JPS6337469Y2 - - Google Patents

Info

Publication number
JPS6337469Y2
JPS6337469Y2 JP15914084U JP15914084U JPS6337469Y2 JP S6337469 Y2 JPS6337469 Y2 JP S6337469Y2 JP 15914084 U JP15914084 U JP 15914084U JP 15914084 U JP15914084 U JP 15914084U JP S6337469 Y2 JPS6337469 Y2 JP S6337469Y2
Authority
JP
Japan
Prior art keywords
additive
fuel
concentration
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15914084U
Other languages
Japanese (ja)
Other versions
JPS6174613U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15914084U priority Critical patent/JPS6337469Y2/ja
Publication of JPS6174613U publication Critical patent/JPS6174613U/ja
Application granted granted Critical
Publication of JPS6337469Y2 publication Critical patent/JPS6337469Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は内燃機関の排気微粒子処理装置に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an exhaust particulate treatment device for an internal combustion engine.

<従来の技術> デイーゼルエンジン等の内燃機関においては、
排気中に含まれる排気微粒子をトラツプにより捕
集し大気中への排気微粒子の放散を防止するよう
にしている。かかる従来例を第3図に示す
(SAEペーパー 1984年発行840078参照)。
<Conventional technology> In internal combustion engines such as diesel engines,
The exhaust particulates contained in the exhaust gas are collected by a trap to prevent the exhaust particulates from being released into the atmosphere. Such a conventional example is shown in FIG. 3 (see SAE paper 840078, published in 1984).

すなわち、機関1の排気通路2には排気中の微
粒子(煤)を捕集するセラミツク製のトラツプ3
が介装されている。一方、機関1には燃料タンク
4から燃料フイルタ5が介装された燃料供給通路
6を介して燃料が供給される。
That is, in the exhaust passage 2 of the engine 1, there is a trap 3 made of ceramic that collects particulates (soot) in the exhaust gas.
is interposed. On the other hand, fuel is supplied to the engine 1 from a fuel tank 4 through a fuel supply passage 6 in which a fuel filter 5 is interposed.

また、燃料供給通路6の途中には添加剤供給通
路7が接続されており、添加剤タンク8から電磁
式流量制御弁9を介して燃料に添加剤が混入され
る。前記電磁式流量制御弁9は機関回転速度と機
関トルクとに基づく制御回路10からの駆動信号
により開度制御され、添加剤を燃料中に機関の消
費燃料量に見合つた量供給し、燃料中の添加剤濃
度を略一定に制御するようにしている。
Further, an additive supply passage 7 is connected in the middle of the fuel supply passage 6, and an additive is mixed into the fuel from an additive tank 8 via an electromagnetic flow control valve 9. The opening of the electromagnetic flow control valve 9 is controlled by a drive signal from a control circuit 10 based on engine rotational speed and engine torque, and the additive is supplied into the fuel in an amount commensurate with the amount of fuel consumed by the engine. The additive concentration is controlled to be approximately constant.

ここで、添加剤はMn,Cu,Pb,Zn,Ca若し
くはFe等を有機溶剤に混入させて形成されてい
る。
Here, the additive is formed by mixing Mn, Cu, Pb, Zn, Ca, Fe, etc. into an organic solvent.

このようにして、燃料中に添加剤が混入される
と、添加剤が機関1の燃焼室内で燃焼されて添加
剤中の金属成分が排気微粒子と共に排出される。
これらの排気微粒子がトラツプ3に捕集されると
前記金属成分の作用により排気微粒子が添加剤を
混入しないときに較べて低い排気温度から燃焼
し、トラツプ3の再生が図れる。これにより、ト
ラツプ3の排気微粒子を加熱燃焼させるバーナ或
いはヒータを不要とし、またそれらを簡略化させ
てトラツプ3の再生を排気温度の低い運転域から
可能にするようにした。
When the additive is mixed into the fuel in this way, the additive is burned in the combustion chamber of the engine 1, and the metal components in the additive are discharged together with the exhaust particles.
When these exhaust particulates are collected in the trap 3, the exhaust particulates are combusted by the action of the metal component at a lower exhaust temperature than when no additive is mixed, and the trap 3 can be regenerated. This eliminates the need for a burner or a heater for heating and burning the exhaust particulates of the trap 3, and also simplifies the need for a burner or heater, thereby making it possible to regenerate the trap 3 from an operating range where the exhaust temperature is low.

