JPS6337197A - Method for regenerating desulfurizing agent in coal gasification - Google Patents

Method for regenerating desulfurizing agent in coal gasification

Info

Publication number
JPS6337197A
JPS6337197A JP18094886A JP18094886A JPS6337197A JP S6337197 A JPS6337197 A JP S6337197A JP 18094886 A JP18094886 A JP 18094886A JP 18094886 A JP18094886 A JP 18094886A JP S6337197 A JPS6337197 A JP S6337197A
Authority
JP
Japan
Prior art keywords
gas
air
coal
desulfurizing agent
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18094886A
Other languages
Japanese (ja)
Other versions
JPH083103B2 (en
Inventor
Naruhito Takamoto
成仁 高本
Hiroshi Ishizaka
浩 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61180948A priority Critical patent/JPH083103B2/en
Publication of JPS6337197A publication Critical patent/JPS6337197A/en
Publication of JPH083103B2 publication Critical patent/JPH083103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To regenerate a desulfurizing agent with air or steam, in processing powdered coal with air, etc., into a gas and slag in a gasifying furnace, by feeding the desulfurizing agent to the gasifying furnace, making sulfur compounds in the gas into sulfides and feeding the sulfides and unreacted char to a regenerating column. CONSTITUTION:In gasifying coal by a gasifying furnace 1, a formed gas containing H2S, a harmful component, is produced. Ash in the coal is melted into slag and discharged through a slag outlet tube 5 to the outside of system. On the other hand, in order to remove H2S in the formed gas, an ultrafine desulfurizing agent (e.g. limestone, etc.) is fed from the desulfurizing feed pipe 2 of the gasifying furnace 1. Sulfide CaS formed in the gasifying furnace 1 and unreacted char containing carbon are sent from the top of the furnace through an exhaust pipe 6 and separated into the gas and particles by a cyclone 7. The particles separated by the cyclone 7 are fed to a regenerating column 9, treated with air and steam from an air feed pipe 11 and a steam fed pipe 12, CaS is separated into CaO and S and regenerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石炭ガス化における脱硫剤の再生方法に関し、
特に石炭をガス化して生成したガス中の流黄化合物を効
率良く除去し、ガス化発電用のガスとする石炭ガス化に
おける脱硫剤の再生方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for regenerating a desulfurization agent in coal gasification,
In particular, the present invention relates to a method for regenerating a desulfurization agent in coal gasification, which efficiently removes yellowing compounds from the gas produced by gasifying coal to provide gas for gasification power generation.

(従来の技術) 近年、エネルギー源としての石炭利用が急速に進んでお
り、石炭をそのまま燃料として燃境させる方法、または
石炭をガス化、液化して無公害な流体燃料として利用す
る技術の開発が盛んになっている。我が国では石炭をガ
ス化する技術として、原料ガスまたは燃料ガスを得る高
カロリーガス化プロセスおよび発電用を目的とした低カ
ロリーガス化プロセスの開発が主に進められている。さ
らに最近では、酸素または空気とスチームを用い、石炭
を噴流層でスラグガス化し、灰をスラグとして排出する
プロセスの開発が進められている。
(Conventional technology) In recent years, the use of coal as an energy source has been rapidly progressing, and there is a need for the development of methods to burn coal directly as fuel, or to gasify and liquefy coal to use it as non-polluting fluid fuel. is becoming popular. In Japan, as technologies for gasifying coal, the main developments are a high-calorie gasification process for obtaining raw material gas or fuel gas, and a low-calorie gasification process for power generation. More recently, progress has been made in the development of a process in which coal is gasified into slag in a spouted bed using oxygen or air and steam, and the ash is discharged as slag.

このスラグガス化プロセスでは、炉内の温度を1500
℃以上にすることにより石炭中の天分を熔融して、炉底
からスラグとして排出するため、石炭中のカーボンのガ
ス化反応速度が大きくなり、また石炭を高温高圧でガス
化するため、生成ガスはCOとH2を多く含んでいる。
In this slag gasification process, the temperature inside the furnace is set to 1500
By heating the temperature above ℃, the natural substances in the coal are melted and discharged from the bottom of the furnace as slag, which increases the gasification reaction rate of carbon in the coal.Also, since the coal is gasified at high temperature and pressure, The gas contains a lot of CO and H2.

