becoming unbalanced, that is, to prevent the vortex chamber of the casing 16 from becoming unbalanced. The lower surface of the impeller 17, that is, the main plate 1, so as not to be affected by pressure pulsations.
Annular protrusions 18a and 13a are provided on the lower surface of 8 and the lower surface of the lid 13, respectively, and the annular projections 18a and 13a are opposed to each other with a narrow gap 19 interposed therebetween to form an orifice 20. A labyrinth 15a is provided in the gap 15 so as to increase the flow path resistance of the gap 15 between the hollow rotating shaft 13 and the hollow rotating shaft 14 and to suppress the handling gas from going in and out from the gap 15.
In order to prevent the bearing lubricating oil 9 adhering to the lower surface of the lid 13 from traveling along the lower surface to the inner diameter, the lower surface of the lid 13 is inclined so that the outer diameter side is lower, and The lubricating oil 9 attached to the inner diameter part of the lid body 13 is attached to the labyrinth 15a.
An annular protrusion 13b that protrudes downward on the inner diameter portion of the lid body 13 so that the liquid drips downward without moving to the side.
By providing a thin-walled annular protrusion 13c that protrudes further downward at the outer peripheral end of the annular protrusion 13b, the lower surface thereof is inclined so that the outer diameter side is lower . During continuous gas operation, the amount of lubricating oil 9 leaked to the casing 16 side was only a few tens of c.c.
It was confirmed that the reduction was achieved to about 0.05 to 0.1cc, but within the scope of the improvement shown in Figure 7,
That is, the length of the gap 19 of the orifice 20,
Even if the width and diameter and the structure and dimensions of the labyrinth 15a were changed, the amount of leakage could not be further reduced from about 0.05 to 0.1 cc.

なお、前記油漏出量が数c.c.以下の場合その値
は、軸受潤滑油が付着した部分の面積と油膜厚さ
から換算して求めた。
In addition, when the oil leakage amount was several cc or less, the value was calculated from the area of the portion to which the bearing lubricating oil was attached and the oil film thickness.

この第7図に示す改良した構造においても、前
記第6図に示す構造に比べては極めてわずかでは
あるが、軸受潤滑油9が漏出するのは、上部油溜
室5の取扱ガスの旋回流中に混在された霧状の軸
受潤滑油9が、その取扱ガス中に混在される濃度
差などによつて油溜室蓋体13と中空回転軸14
との間隙15に形成されたラビリンス15a部を
介して、上部油溜室5から前記蓋体13と羽根車
17の主板18間へ、すなわち電動機1側から送
風機2側へと放散されるものと思われる。
Even in the improved structure shown in FIG. 7, the bearing lubricating oil 9 leaks due to the swirling flow of the gas handled in the upper oil reservoir chamber 5, although it is extremely small compared to the structure shown in FIG. 6. The atomized bearing lubricating oil 9 mixed therein is mixed with the oil reservoir chamber lid 13 and the hollow rotating shaft 14 due to the concentration difference mixed in the handling gas.
The oil is dissipated from the upper oil reservoir chamber 5 to between the lid 13 and the main plate 18 of the impeller 17, that is, from the electric motor 1 side to the blower 2 side, through the labyrinth 15a formed in the gap 15. Seem.

従つて、前記油漏室を完全になくするには、上
部軸受7による軸受潤滑油9の飛散を阻止すれば
よく、そのため、前記第7図に示す構造に加えて
実開昭58−59998号公報に記載の縦型モータポン
プの軸受の構造を採用して第8図に示すように、
上部軸受7の外輪上端部に接して中空回転軸14
の外周を囲む液面安定筒7aを配設することも考
えられるが、この液安定筒7aの元来の目的は、
上部軸受7の回転遠心力により軸受潤滑液が前記
軸受7部においてすり鉢状の液面を呈し、および
前記軸受7の各球の公転により液面が変動して、
前記軸受7の一部または大部分が液中に浸らなく
なり、特に前記潤滑液がLNGなどの場合は沸騰
状態となつて液面の変動がさらに大きくなり安定
した潤滑が得られなくなるのを解消するためのも
のであり、この液面安定筒7aを採用すれば、起
動時に液面安定筒7aと中空回転軸14との間隙
7bから前記潤滑油9が吹き出すため前記密閉電
動送風機においては却つて逆効果となり、また前
記液面安定筒7aの中空回転軸14に対応する部
分に半径方向に複数の連通孔7cを設けても、前
記潤滑油9が前記間隙7bから上方へ吹き出す勢
いは劣えるものの、前記間隙7b内において中空
回転軸14により回転遠心力を与えられた前記潤
滑油9が前記複数の連通孔7cから横方に吹き出
し、取扱ガスの旋回流に衝突して霧状に微粒化さ
れるため、これも逆効果となる。
Therefore, in order to completely eliminate the oil leakage chamber, it is sufficient to prevent the bearing lubricating oil 9 from scattering by the upper bearing 7, and for this purpose, in addition to the structure shown in FIG. By adopting the bearing structure of the vertical motor pump described in the publication, as shown in Fig. 8,
The hollow rotating shaft 14 is in contact with the upper end of the outer ring of the upper bearing 7.
It is also possible to arrange a liquid level stabilizing cylinder 7a surrounding the outer periphery of the liquid level stabilizing cylinder 7a, but the original purpose of this liquid level stabilizing cylinder 7a is
Due to the centrifugal force of the rotation of the upper bearing 7, the bearing lubricating fluid exhibits a mortar-shaped liquid level in the bearing 7 portion, and the liquid level fluctuates due to the revolution of each ball of the bearing 7,
Part or most of the bearing 7 is no longer immersed in the liquid, and especially when the lubricating liquid is LNG, the lubricating liquid boils and the liquid level fluctuates even further, making it impossible to obtain stable lubrication. If this liquid level stabilizing tube 7a is adopted, the lubricating oil 9 will be blown out from the gap 7b between the liquid level stabilizing tube 7a and the hollow rotating shaft 14 at the time of startup, which is contrary to the case with the sealed electric blower. Even if a plurality of communication holes 7c are provided in the radial direction in the portion of the liquid level stabilizing cylinder 7a corresponding to the hollow rotating shaft 14, the force with which the lubricating oil 9 blows upward from the gap 7b is reduced. In the gap 7b, the lubricating oil 9 is subjected to rotational centrifugal force by the hollow rotating shaft 14, and is blown out laterally from the plurality of communication holes 7c, collides with the swirling flow of the handled gas, and is atomized into mist. This also has the opposite effect.