尚、添加剤タンク8には排気ターボチヤージヤ
11から所定の過給圧が導入されこの過給圧にて
添加剤を燃料供給通路6に圧送供給するようにし
ている。また、機関1の余剰燃料は燃料戻し通路
12を流通した後冷却用通路13を通過して冷却
され再び燃料供給通路6に戻される。
A predetermined supercharging pressure is introduced into the additive tank 8 from the exhaust turbocharger 11, and the additive is supplied under pressure to the fuel supply passage 6 at this supercharging pressure. Further, surplus fuel in the engine 1 flows through the fuel return passage 12, passes through the cooling passage 13, is cooled, and is returned to the fuel supply passage 6 again.

<考案が解決しようとする問題点> しかしながら、このような従来の排気微粒子処
理装置においては、機関回転速度と機関トルクと
から機関の燃料消費量を算出するようにしている
ので、算出された燃料消費量と実際の機関の燃料
消費量とに誤差が生じていた。このため、燃料中
の添加剤濃度を略一定に制御することが難かしく
添加剤濃度にバラツキが発生してトラツプの再生
性能にバラツキが発生していた。これにより、例
えば添加剤濃度が希薄になるとトラツプの再生性
能が低下してトラツプ3に多量の排気微粒子が捕
集され排圧上昇を招き、また添加剤濃度が過濃に
なると多量の排気微粒子が短時間に燃焼してトラ
ツプ内温度が上昇しトラツプの焼損を招くという
問題点があつた。
<Problems to be solved by the invention> However, in such conventional exhaust particulate treatment devices, the fuel consumption of the engine is calculated from the engine rotation speed and the engine torque. There was an error between the consumption amount and the actual engine fuel consumption amount. For this reason, it is difficult to control the additive concentration in the fuel to be substantially constant, resulting in variations in the additive concentration and variations in trap regeneration performance. As a result, for example, if the additive concentration becomes dilute, the regeneration performance of the trap will decrease and a large amount of exhaust particulates will be collected in the trap 3, leading to an increase in exhaust pressure, and if the additive concentration becomes too high, a large amount of exhaust particulates will be collected in the trap 3. There was a problem that combustion occurred in a short period of time, raising the temperature inside the trap and causing burnout of the trap.

本考案は、このような実状に鑑みなされたもの
で、機関への燃料供給量の変化に関わらず燃料中
の添加剤濃度を高精度に制御しトラツプ再生性能
を安定化させる排気微粒子処理装置を提供するこ
とを目的とする。
The present invention was developed in view of these circumstances, and is an exhaust particulate treatment device that controls the additive concentration in the fuel with high precision and stabilizes the trap regeneration performance regardless of changes in the amount of fuel supplied to the engine. The purpose is to provide.

<問題点を解決するための手段> このため、本考案は、排気通路のトラツプに捕
集された排気微粒子の燃焼を促進する添加剤を機
関への供給燃料に供給する添加剤供給手段と、燃
料中の添加剤濃度を検出する添加剤濃度検出手段
と、検出された添加剤濃度に基づいて前記添加剤
供給手段を制御する制御手段と、を設ける。
<Means for Solving the Problems> For this reason, the present invention provides an additive supply means for supplying fuel supplied to an engine with an additive that promotes combustion of exhaust particulates collected in a trap in an exhaust passage; An additive concentration detection means for detecting the additive concentration in the fuel, and a control means for controlling the additive supply means based on the detected additive concentration are provided.

<作用> そして、燃料中の実際の添加剤濃度に基づいて
添加剤供給手段を制御することにより機関への燃
料供給量の変化に関わらず添加剤濃度を高精度に
制御し、もつてトラツプの再生性能を安定させる
ようにした。
<Function> By controlling the additive supply means based on the actual additive concentration in the fuel, the additive concentration can be controlled with high precision regardless of changes in the amount of fuel supplied to the engine, thereby reducing the trap. Made playback performance more stable.

<実施例> 以下に、本考案の一実施例を第1図及び第2図
に基づいて説明する。尚、従来例と同一要素には
第3図と同一符号を付して説明を省略する。
<Example> An example of the present invention will be described below with reference to FIGS. 1 and 2. Incidentally, the same elements as those in the conventional example are given the same reference numerals as in FIG. 3, and the explanation thereof will be omitted.