これをガス化発電と組み合わせる場合、この生成粗ガス
を高温のまま処理することがエネルギーの有効利用の面
から望ましく、したがってガス化炉で主にH2Sとなる
石炭中の硫黄成分を高温状態で脱硫することが大きな課
題となっている。
When this is combined with gasification power generation, it is desirable from the standpoint of effective energy use to process the generated crude gas at a high temperature. Therefore, the sulfur components in the coal, which mainly become H2S, are desulfurized at high temperatures in the gasifier. It is a big challenge to do so.

第5図は、従来のガス化発電装置の一例を示す系統図で
ある。図において、供給された石炭3はガス化炉1でガ
ス化され、生成ガス中の未反応チャーと、生成ガス中の
硫黄化合物と反応した脱硫剤とは排出管6からサイクロ
ン7に導かれ、ここで粒径の大きいチャーがまず分離さ
れ、次に熱交換器20でガスは冷却され、2次サイクロ
ン22で前記反応脱硫剤が分離される。硫黄化合物が除
去された精製ガスはコンパスタ17に送り込まれ、ガス
タービン18で発電に使用される。
FIG. 5 is a system diagram showing an example of a conventional gasification power generation device. In the figure, supplied coal 3 is gasified in a gasification furnace 1, and unreacted char in the generated gas and desulfurization agent that has reacted with sulfur compounds in the generated gas are led to a cyclone 7 from a discharge pipe 6. Here, char having a large particle size is first separated, then the gas is cooled in a heat exchanger 20, and the reactive desulfurization agent is separated in a secondary cyclone 22. The purified gas from which sulfur compounds have been removed is sent to the comparator 17 and used by the gas turbine 18 for power generation.

この方法によれば、ガスタービン18に入るガス温度が
高く、ガスタービン18の発電効率が高くなるが、2次
サイクロン22で回収した反応脱硫剤が再生塔9で空気
供給管11からの空気により再生させる際、再生ガスと
して高濃度のS02ガスが発生し、通常の石灰石−石膏
法による吸収除去が困難となる。またS02を還元して
硫黄として回収するには、還元ガスが必要となり、装置
が複雑化し、コスト高となる。
According to this method, the temperature of the gas entering the gas turbine 18 is high, and the power generation efficiency of the gas turbine 18 is increased. During regeneration, a high concentration of S02 gas is generated as regeneration gas, making it difficult to absorb and remove it by the usual limestone-gypsum method. Further, reducing S02 and recovering it as sulfur requires a reducing gas, which complicates the equipment and increases costs.

(発明が解決しようとする問題点) 本発明の目的は、上記従来技術の問題点を解決し、再生
塔で効率良く反応脱硫剤を再生して、脱硫剤と硫黄とに
分離し、回収することのできる石炭ガス化における脱硫
剤の再生方法を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of the prior art, to efficiently regenerate the reactive desulfurizing agent in a regeneration tower, and to separate and recover the desulfurizing agent and sulfur. An object of the present invention is to provide a method for regenerating a desulfurization agent in coal gasification.

(問題点を解決するための手段) 上記目的は、脱硫剤として微粉石灰石を用い、ガス化炉
で生じた未反応チャーと、石灰石と反応した硫化物とを
サイクロンで捕集して再生塔に導き、空気または/およ
びスチームとにより反応させ、脱硫剤と硫黄に分離し、
回収することにより達せられる。
(Means for solving the problem) The above purpose is to use pulverized limestone as a desulfurization agent, and collect unreacted char generated in the gasifier and sulfide reacted with limestone with a cyclone and send it to the regeneration tower. and react with air or/and steam to separate the desulfurization agent and sulfur,
Achieved by collecting.

すなわち本発明は、微粉炭を用いて酸素または空気によ
るエントレイン方式によりスラグガス化し、精製したガ
スを必要に応じてガスタービンに導いてガス化発電する
方法において、ガス化炉に脱硫剤を供給し、ガス中の硫
黄化合物を硫化物として、未反応チャーとともに再生塔
に導き、空気または/およびスチームで脱硫剤を再生す
ることを特徴とする。
That is, the present invention is a method of gasifying slag gas using pulverized coal by entraining with oxygen or air, and guiding the purified gas to a gas turbine as necessary to generate gasification power. , the sulfur compounds in the gas are introduced as sulfides together with unreacted char to a regeneration tower, and the desulfurization agent is regenerated with air and/or steam.

本発明における再生塔の温度は、750〜950℃が望
ましく、特に800℃前後が最適である。
The temperature of the regeneration tower in the present invention is preferably 750 to 950°C, and particularly optimally around 800°C.