本考案は上記点に鑑み、油溜室内の上部軸受に
て回転遠心力を付勢されて上方へ飛散しようとす
る軸受潤滑油が、その進路を油飛散防止板に遮ら
れて上方へは飛散されず、従つて軸受潤滑油が上
部軸受側の油溜室の蓋体に付着されたり、前記油
溜室内の取扱ガスの旋回流に衝突して霧状に微粒
化されて旋回流中に混在されることがなく、軸受
潤滑油の電動機側から送風機側への漏出が完全に
阻止されるようにした密閉電動送風機を提供する
ものである。
In view of the above points, the present invention is based on the idea that the bearing lubricating oil, which attempts to scatter upward due to rotational centrifugal force in the upper bearing in the oil reservoir chamber, is blocked by the oil scattering prevention plate and is prevented from scattering upward. Therefore, the bearing lubricating oil may adhere to the lid of the oil reservoir on the upper bearing side, or collide with the swirling flow of the handled gas in the oil reservoir and become atomized into mist and mix in the swirling flow. To provide a sealed electric blower in which leakage of bearing lubricating oil from an electric motor side to a blower side is completely prevented.

〔考案の構成〕[Structure of the idea]

(問題点を解決するための手段) 本考案の密閉電動送風機の構成は、送風機の下
側に電動機を気密に一体に構成し、この電動機の
軸受を内在する油溜室を設け、上部軸受側の前記
油溜室の上端部に油溜室蓋体を回転軸に狭い間隙
を介して取着した密閉電動送風機において、前記
上部軸受を前記油溜室に封入される軸受潤滑油の
油面付近に配設し、前記油溜室蓋体と前記上部軸
受間にこの上部軸受に近接してその上方を覆う油
飛散防止板を前記回転軸に狭い間隙を介して配設
し、前記油飛散防止板より下方の前記上部軸受上
側とこの上部軸受より外径側とを連通する連通路
を設けてなるものである。
(Means for solving the problem) The structure of the sealed electric blower of the present invention is that the electric motor is airtightly integrated on the lower side of the blower, an oil reservoir chamber containing the bearing of this electric motor is provided, and the upper bearing side In a sealed electric blower in which an oil sump chamber lid is attached to the upper end of the oil sump chamber with a narrow gap between the rotating shaft and the upper bearing, the upper bearing is placed near the oil level of bearing lubricating oil sealed in the oil sump chamber. An oil scattering prevention plate is disposed between the oil sump chamber cover body and the upper bearing, close to the upper bearing and covering the upper part of the upper bearing, and disposed on the rotating shaft with a narrow gap therebetween to prevent oil scattering. A communication path is provided that communicates the upper side of the upper bearing below the plate with the outer diameter side of the upper bearing.

また前記構成になる本考案の密閉電動送風機の
実施態様は、上部軸受下側とこの上部軸受より外
径側とを連通する連通路を設け、この連通路およ
び油飛散防止板より下方の前記上部軸受上側とこ
の上部軸受より外径側とを連通する連通路によつ
て、前記上部軸受側の軸受潤滑油と前記上部軸受
より外径側の軸受潤滑油とが互に循環される循環
系路を形成してなり、また上部軸受側の油溜室の
前記軸受より外径側の油面の上方を油飛散防止板
にて覆つてなり、また油溜室蓋体の下面を外径側
が低くなるように傾斜させ、かつ前記油溜室蓋体
の内径部に下方へ突出する環状突起部を設けてそ
の下面を外径側が低くなるように傾斜させるとと
もに前記環状突起部の外周端にさらに下方へ突出
する薄肉環状突縁部を設けてなり、また送風機の
羽根車の下面と油溜室蓋体の上面とにそれぞれ環
状突起部を設け、この両環状突起部を狭い間隙を
介して対向させてオリフイスを形成してなり、ま
た油溜室蓋体と回転軸との間隙部にラビリンスを
形成してなるものである。
In addition, an embodiment of the sealed electric blower of the present invention having the above-mentioned structure is provided with a communication passage that communicates the lower side of the upper bearing with the outer diameter side of the upper bearing, and the communication passage and the upper part below the oil scattering prevention plate. A circulation system in which bearing lubricating oil on the upper bearing side and bearing lubricating oil on the outer diameter side of the upper bearing are mutually circulated through a communication path that communicates between the upper side of the bearing and the outer diameter side of the upper bearing. The upper surface of the oil sump chamber on the upper bearing side on the outer diameter side of the bearing is covered with an oil scattering prevention plate, and the lower surface of the oil sump chamber lid is lowered on the outer diameter side. An annular protrusion protruding downward is provided on the inner diameter portion of the oil sump chamber lid body, and the lower surface thereof is inclined such that the outer diameter side is lower, and the outer circumferential end of the annular protrusion is provided with an annular protrusion protruding downward. A thin annular protrusion is provided on the lower surface of the impeller of the blower and an annular protrusion on the upper surface of the oil sump chamber lid body, and these annular protrusions are opposed to each other through a narrow gap. In addition, a labyrinth is formed in the gap between the oil reservoir chamber cover and the rotating shaft.