図において、機関1の燃料噴射ポンプ21には
燃料供給通路6を介して燃料タンク4から燃料が
供給されている。また、燃料供給通路6の途中に
は添加剤供給通路7の下流端部が接続され、その
接続部より下流側の燃料供給通路6には燃料中の
添加剤濃度を検出する濃度検出手段としての濃度
検出器22が設けられている。
In the figure, a fuel injection pump 21 of an engine 1 is supplied with fuel from a fuel tank 4 via a fuel supply passage 6. Further, a downstream end of an additive supply passage 7 is connected to the middle of the fuel supply passage 6, and the fuel supply passage 6 downstream of the connection part is provided with a concentration detection means for detecting the additive concentration in the fuel. A concentration detector 22 is provided.

濃度検出器22には、第2図に示すように、前
記燃料供給通路6に介装され添加剤が混入された
燃料が通過する第1の透明ケース23と、所定濃
度の添加剤が混入された燃料を封入する第2の透
明ケース24と、が設けられており、これら第1
及び第2の透明ケース23,24の間には発光ダ
イオード等の発光素子25が設けられている。ま
た、第1及び第2の透明ケース23,24の側部
にはフオートトランジスタ等の第1及び第2の受
光素子26a,26bが夫々の透明ケース23,
24の内部空間を介して前記発光素子25に対向
させて設けられており、夫々の透明ケース23,
24の内部空間を通過する発光素子25から入力
される光の強度に応じて第1及び第2の受光素子
26a,26bは電圧を発生する。
As shown in FIG. 2, the concentration detector 22 includes a first transparent case 23 which is interposed in the fuel supply passage 6 and through which the fuel mixed with the additive passes, and a first transparent case 23 which is inserted into the fuel supply passage 6 and through which the fuel mixed with the additive is mixed. A second transparent case 24 enclosing the fuel is provided, and these first transparent cases 24
A light emitting element 25 such as a light emitting diode is provided between the second transparent cases 23 and 24. Further, first and second light receiving elements 26a and 26b such as phototransistors are mounted on the sides of the first and second transparent cases 23 and 24, respectively.
The transparent case 23,
The first and second light receiving elements 26a and 26b generate voltage according to the intensity of light input from the light emitting element 25 passing through the internal space of the light emitting element 24.

第1の受光素子26aの出力電圧は第1増巾器
27aを介して比較器28の非反転側端子に印加
され、比較器28の反転側端子には前記第2の受
光素子26bの出力電圧が第2増巾器27bを介
して印加されている。比較器28の出力信号は制
御装置29に入力されている。また、前記発光素
子25の両側方には第1及び第2透明ケース2
3,24に流入する光量を略一定に調整する所定
間隙のスリツトを形成するためにスリツト部材3
0a,30bが設けられている。
The output voltage of the first light receiving element 26a is applied to the non-inverting side terminal of the comparator 28 via the first amplifier 27a, and the output voltage of the second light receiving element 26b is applied to the inverting side terminal of the comparator 28. is applied via the second amplifier 27b. The output signal of the comparator 28 is input to the control device 29. Further, first and second transparent cases 2 are provided on both sides of the light emitting element 25.
The slit member 3 is used to form a slit with a predetermined gap that adjusts the amount of light flowing into the slit members 3 and 24 to be approximately constant.
0a and 30b are provided.

ここで、第2透明ケース24に封入されている
燃料中の添加剤濃度はトラツプ3の再生に適した
濃度に設定されている。
Here, the additive concentration in the fuel sealed in the second transparent case 24 is set to a concentration suitable for regenerating the trap 3.

制御装置29は、比較器28からの入力信号が
“H”になると、電磁式流量制御弁9にデユーテ
イ比一定のパルス信号を出力しその制御弁9を
ON・OFF制御することにより添加剤タンク8か
ら添加剤を所定量づつ燃料供給通路6に供給させ
るように構成されている。また、制御装置29か
ら発光素子25に所定電圧が印加され、発光素子
25を発光させるように構成されている。ここで
は、添加剤タンク8と流量制御弁9とにより添加
剤供給手段を構成する。
When the input signal from the comparator 28 becomes "H", the control device 29 outputs a pulse signal with a constant duty ratio to the electromagnetic flow control valve 9, and controls the control valve 9.
It is configured to supply a predetermined amount of additive from the additive tank 8 to the fuel supply passage 6 by controlling ON/OFF. Further, a predetermined voltage is applied from the control device 29 to the light emitting element 25, and the light emitting element 25 is configured to emit light. Here, the additive tank 8 and the flow rate control valve 9 constitute an additive supply means.