また、本発明における再生塔に供給する空気とスチーム
の供給量の割合(air/stmiii量比)は2以下
が望ましい。空気の供給量を増加しすぎると、再生ガス
中の硫黄濃度が増加するが、系の反応温度が低下する傾
向がある。
Further, in the present invention, the ratio of the amounts of air and steam supplied to the regeneration tower (air/stmiii amount ratio) is preferably 2 or less. If the air supply amount is increased too much, the sulfur concentration in the regeneration gas will increase, but the reaction temperature of the system will tend to decrease.

再生塔より回収した脱硫剤CaOは、ガス化炉にリサイ
クルして再利用することができる。
The desulfurization agent CaO recovered from the regeneration tower can be recycled and reused in the gasification furnace.

(作用) 本発明で使用される再生塔では、石灰石の硫化物は以下
の反応により硫黄として回収される。
(Operation) In the regeneration tower used in the present invention, limestone sulfide is recovered as sulfur through the following reaction.

先ず、ガス化炉で H2S+CaCO3→CaS+H20+CO2の反応に
より作られた硫化物は、再生塔に供給された空気により
一部燃焼してSO2を生成する。
First, sulfide produced by the reaction of H2S+CaCO3→CaS+H20+CO2 in the gasifier is partially combusted by air supplied to the regeneration tower to generate SO2.

CaS+3/202−”CaO+5O2一方、チャーと
S02またはスチームは次の反応によりH2Sとなる。
CaS+3/202-"CaO+5O2 On the other hand, char and S02 or steam become H2S through the following reaction.

c+so2→s+co2 C+H20−=H2+CO 3+H2→H2S さらにH2SとSO2は以下の反応により硫黄となる。c+so2→s+co2 C+H20-=H2+CO 3+H2→H2S Furthermore, H2S and SO2 become sulfur through the following reaction.

2H2S+SO2→3S+H20 以上の反応により硫化物は単体S(硫黄)となり、再生
塔出口ガスを冷却すれば容易に硫黄として回収すること
ができる。
2H2S+SO2→3S+H20 The above reaction turns sulfide into elemental S (sulfur), which can be easily recovered as sulfur by cooling the regeneration tower outlet gas.

(実施例) 第1図は、本発明の一実施例を示す石炭ガス化および脱
硫剤の再生装置の系統図である。この装置は、石炭をス
ラグガス化するガス化炉1と、該ガス化炉1の生成ガス
から脱硫剤等の粒子を除去するサイクロン7と、該脱硫
剤の再生塔9と、サイクロンを出たガスを除塵する脱塵
器8と、該脱塵器8からのガスにより一発電を行なうた
めのガスタービン18とから成っている。上記構成にお
いて、ガス化する微粉炭は石炭供給管3よりガス化炉1
の下部に供給され、同時にガス化剤である酸素または空
気が酸素供給管4から供給される。
(Example) FIG. 1 is a system diagram of a coal gasification and desulfurization agent regeneration apparatus showing an example of the present invention. This device consists of a gasification furnace 1 that turns coal into slag gas, a cyclone 7 that removes particles such as a desulfurization agent from the gas produced by the gasification furnace 1, a regeneration tower 9 for the desulfurization agent, and a gas exiting from the cyclone. It consists of a dust remover 8 for removing dust, and a gas turbine 18 for generating electricity using the gas from the dust remover 8. In the above configuration, pulverized coal to be gasified is supplied to the gasifier 1 from the coal supply pipe 3.
At the same time, oxygen or air as a gasifying agent is supplied from the oxygen supply pipe 4.

ガス化炉1で石炭はガス化され、有害成分であるH2S
を含む生成ガスを発生する。また石炭中の灰は溶融して
スラグとしてスラグ排出管5から系外に排出する。
Coal is gasified in gasifier 1, and H2S, a harmful component, is
Generates product gas containing. Further, the ash in the coal is melted and discharged as slag to the outside of the system through the slag discharge pipe 5.