(作用) 本考案の密閉電動送風機では、油溜室内の上部
軸受にて回転遠心力を付勢されて上方へ飛散しよ
うとする軸受潤滑油は、その進路を油飛散防止板
に遮られて上方へは飛散されず、連通路を介して
上部軸受側からこの上部軸受より外径側に緩慢に
少量流出された後、上部軸受により脈動作用によ
つて上部軸受側とこの上部軸受より外径側とを緩
慢に出入りされ、あるいは上部軸受によるポンプ
作用によつて連通路を介して上部軸受上側からこ
の上部軸受より外径側へ至りこの外径側から上部
軸受下側へと緩慢に循環される。
(Function) In the sealed electric blower of the present invention, the bearing lubricating oil that tries to scatter upward due to rotational centrifugal force in the upper bearing in the oil reservoir chamber is blocked by the oil scattering prevention plate and moves upward. After a small amount is slowly flowed out from the upper bearing side to the outer diameter side of this upper bearing through the communication path, the upper bearing side and the outer diameter side of this upper bearing due to the pulsating action of the upper bearing. It is slowly moved in and out of the upper bearing, or it is slowly circulated from the upper side of the upper bearing to the outer diameter side of the upper bearing through the communication path by the pump action of the upper bearing, and from this outer diameter side to the lower side of the upper bearing. .

(実施例) 次に本考案の一実施例の構成を第1図、第2図
について説明する。
(Embodiment) Next, the configuration of an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

21は縦型電動機で、この縦型電動機21の上
側に送風機22を一体に構成して軸封部のない密
閉構造とし、前記電動機21の固定子23と回転
子24の上側に上部油溜室25を下側に下部油溜
室26をそれぞれ設け、この両油溜室25,26
内に前記電動機21の上部軸受27および下部軸
受28をそれぞれ配設するとともに軸受潤滑油2
9を封入し、下部油溜室26の下側に前記電動機
21にて駆動される密閉構造の循環ポンプ30を
隣接し、この循環ポンプ30により下部油溜室2
6の軸受潤滑油29を一方の循環パイプ31を経
て上部油溜室25へ汲み上げ、この上部油溜室2
5の軸受潤滑油29を他方の循環パイプ32から
下部油溜室26へ重力落下させ、再び前記ポンプ
30にて上部油溜室25へと汲み上げて軸受潤滑
油29を循環させながら前記両軸受27,28の
潤滑を行うようになつている。
Reference numeral 21 denotes a vertical electric motor. A blower 22 is integrally formed above the vertical electric motor 21 to have a sealed structure without a shaft seal, and an upper oil reservoir is provided above the stator 23 and rotor 24 of the electric motor 21. A lower oil reservoir chamber 26 is provided below the oil reservoir chamber 25, and both oil reservoir chambers 25, 26
An upper bearing 27 and a lower bearing 28 of the electric motor 21 are disposed therein, and bearing lubricating oil 2 is provided therein.
9 is enclosed, and a circulation pump 30 of a closed structure driven by the electric motor 21 is adjacent to the lower side of the lower oil reservoir chamber 26, and this circulation pump 30 circulates the lower oil reservoir chamber 2.
The bearing lubricating oil 29 of No. 6 is pumped up through one of the circulation pipes 31 to the upper oil reservoir chamber 25.
The bearing lubricating oil 29 of No. 5 is allowed to fall by gravity from the other circulation pipe 32 to the lower oil sump chamber 26, and is again pumped up to the upper oil sump chamber 25 by the pump 30, thereby circulating the bearing lubricating oil 29 between the two bearings 27. , 28.