尚、第1図中30は消音器、第2図中31はバ
ツテリ電源である。
Note that 30 in FIG. 1 is a silencer, and 31 in FIG. 2 is a battery power source.

次に作用を説明する。 Next, the action will be explained.

制御装置29から発光素子25に所定電圧が印
加されると、発光素子25が発光し、その光がス
リツト部材30a,30bの間隙を通過した後第
1及び第2の透明ケース23,24を通過し各受
光素子26a,26bに入力される。
When a predetermined voltage is applied to the light emitting element 25 from the control device 29, the light emitting element 25 emits light, and the light passes through the gap between the slit members 30a and 30b, and then passes through the first and second transparent cases 23 and 24. The light is then input to each light receiving element 26a, 26b.

このとき、第2の透明ケース24には所定濃度
の添加剤が混入された燃料が封入されているの
で、第2の透明ケース24内を通過する光の強度
は添加剤による光吸収等により略一定値低減され
る。したがつて、第2の受光素子26bには第2
の透明ケース24内で低減された略一定強度の光
が入力されるため、第2の受光素子26bは略一
定の電圧を発生する。この電圧が第2の増巾器2
7bを介して比較器28の反転側端子に入力され
る。
At this time, since fuel mixed with a predetermined concentration of additives is sealed in the second transparent case 24, the intensity of the light passing through the second transparent case 24 is approximately equal to 100% due to light absorption by the additives, etc. Reduced by a certain value. Therefore, the second light receiving element 26b has a second
Since the light having a reduced and substantially constant intensity is input inside the transparent case 24, the second light receiving element 26b generates a substantially constant voltage. This voltage is applied to the second amplifier 2
It is input to the inverting side terminal of the comparator 28 via 7b.

一方、燃料噴射ポンプ21に供給される燃料が
第1の透明ケース23を流通するが、この燃料中
に混入される添加剤の濃度の変化により第1の受
光素子26aに入力される光の強度は変化する。
すなわち、その添加剤濃度が第2の透明ケース2
4内の添加剤濃度より希薄になると添加剤の光吸
収量が低減するため第1の受光素子26aに入力
される光の強度は大きくなる。したがつて、受光
素子26aの出力電圧が大きくなつて比較器28
の非反転側端子に印加される電圧がその反転側端
子に第2の受光素子26bから印加される電圧を
超えるため比較器28の出力が“H”となる。
On the other hand, the fuel supplied to the fuel injection pump 21 flows through the first transparent case 23, but due to changes in the concentration of additives mixed into this fuel, the intensity of light input to the first light receiving element 26a changes.
That is, the additive concentration is lower than that of the second transparent case 2.
When the additive concentration is lower than that in 4, the amount of light absorbed by the additive decreases, so the intensity of light input to the first light receiving element 26a increases. Therefore, the output voltage of the light receiving element 26a increases and the output voltage of the comparator 28 increases.
Since the voltage applied to the non-inverting side terminal exceeds the voltage applied to the inverting side terminal from the second light receiving element 26b, the output of the comparator 28 becomes "H".

これにより、制御装置29から前記流量制御弁
9にデユーテイ比一定のパルス信号が出力されて
流量制御弁9がON・OFF制御されて燃料供給通
路6の燃料中に添加剤が供給される。
As a result, a pulse signal with a constant duty ratio is output from the control device 29 to the flow rate control valve 9, and the flow rate control valve 9 is controlled to turn on and off, thereby supplying the additive into the fuel in the fuel supply passage 6.

したがつて、第1の透明ケース23を通過する
燃料中の添加剤濃度が濃化するため、第1の受光
素子26aに入力される光の強度が低下し第1の
受光素子26aの出力電圧が低下する。そして、
第1の透明ケース23を通過する燃料中の添加剤
濃度が第2の透明ケース24内の添加剤濃度より
濃化すると第1の受光素子26aの出力電圧が第
2の受光素子26bの出力電圧より低下するため
比較器28の出力が“L”となり制御装置29は
流量制御弁9へのパルス信号の出力を停止し添加
剤の燃料への投入を停止させる。
Therefore, since the additive concentration in the fuel passing through the first transparent case 23 increases, the intensity of light input to the first light receiving element 26a decreases, and the output voltage of the first light receiving element 26a decreases. decreases. and,
When the additive concentration in the fuel passing through the first transparent case 23 becomes higher than the additive concentration in the second transparent case 24, the output voltage of the first light receiving element 26a changes to the output voltage of the second light receiving element 26b. Since the output of the comparator 28 becomes "L", the control device 29 stops outputting the pulse signal to the flow rate control valve 9 and stops adding the additive to the fuel.