一方、生成ガス中の硫黄化合物であるH2Sを除去する
ため、ガス化炉1の脱硫剤供給管2から微粉の脱硫剤、
例えば石灰石、ドロマイト、酸化亜鉛、酸化鉄等が供給
される。ガス化炉1で生成した硫化物CaSとカーボン
を含む未反応チャーは塔頂から排出管6を通ってサイク
ロン7に入り、ガスと分離される。サイクロン7で分離
された粒子は再生塔9に入り、空気供給管11およびス
チーム供給管12からの空気とスチームによりCaSは
Ca0(脱硫剤)とS(硫黄)に再生される。
On the other hand, in order to remove H2S, which is a sulfur compound in the generated gas, a fine powder of desulfurization agent is supplied from the desulfurization agent supply pipe 2 of the gasification furnace 1.
For example, limestone, dolomite, zinc oxide, iron oxide, etc. are supplied. Unreacted char containing CaS sulfide and carbon produced in the gasifier 1 enters the cyclone 7 from the top of the tower through the exhaust pipe 6, where it is separated from the gas. The particles separated by the cyclone 7 enter the regeneration tower 9, where CaS is regenerated into Ca0 (desulfurizing agent) and S (sulfur) by air and steam from the air supply pipe 11 and the steam supply pipe 12.

再生した硫黄蒸気を含むガスは再生ガス出口管10から
系外に排出され、冷却して単体硫黄として回収される。
The regenerated gas containing sulfur vapor is discharged from the system through the regenerated gas outlet pipe 10, cooled, and recovered as elemental sulfur.

一方、再生塔9で再生された脱硫剤CaOは脱硫剤抜出
管13から抜出され、灰分離器14で天分を抜出した後
、脱硫剤リサイクル管16によりガス化炉1ヘリサイク
ルされる。
On the other hand, the desulfurization agent CaO regenerated in the regeneration tower 9 is extracted from the desulfurization agent extraction pipe 13, and after the ash separator 14 extracts the contents, it is recycled to the gasification furnace 1 through the desulfurization agent recycling pipe 16. .

またサイクロン7を出た精製されたガスは脱塵器8でダ
ストを分離した後、コンパスタ17に入りガスタービン
18で発電を行ない、排ガス管19から系外に放出され
る。
Further, the purified gas leaving the cyclone 7 separates dust in a dust remover 8, enters a comparator 17, generates electricity in a gas turbine 18, and is discharged from the system through an exhaust gas pipe 19.

以上の方法により容易に硫化物CaSから硫黄に再生処
理することが可能となった。
By the above method, it has become possible to easily regenerate sulfide CaS into sulfur.

次に第2図ないし第4図は、本発明を実証するために小
型実験装置を用いてCaSとチャーの混合物の再生実験
を行なった結果を示すものである。
Next, FIGS. 2 to 4 show the results of a regeneration experiment of a mixture of CaS and char using a small experimental device in order to demonstrate the present invention.

第2図は、供給ガスとして空気とスチームの重量比(a
ir/stm)をθ〜2に変化したガスを用い、再生塔
の温度を700〜1000℃に変えたときのCaS再生
率(CaSがCaOに再生される割合)を示したもので
あるが、温度800℃でCaS再生率が最大となること
がわかる。また第3図は、再生塔の温度を同様に変化し
た場合のチャーの反応率を示したものであるが、温度が
高いほどスチームとチャーの反応が進み、チャーの反応
率が高(なる傾向を示している。以上の結果から再生塔
の最適温度は750から950℃、好ましくは800℃
前後であることがわかった。
Figure 2 shows the weight ratio (a
The graph shows the CaS regeneration rate (the rate at which CaS is regenerated into CaO) when the temperature of the regeneration tower is changed from 700 to 1000°C using a gas whose ir/stm) has been changed to θ ~ 2. It can be seen that the CaS regeneration rate is maximum at a temperature of 800°C. Figure 3 shows the reaction rate of char when the temperature of the regeneration tower is similarly changed. From the above results, the optimum temperature for the regeneration tower is 750 to 950°C, preferably 800°C.
I found out that it was before and after.

第4図は、温度850℃、常圧下で空気とスチーム比(
a ir/s tm)を変化した場合の再生ガス出口の
ガス中のS濃度を示したものであるが、空気の供給量を
増してair/stm比を上げた方がs4度が高くなる
ことがわかる。しかしair/stm比が2を超えると
S濃度はそれ以上を増加せず、またその反応濃度が低下
するので、air/stm比は2以下が適当であること
がわかった。
Figure 4 shows the air and steam ratio (
This shows the S concentration in the gas at the regeneration gas outlet when changing the air/stm ratio, and it shows that increasing the air supply amount and raising the air/stm ratio will result in a higher s4 degree. I understand. However, when the air/stm ratio exceeds 2, the S concentration does not increase any more and the reaction concentration decreases, so it has been found that an air/stm ratio of 2 or less is appropriate.