そして第2図に示すように、上部油溜室25に
封入される軸受潤滑油29の油面付近に配設され
た上部軸受27の上側には上部油溜室25の上面
を覆う油溜室蓋体33が設けられ、この油溜室蓋
体33と前記上部軸受27間にはこの上部軸受2
7に近接してその上方を覆う油飛散防止板35が
回転軸の一部としての中空回転軸34に狭い間隙
36を介して配設されて前記上部軸受27が装着
された軸受保持体37にボルト38等の手段にて
固定されており、前記油飛散防止板35の下面に
はこの油飛散防止板35より下方の前記上部軸受
27上側とこの上部軸受27より外径側とを連通
する連通路39としての放射状の溝が復数設けら
れている。
As shown in FIG. 2, there is an oil reservoir chamber above the upper bearing 27 disposed near the oil surface of the bearing lubricating oil 29 sealed in the upper oil reservoir chamber 25, which covers the upper surface of the upper oil reservoir chamber 25. A lid 33 is provided between the oil sump chamber lid 33 and the upper bearing 27.
An oil scattering prevention plate 35 covering the upper part of the upper bearing 27 is disposed on the hollow rotating shaft 34 as a part of the rotating shaft with a narrow gap 36 in between. It is fixed by means such as bolts 38, and on the lower surface of the oil scattering prevention plate 35, there is a connection connecting the upper side of the upper bearing 27 below the oil scattering prevention plate 35 and the outer diameter side of the upper bearing 27. A plurality of radial grooves as passages 39 are provided.

なお、前記上部油溜室25の上端部には油溜室
蓋体33が前記中空回転軸34に狭い間隙40を
介して取着されており、前記油溜室蓋体33によ
つて密閉電動送風機が送風機22側と電動機21
側とに区画されている。
An oil reservoir chamber lid 33 is attached to the upper end of the upper oil reservoir chamber 25 to the hollow rotating shaft 34 through a narrow gap 40. The blower is on the blower 22 side and the electric motor 21
It is divided into two sides.

また前記電動機21の回転子24の回転軸41
に結合した前記中空回転軸34には送風機22の
羽根車42が取付けられている。
Further, the rotating shaft 41 of the rotor 24 of the electric motor 21
An impeller 42 of the blower 22 is attached to the hollow rotating shaft 34 coupled to the hollow rotating shaft 34 .

このように構成された実施例によれば、上部軸
受27に回転遠心力を付勢されて上方へ飛散しよ
うとする軸受潤滑油29は、その進路を油飛散防
止板35に遮られるのでこの油飛散防止板35の
下面に沿つて横方へ流出しようとするが、内径側
にある間隙36に比べて外径側にある連通路39
の断面積が極めて大きく、かつ前記軸受潤滑油2
9はその付勢された回転遠心力により外方へ流出
しようとするため、前記間隙36からは流出され
ず、前記連通路39から軸受保持体37の外径側
へと流出され、しかもその流量に比べて前記連通
路39の断面積が大きいため緩慢に流出されてそ
のエネルギーが吸収され、そしてこの流出が少量
行われて前記回転遠心力により上部軸受27部に
おいてすり鉢状となつた軸受潤滑油29の油面の
最上部高さが前記連通路39の底面付近になる
と、軸受潤滑油29は上部軸受27の各球の公転
により脈動の作用で前記連通路39に緩慢に出入
りされてそのエネルギーが吸収され、上部軸受2
7側の軸受潤滑油29と上部軸受27より外径側
の軸受潤滑油29とがわずかずつ交換される。
According to the embodiment configured in this way, the bearing lubricating oil 29 that is urged by the rotational centrifugal force on the upper bearing 27 and tries to scatter upward is blocked by the oil scattering prevention plate 35, so that this oil is Although it tries to flow laterally along the lower surface of the scattering prevention plate 35, the communication passage 39 on the outer diameter side compared to the gap 36 on the inner diameter side
has an extremely large cross-sectional area, and the bearing lubricating oil 2
9 tries to flow outward due to the biased rotational centrifugal force, it does not flow out from the gap 36, but flows out from the communication path 39 to the outer diameter side of the bearing holder 37, and the flow rate is Since the cross-sectional area of the communication passage 39 is larger than that of the communication passage 39, the oil flows out slowly and its energy is absorbed, and a small amount of the oil flows out, and the bearing lubricating oil becomes cone-shaped at the upper bearing 27 due to the rotational centrifugal force. When the top level of the oil level of the upper bearing 27 reaches the bottom of the communication passage 39, the bearing lubricating oil 29 is slowly moved in and out of the communication passage 39 due to the pulsation caused by the revolution of each ball of the upper bearing 27, and its energy is absorbed. is absorbed and the upper bearing 2
The bearing lubricating oil 29 on the 7 side and the bearing lubricating oil 29 on the outer diameter side of the upper bearing 27 are replaced little by little.

このように、上部軸受27に回転遠心力を付勢
された軸受潤滑油29は、上方へは飛散されずに
前記連通路39から横方へ緩慢に流出および出入
りされそのエネルギーが吸収されるので、中空回
転軸34の回転によつて上部油溜室25に生じる
取扱ガスの旋回流に衝突して霧状に微粒化されて
前記旋回流中に混在されることはなく、従つて前
記軸受潤滑油29が電動機21側から送風機22
側へ漏出する不具合は生じない。
In this way, the bearing lubricating oil 29, which is subjected to rotational centrifugal force on the upper bearing 27, is not scattered upward, but slowly flows out and comes in and out laterally from the communication passage 39, and its energy is absorbed. , collides with the swirling flow of the handled gas generated in the upper oil reservoir chamber 25 by the rotation of the hollow rotary shaft 34 and is atomized into mist and is not mixed in the swirling flow, thus preventing the bearing lubrication. Oil 29 flows from the electric motor 21 side to the blower 22
There is no problem of leakage to the side.