かかる流量制御弁9の制御を繰返すことにより
機関に供給される燃料への添加剤の投入・停止を
繰返し第1の透明ケース23を通過する燃料中の
添加剤濃度が第2の透明ケース24内の添加剤濃
度になるように制御する。
By repeating the control of the flow rate control valve 9, the addition and stopping of the additive to the fuel supplied to the engine is repeated, and the concentration of the additive in the fuel passing through the first transparent case 23 increases to the level in the second transparent case 24. The additive concentration is controlled so that the additive concentration is as follows.

以上説明したように、機関に供給される燃料中
の実際の添加剤濃度を直接検出しこの検出値に基
づいて燃料に添加剤を供給するようにしたので、
機関への燃料供給量の変化に関わらず添加剤濃度
を高精度でかつ略一定値に制御できる。したがつ
て、機関に略一定濃度の添加剤を機関の運転状態
に関わらず供給できるので排気中に排出される添
加剤の金属成分が燃料消費量に略比例するからそ
の金属成分の作用による排気微粒子燃焼性能を機
関の運転状態に関わらず略一定にできる。これに
より、トラツプの再生性能を安定させることがで
き、もつて従来発生していたトラツプの再生性能
の低下による排圧上昇を防止できる。また、添加
剤過濃によるトラツプ内温度の急激な上昇を抑制
してトラツプ3の焼損を防止できると共に金属成
分の大気中への放散及び添加剤の消費量を必要最
小限に抑制できる。
As explained above, since the actual additive concentration in the fuel supplied to the engine is directly detected and the additive is supplied to the fuel based on this detected value,
The additive concentration can be controlled with high precision to a substantially constant value regardless of changes in the amount of fuel supplied to the engine. Therefore, since the additive can be supplied to the engine at a substantially constant concentration regardless of the operating state of the engine, the metal component of the additive emitted into the exhaust gas is approximately proportional to the amount of fuel consumed, so the exhaust gas due to the action of the metal component can be The particulate combustion performance can be kept approximately constant regardless of the operating state of the engine. This makes it possible to stabilize the regeneration performance of the trap, and prevent the exhaust pressure from increasing due to a decrease in the regeneration performance of the trap, which has conventionally occurred. In addition, it is possible to suppress a sudden rise in the temperature inside the trap due to excessive concentration of the additive, thereby preventing burnout of the trap 3, and also suppressing the dispersion of metal components into the atmosphere and the consumption of the additive to the necessary minimum.

尚、本実施例では、制御装置29の出力信号を
デユーテイ比一定のパルス信号としたが、例えば
機関に供給される燃料中の添加剤濃度が所定の添
加剤濃度に近づくにつれて流量制御弁9の開弁時
間が短かくなるようにパルス信号のデユーテイ比
を添加剤濃度に応じて変化させるようにしてもよ
くこの場合添加剤濃度の制御精度が向上する。パ
ルス信号のデユーテイ比を添加剤濃度に応じて変
化させるときには比較器28の代わりに差動増幅
器を用いる。
In this embodiment, the output signal of the control device 29 is a pulse signal with a constant duty ratio, but for example, as the additive concentration in the fuel supplied to the engine approaches a predetermined additive concentration, the flow control valve 9 The duty ratio of the pulse signal may be changed depending on the additive concentration so that the valve opening time is shortened, and in this case, the control accuracy of the additive concentration is improved. A differential amplifier is used instead of the comparator 28 when changing the duty ratio of the pulse signal according to the additive concentration.