本出願人の実験によつても、この実施例の密閉
電動送風機にてSF6ガスによる30日間の実ガス運
転を行つた結果、軸受潤滑油29の送風機22側
への漏出は検出できなかつた。
According to experiments conducted by the present applicant, leakage of the bearing lubricating oil 29 to the blower 22 side could not be detected as a result of 30 days of actual gas operation with SF 6 gas in the sealed electric blower of this embodiment. .

また、この実施例と前記第7図および前記第8
図に示す構造を採用した密閉電動送風機を、それ
ぞれケーシング54と羽根車42を取りはずし、
油溜室蓋体33を透明材から形成して大気中で電
動機21のみを運転することによつて、飛散され
て前記透明油溜室蓋体33の下面に付着される軸
受潤滑油29の油滴数を測定したところ、前記第
7図の構造のものにおいては、この実施例の構造
におけるものよりも相当大きな油滴が10秒間に
100滴程度付着され、約5分で油溜室蓋体33の
下面一面が軸受潤滑油29で覆われ、前記第8図
の構造のものにおいてもこれと同程度であつた
が、前記実施例の構造のものにおいては100時間
で直径1m/m程度の油滴(0.001c.c.以下)が2
滴付着されるにすぎなかつた。
In addition, this embodiment and the above-mentioned FIG. 7 and the above-mentioned FIG.
The casing 54 and impeller 42 of each sealed electric blower adopting the structure shown in the figure are removed.
By forming the oil reservoir chamber lid 33 from a transparent material and operating only the electric motor 21 in the atmosphere, the oil of the bearing lubricating oil 29 is scattered and attached to the lower surface of the transparent oil reservoir chamber lid 33. When the number of drops was measured, it was found that in the structure shown in FIG. 7, considerably larger oil droplets were produced in 10 seconds than in the structure of this example.
Approximately 100 drops were applied, and in about 5 minutes, the entire lower surface of the oil reservoir chamber cover 33 was covered with the bearing lubricating oil 29, which was the same level in the structure shown in FIG. With the structure of
Only drops were deposited.

この実験においても明らかなように、前記実施
例の構造によると、上部軸受27による軸受潤滑
油29の飛散が殆んど完全に阻止されるので、実
ガス運転における軸受潤滑油29の送風機22側
への漏出が阻止されることが理解できる。
As is clear from this experiment, according to the structure of the above embodiment, the scattering of the bearing lubricating oil 29 by the upper bearing 27 is almost completely prevented, so that the bearing lubricating oil 29 is disposed on the side of the blower 22 during actual gas operation. It can be seen that leakage is prevented.

なお、前記実施例においては、油飛散防止板3
5の下面に放射状の溝を複数設けて連通路39を
形成したが、この連通路39は、第3図に示すよ
うに軸受保持体37の上端面に放射状の溝を複数
設けて形成したり、第4図に示すように油飛散防
止板35を軸受保持体37に間隙を介して油溜室
蓋体33に懸架固定してこの間隙を連通路39と
するなど、適宜手段にて形成すればよく、またこ
の第4図に示すように、上部油溜室25の上部軸
受27より外径側の軸受潤滑油29および連通路
39に出入りする軸受潤滑油29が直接に取扱ガ
スの旋回流に触れないように、その油面の上方を
油飛散防止板35を拡径して覆い、あるいは前記
第3図に示すように油溜室蓋体33と中空回転軸
34との隙間40に圧力分布の不均衝が生じない
ように、およびこの不均衡によつて前記間隙40
に取扱ガスが出入りしないように前記羽根車42
の主板43の下面と前記蓋体33の上面とにそれ
ぞれ環状突起部45,46を設け、この両環状突
起部45,46を狭い間隙47を介して対向させ
てオリフイス48を形成し、或は前記蓋体33と
中空回転軸34との間隙40の流路抵抗を高める
ように間隙40部にラビリンス49を形成するこ
とによりさらに確実な油漏出防止効果が期待でき
る。
In addition, in the above embodiment, the oil scattering prevention plate 3
Although the communication path 39 is formed by providing a plurality of radial grooves on the lower surface of the bearing holder 37, the communication path 39 may be formed by providing a plurality of radial grooves on the upper end surface of the bearing holder 37 as shown in FIG. As shown in FIG. 4, the oil scattering prevention plate 35 is suspended and fixed to the oil reservoir chamber lid 33 through a gap in the bearing holder 37, and this gap is formed by an appropriate means, such as using this gap as a communication path 39. Moreover, as shown in FIG. 4, the bearing lubricating oil 29 on the outer diameter side of the upper bearing 27 in the upper oil reservoir chamber 25 and the bearing lubricating oil 29 flowing in and out of the communication passage 39 directly flow into the swirling flow of the handled gas. Cover the oil surface with an enlarged oil scattering prevention plate 35 so as not to touch the oil surface, or apply pressure to the gap 40 between the oil sump chamber lid 33 and the hollow rotating shaft 34 as shown in FIG. The gap 40 is
The impeller 42
Annular protrusions 45 and 46 are provided on the lower surface of the main plate 43 and the upper surface of the lid body 33, respectively, and the annular protrusions 45 and 46 are opposed to each other with a narrow gap 47 interposed therebetween to form an orifice 48, or By forming a labyrinth 49 in the gap 40 to increase the flow resistance in the gap 40 between the lid 33 and the hollow rotating shaft 34, a more reliable effect of preventing oil leakage can be expected.

さらに第3図、第5図に示すように前記油溜室
蓋体33の下面33aを外径側が低くなるように
傾斜させ、かつこの油溜室蓋体33の内径部に下
方に突出する環状突起部51を設け、この突起部
51の下面を外径側が低くなるようにした傾斜面
52に形成し、この傾斜面52の外周端に下方に
突出する薄肉の環状突縁部53を形成すれば、油
溜室蓋体33の下面33aに付着した軸受潤滑油
29が下面33aにつたわつて内径部に移動され
ず、また油溜室蓋体33の内径部に付着した軸受
潤滑油29がラビリンス49側に移動されずに下
方に滴下されるので、万一油溜室蓋体33の下面
33aに軸受潤滑油29が付着しても、送風機2
2のケーシング54側へ漏出することはない。
Further, as shown in FIGS. 3 and 5, the lower surface 33a of the oil sump chamber cover 33 is inclined so that the outer diameter side is lower, and the inner diameter of the oil sump chamber cover 33 has an annular shape projecting downward. A protrusion 51 is provided, the lower surface of the protrusion 51 is formed into an inclined surface 52 with the outer diameter side being lower, and a thin annular protrusion 53 is formed at the outer peripheral end of this inclined surface 52 to protrude downward. For example, the bearing lubricating oil 29 adhering to the lower surface 33a of the oil sump chamber cover 33 is not transferred to the lower surface 33a and moving to the inner diameter, and the bearing lubricating oil 29 adhering to the inner periphery of the oil sump chamber cover 33 is not moved to the inner diameter part. Since the lubricating oil 29 is dripped downward without being moved to the 49 side, even if the bearing lubricating oil 29 adheres to the lower surface 33a of the oil sump chamber cover 33, the blower 2
There is no leakage to the casing 54 of No. 2.

さらに第5図に示すように、上部軸受27下側
とこの上部軸受27より外径側とを連通する連通
路50を設ければ、上部軸受27の上側と下側と
の軸受潤滑油29が前記上部軸受27の外径側の
油面に至る揚程が異なるため、回転遠心力により
上部軸受27の外径側へ流出しようとする前記上
部軸受27の上側と下側との軸受潤滑油29の作
用に差が生じて前記上側の軸受潤滑油29の作用
が勝り、すなわち上部軸受27のポンプ作用によ
り、軸受潤滑油29は上部軸受27上側から連通
路39を通つて上部軸受27よりも外径側に流入
され、この外径側から連通路50を通つて上部軸
受27下側へ流入されて緩慢に循環される。
Furthermore, as shown in FIG. 5, if a communication passage 50 is provided that communicates the lower side of the upper bearing 27 with the outer diameter side of the upper bearing 27, the bearing lubricating oil 29 between the upper side and the lower side of the upper bearing 27 can be exchanged. Since the lifting heights reaching the oil surface on the outer diameter side of the upper bearing 27 are different, the bearing lubricating oil 29 on the upper and lower sides of the upper bearing 27 tends to flow out to the outer diameter side of the upper bearing 27 due to rotational centrifugal force. A difference occurs in the action, and the action of the upper bearing lubricating oil 29 prevails. In other words, due to the pumping action of the upper bearing 27, the bearing lubricating oil 29 is passed from above the upper bearing 27 through the communication passage 39, and has an outer diameter larger than that of the upper bearing 27. It flows from the outer diameter side through the communication path 50 to the lower side of the upper bearing 27 and is slowly circulated.

そのため、上部軸受27部の軸受潤滑油29
が、前記第6図および第7図に示す従来構造や前
記各実施例に示す構造のように、上部軸受27の
上側または一側のみの連通路39から出入りする
ことによつて極めてわずかずつ交換される場合に
比べて、上部軸受27が十分冷却されるとともに
軸受潤滑油29が上部軸受27部で局部的に高温
にならずその温度が平均化されるので、上部軸受
27が長寿命となり、軸受潤滑油29の交換期間
もさらに延長される。
Therefore, the bearing lubricating oil 29 of the upper bearing 27 section
However, as in the conventional structure shown in FIGS. 6 and 7 and the structure shown in each of the embodiments described above, it is possible to replace the upper bearing 27 very little at a time by going in and out from the communication passage 39 on the upper side or only on one side of the upper bearing 27. Compared to the case where the upper bearing 27 is heated, the upper bearing 27 is sufficiently cooled and the bearing lubricating oil 29 does not locally become high temperature in the upper bearing 27 portion, but the temperature is averaged, so the upper bearing 27 has a longer life. The replacement period for the bearing lubricating oil 29 is also further extended.

以上の各実施例においては、本考案を半径方向
空隙型電動機を用いた密閉電動送風機に採用した
場合について説明したが、軸方向空隙型電動機を
用いた密閉電動送風機にも同様に適用でき、また
特別な仕様のために油浸漬電動機を用いなければ
ならない密閉電動送風機にも勿論適用できる。
In each of the above embodiments, the present invention is applied to a sealed electric blower using a radial gap type electric motor, but it can be similarly applied to a sealed electric blower using an axial gap type electric motor. Of course, it can also be applied to sealed electric blowers which have to use oil-immersed motors due to special specifications.