<考案の効果> 本考案は、以上説明したように、機関に供給さ
れる燃料中の実際の添加剤濃度に基づいて燃料へ
の添加剤供給を行なうようにしたから、機関に供
給される燃料中の添加剤濃度を高精度に制御で
き、もつてトラツプの再生性能を安定させること
ができトラツプの目詰まりによる排圧上昇及び排
気微粒子の急激な燃焼によるトラップの焼損を防
止できると共に添加剤の消費量及びその金属成分
の大気中への放散を抑制できる。
<Effects of the invention> As explained above, the present invention supplies additives to the fuel based on the actual additive concentration in the fuel supplied to the engine. The concentration of the additive in the trap can be controlled with high precision, thereby stabilizing the regeneration performance of the trap, preventing an increase in exhaust pressure due to trap clogging, and preventing burnout of the trap due to rapid combustion of exhaust particles. It is possible to suppress consumption and the release of metal components into the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す構成図、第2
図は同上の要部拡大図、第3図は排気微粒子処理
装置の従来例を示す構成図である。 1……機関、2……排気通路、3……トラツ
プ、8……添加剤タンク、9……流量制御弁、2
2……濃度検出器、29……制御装置。
Fig. 1 is a configuration diagram showing one embodiment of the present invention;
The figure is an enlarged view of the same essential parts as above, and FIG. 3 is a configuration diagram showing a conventional example of an exhaust particulate processing device. 1... Engine, 2... Exhaust passage, 3... Trap, 8... Additive tank, 9... Flow rate control valve, 2
2... Concentration detector, 29... Control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 機関の排気通路に介装され排気中の微粒子を捕
集するトラツプと、該トラツプに捕集された排気
微粒子の燃焼を促進する添加剤を機関の燃料に供
給する添加剤供給手段と、燃料中の添加剤濃度を
検出する濃度検出手段と、検出された添加剤濃度
に基づいて前記添加剤供給手段を制御する制御手
段と、を備えたことを特徴とする内燃機関の排気
微粒子処理装置。
a trap installed in an exhaust passage of an engine to collect particulates in the exhaust; an additive supply means for supplying the engine fuel with an additive that promotes combustion of the exhaust particulates collected in the trap; 1. An exhaust particulate treatment device for an internal combustion engine, comprising: a concentration detection means for detecting an additive concentration; and a control means for controlling the additive supply means based on the detected additive concentration.
JP15914084U 1984-10-23 1984-10-23 Expired JPS6337469Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15914084U JPS6337469Y2 (en) 1984-10-23 1984-10-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15914084U JPS6337469Y2 (en) 1984-10-23 1984-10-23

Publications (2)

Publication Number Publication Date
JPS6174613U JPS6174613U (en) 1986-05-20
JPS6337469Y2 true JPS6337469Y2 (en) 1988-10-04

Family

ID=30717102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15914084U Expired JPS6337469Y2 (en) 1984-10-23 1984-10-23

Country Status (1)

Country Link
JP (1) JPS6337469Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220021096A (en) * 2020-08-13 2022-02-22 이경은 Apparatus and method for controling fuel additive injector for commercial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220021096A (en) * 2020-08-13 2022-02-22 이경은 Apparatus and method for controling fuel additive injector for commercial vehicle

Also Published As

Publication number Publication date
JPS6174613U (en) 1986-05-20

Similar Documents

Publication Publication Date Title
US5193340A (en) Exhaust gas purifying system for internal combustion engine
US7412822B2 (en) Regeneration control for diesel particulate filter for treating diesel engine exhaust
US7032376B1 (en) Diesel fuel burner for diesel emissions control system
KR100613646B1 (en) Exhaust gas purifying device and method for internal combustion engine
WO2018214861A1 (en) Burner dpf regeneration control and diagnostic device
JPH04128509A (en) System for removing fine particle substance from exhaust gas of internal combustion engine and method thereof
US20100199634A1 (en) Exhaust treatment system implementing selective doc bypass
KR20010098647A (en) Exhaust gas purification device
JP2004518847A (en) Method and apparatus for controlling an internal combustion engine
US4061117A (en) Method of controlling air-fuel mixture in internal combustion engine and a system therefor
US20050228572A1 (en) Catalyst temperature modelling during exotermic operation
JP2004060651A (en) Control method and device for exhaust gas aftertreatment system
US9951673B2 (en) Engine aftertreatment system with exhaust lambda control
Zechnall et al. Closed-loop exhaust emission control system with electronic fuel injection
SE0203250L (en) Method for regeneration of a particulate filter and vehicles in which such a method is used
EP1310640B1 (en) System for assisting the regeneration of a catalytic particle filter
CN110905631A (en) Low-energy-consumption diesel engine tail gas treatment system suitable for high exhaust flow
US8783023B2 (en) Exhaust gas purification system for internal combustion engine
US20100146946A1 (en) Device for use in exhaust aftertreatment system
JPS6337469Y2 (en)
JPS6045744B2 (en) Air fuel ratio control device
CN110953040B (en) DPF temperature control system and control method of low-energy-consumption tail gas treatment system
JP2005090249A (en) Temperature control device
JP2004019624A (en) Exhaust emission control device of internal combustion engine
KR100279933B1 (en) How to remove harmful emissions using ECU connected to soot filtration device and EGR device