〔考案の効果〕[Effect of idea]

本考案によれば、油溜室内の上部軸受にて回転
遠心力を付勢されて上方へ飛散しようとする軸受
潤滑油は、その進路を油飛散防止板に遮られて上
方へは飛散されず、連通路を介して上部軸受側と
この上部軸受より外径側とを緩慢に出入りしまた
は循環されるので、前記軸受潤滑油が上部軸受側
の油溜室の蓋体に付着されたり、前記油溜室の取
扱ガスの旋回流に衝突して霧状に微粒化されて前
記旋回流中に混在されることがなく、前記軸受潤
滑油の電動機側から送風機側への漏出が完全に阻
止される。
According to the present invention, bearing lubricating oil that attempts to scatter upward due to rotational centrifugal force in the upper bearing in the oil reservoir chamber is prevented from scattering upward because its path is blocked by the oil scattering prevention plate. Since the bearing lubricating oil is slowly moved in and out or circulated between the upper bearing side and the outer diameter side of the upper bearing via the communication passage, the bearing lubricating oil may adhere to the lid of the oil reservoir chamber on the upper bearing side, or The bearing lubricating oil does not collide with the swirling flow of the handled gas in the oil sump chamber and become atomized into mist and become mixed in the swirling flow, and the leakage of the bearing lubricating oil from the motor side to the blower side is completely prevented. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す密閉電動送風
機の縦断面図、第2図は同上要部の拡大縦断面
図、第3図は他の実施例を示す密閉電動送風機の
要部の縦断面図、第4図はさらに他の実施例を示
す密閉電動送風機の要部の縦断面図、第5図は他
の実施例を示す密閉電動送風機の要部の縦断面
図、第6図は従来の密閉電動送風機の縦断面図、
第7図、第8図は本考案の前提となる電動送風機
の一部の縦断面図である。 21……電動機、22……送風機、25……上
部油溜室、26……下部油溜室、27……上部軸
受、28……下部軸受、29……潤滑油、33…
…油溜室蓋体、34……中空回転軸、35……油
飛散防止板、39,50……連通路、40……油
溜室蓋体33と中空回転軸34との間の間隙、4
5,46,51……環状突起部、48……オリフ
イス、49……ラビリンス、52……環状突縁
部。
Fig. 1 is a longitudinal sectional view of a sealed electric blower showing one embodiment of the present invention, Fig. 2 is an enlarged longitudinal sectional view of the main parts of the same, and Fig. 3 is a main part of a sealed electric blower showing another embodiment. FIG. 4 is a longitudinal sectional view of a main part of a sealed electric blower showing another embodiment; FIG. 5 is a longitudinal sectional view of a main part of a sealed electric blower showing another embodiment; FIG. is a vertical cross-sectional view of a conventional sealed electric blower,
FIGS. 7 and 8 are longitudinal sectional views of a part of the electric blower which is the premise of the present invention. 21...Electric motor, 22...Blower, 25...Upper oil sump chamber, 26...Lower oil sump chamber, 27...Upper bearing, 28...Lower bearing, 29...Lubricating oil, 33...
...Oil sump chamber lid body, 34...Hollow rotating shaft, 35...Oil scattering prevention plate, 39, 50...Communication path, 40...Gap between oil sump chamber lid body 33 and hollow rotating shaft 34, 4
5, 46, 51... Annular protrusion, 48... Orifice, 49... Labyrinth, 52... Annular protrusion.

Claims (1)

【実用新案登録請求の範囲】 (1) 送風機の下側に電動機を気密に一体に構成
し、この電動機の軸受を内在する油溜室を設
け、上部軸受側の前記油溜室の上端部に油溜室
蓋体を回転軸に狭い間隙を介して取着した密閉
電動送風機において、前記上部軸受を前記油溜
室に封入される軸受潤滑油の油面付近に配設
し、前記油溜室蓋体と前記上部軸受間にこの上
部軸受に近接してその上方を覆う油飛散防止板
を前記回転軸に狭い間隙を介して配設し、前記
油飛散防止板より下方の前記上部軸受上側とこ
の上部軸受より外径側とを連通する連通路を設
けたことを特徴とする密閉電動送風機。 (2) 上部軸受下側とこの上部軸受より外径側とを
連通する連通路を設け、この連通路および油飛
散防止板より下方の前記上部軸受上側とこの上
部軸受より外径側とを連通する連通路によつ
て、前記上部軸受側の軸受潤滑油と前記上部軸
受より外径側の軸受潤滑油とが互に循環される
循環系路を形成したことを特徴とする実用新案
登録請求の範囲第1項記載の密閉電動送風機。 (3) 上部軸受側の油溜室の前記軸受より外径側の
油面の上方を油飛散防止板にて覆つたことを特
徴とする実用新案登録請求の範囲第1項または
第2項記載の密閉電動送風機。 (4) 油溜室蓋体の下面を外径側が低くなるように
傾斜させ、かつ前記油溜室蓋体の内径部に下方
へ突出する環状突起部を設けてその下面を外径
側が低くなるように傾斜させるとともに前記環
状突起部の外周端にさらに下方へ突出する薄肉
の環状突縁部を設けたことを特徴とする実用新
案登録請求の範囲第1項乃至第3項のいずれか
に記載の密閉電動送風機。 (5) 送風機の羽根車の下面と油溜室蓋体の上面と
にそれぞれ環状突起部を設け、この両環状突起
部を狭い間隙を介して対向させてオリフイスを
形成したことを特徴とする実用新案登録請求の
範囲第1項乃至第4項のいずれかに記載の密閉
電動送風機。 (6) 油溜室蓋体と回転軸との間隙部にラビリンス
を形成したことを特徴とする実用新案登録請求
の範囲第1項乃至第5項のいずれかに記載の密
閉電動送風機。
[Claims for Utility Model Registration] (1) An electric motor is airtightly integrated with the lower side of the blower, an oil sump chamber containing the bearings of the electric motor is provided, and an oil sump chamber is provided at the upper end of the oil sump chamber on the upper bearing side. In a sealed electric blower in which an oil sump chamber cover is attached to a rotating shaft through a narrow gap, the upper bearing is disposed near the oil level of bearing lubricating oil sealed in the oil sump chamber, and the oil sump chamber An oil scattering prevention plate that is close to and covers the upper bearing is disposed between the lid body and the upper bearing on the rotating shaft with a narrow gap therebetween, and an oil scattering prevention plate that is located above the upper bearing that is below the oil scattering prevention plate is disposed between the lid and the upper bearing. A sealed electric blower characterized by providing a communication path that communicates with the outer diameter side of the upper bearing. (2) Provide a communication passage that communicates between the lower side of the upper bearing and the outer diameter side of this upper bearing, and communicate this communication passage and the upper side of the upper bearing below the oil scattering prevention plate with the outer diameter side of this upper bearing. The utility model registration claim is characterized in that a circulation path is formed in which bearing lubricating oil on the upper bearing side and bearing lubricating oil on the outer diameter side of the upper bearing are mutually circulated by a communicating passage. A sealed electric blower as described in Scope 1. (3) Claims 1 or 2 of the utility model registration claim characterized in that the upper part of the oil surface on the outer diameter side of the bearing in the oil reservoir chamber on the upper bearing side is covered with an oil scattering prevention plate. Closed electric blower. (4) The lower surface of the oil sump chamber lid is sloped so that the outer diameter side is lower, and an annular protrusion that projects downward is provided on the inner diameter portion of the oil sump chamber lid so that the lower surface is lowered on the outer diameter side. According to any one of claims 1 to 3, registered as a utility model, the annular protrusion is inclined as shown in FIG. Closed electric blower. (5) A practical use characterized in that annular protrusions are provided on the lower surface of the impeller of the blower and on the upper surface of the oil reservoir lid body, respectively, and the annular protrusions are opposed to each other with a narrow gap to form an orifice. A sealed electric blower according to any one of claims 1 to 4 of the patent claims. (6) The sealed electric blower according to any one of claims 1 to 5, which is characterized in that a labyrinth is formed in the gap between the oil sump chamber cover and the rotating shaft.
JP1984139033U 1984-09-13 1984-09-13 Expired JPS6337512Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984139033U JPS6337512Y2 (en) 1984-09-13 1984-09-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984139033U JPS6337512Y2 (en) 1984-09-13 1984-09-13

Publications (2)

Publication Number Publication Date
JPS6153595U JPS6153595U (en) 1986-04-10
JPS6337512Y2 true JPS6337512Y2 (en) 1988-10-04

Family

ID=30697416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984139033U Expired JPS6337512Y2 (en) 1984-09-13 1984-09-13

Country Status (1)

Country Link
JP (1) JPS6337512Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011766A (en) * 2002-06-06 2004-01-15 Nsk Ltd Bearing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664177A (en) * 1979-10-30 1981-06-01 Teikoku Denki Seisakusho:Kk Enclosed motor driven blower

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664177A (en) * 1979-10-30 1981-06-01 Teikoku Denki Seisakusho:Kk Enclosed motor driven blower

Also Published As

Publication number Publication date
JPS6153595U (en) 1986-04-10

Similar Documents

Publication Publication Date Title
EA029671B1 (en) System and method for fluid cooling of electric machines
US3804476A (en) Bearing devices for rotary machines
CN107269571B (en) Self-circulation system for lubricating oil of bearing box for pump
JP2019157707A (en) Centrifugal compressor
JPS6140845B2 (en)
JPS6337512Y2 (en)
US2910313A (en) Lubricated seal for centrifugal pump shafts
JP4684266B2 (en) Bearing device for vehicle main motor
JP3251838B2 (en) Bearing device for vertical rotating machinery
CN205991014U (en) A kind of liquid rotary compressor
JPH04145224A (en) Bearing device for horizontal shaft rotating machine
CN211343463U (en) Bearing box device of cantilever type fan bearing forced air cooling
CN209823555U (en) Power motor seal structure for new energy automobile
JP2006063881A (en) High speed rotary apparatus
JP2003032946A (en) Structure of oil lubrication bearing for vehicle motor
JPH10205499A (en) Motor cooling device for vertical type motor-driven pump
US2976438A (en) Electric gear-motor drive unit
CN207393485U (en) A kind of horizontal multi-stage centrifugal pump
JPH0842571A (en) Operation method for pump and bearing device for pump
JPS6214453Y2 (en)
US3046063A (en) Shaft seal
CN219975140U (en) Static pressure type high-precision bearing sleeve
CN216008950U (en) Special high-temperature direct-connection fan for coating
JPH0643584Y2 (en) Bearing equipment for rotating equipment
JPH0521678Y2 (en)