(発明の効果) 本発明によれば、再生塔で効率良く反応脱硫剤を再生し
て、脱硫剤と硫黄に分離し、回収することができ、装置
の複雑化や、コスト高を防止することができる。
(Effects of the Invention) According to the present invention, the reactive desulfurization agent can be efficiently regenerated in the regeneration tower, separated into the desulfurization agent and sulfur, and recovered, thereby preventing complication of the equipment and high cost. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置系統図、第2図は
再生塔でのCaS再生率と温度の関係を示す図、第3図
には再生塔でのチャー反応率と温度の関係を示す図、第
4図は再生ガス出口の硫黄濃度と空気とスチーム比の関
係を示す図、第5図は従来のガス化発電装置を示す装置
系統図である。 1・・・ガス化炉1.2・・・脱硫剤供給管、3・・・
石炭供給管、4・・・酸素供給管、5・・・スラグを友
出管、6・・・排出管、7・・・サイクロン、8・・・
脱塵器、9・・・再生塔、10・・・再生ガス出口管、
11・・・空気供給管、12・・・スチーム供給管、1
3・・・脱硫剤抜出管、14・・・灰分離器、15・・
・灰抜出前、16・・・脱硫剤リサイクル管、17・・
・コンパスタ、18・・・ガスタービン、19・・・排
ガス管、20・・・熱交換器、21・・・リサイクル管
、22・・・2次サイクロン。 代理人 弁理士 川 北 武 長 第1図 1ガス化炉     8脱塵器     15灰抜出管
2脱硫剤供給管   9再生塔      16脱硫剤
リサイクル管3石炭供給管    10再生ガス出口管
  17コンパスタ4酸石供給管    11空気供給
管    18ガスタービン5スラグ抜出管   12
スチーム供給管  19排ガス管6排出管      
13脱硫剤抜出管7サイクロン    14灰分離器 第2図 温度(°C) 第3図 温度(°C)
Figure 1 is an equipment system diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the CaS regeneration rate and temperature in the regeneration tower, and Figure 3 is a diagram showing the relationship between the char reaction rate and temperature in the regeneration tower. FIG. 4 is a diagram showing the relationship between the sulfur concentration at the regeneration gas outlet and the air to steam ratio, and FIG. 5 is a system diagram showing a conventional gasification power generation device. 1...Gasifier 1.2...Desulfurizing agent supply pipe, 3...
Coal supply pipe, 4... Oxygen supply pipe, 5... Slag removal pipe, 6... Discharge pipe, 7... Cyclone, 8...
Dust remover, 9... Regeneration tower, 10... Regeneration gas outlet pipe,
11...Air supply pipe, 12...Steam supply pipe, 1
3... Desulfurizing agent extraction pipe, 14... Ash separator, 15...
・Before ash removal, 16... Desulfurization agent recycling pipe, 17...
- Compaster, 18... Gas turbine, 19... Exhaust gas pipe, 20... Heat exchanger, 21... Recycling pipe, 22... Secondary cyclone. Agent Patent Attorney Takenaga Kawakita Figure 1 1 Gasifier 8 Dust remover 15 Ash extraction pipe 2 Desulfurizing agent supply pipe 9 Regeneration tower 16 Desulfurizing agent recycling pipe 3 Coal supply pipe 10 Regenerated gas outlet pipe 17 Compaster 4 Acid Stone supply pipe 11 Air supply pipe 18 Gas turbine 5 Slag extraction pipe 12
Steam supply pipe 19 Exhaust gas pipe 6 Discharge pipe
13 Desulfurizing agent extraction pipe 7 Cyclone 14 Ash separator Figure 2 Temperature (°C) Figure 3 Temperature (°C)

Claims (2)

【特許請求の範囲】[Claims] (1)微粉炭をガス化炉内で酸素または空気によりスラ
グガス化する方法において、ガス化炉に脱硫剤を供給し
、ガス中の硫黄化合物を硫化物として、未反応チャーと
ともに再生塔に導き、空気または/およびスチームで脱
硫剤を再生することを特徴とする石炭ガス化における脱
硫剤の再生方法。
(1) In a method of slag gasifying pulverized coal with oxygen or air in a gasifier, a desulfurization agent is supplied to the gasifier, and sulfur compounds in the gas are converted into sulfides and guided to a regeneration tower along with unreacted char. A method for regenerating a desulfurizing agent in coal gasification, comprising regenerating the desulfurizing agent with air and/or steam.
(2)特許請求の範囲第1項において、脱硫剤として微
粉の石灰石を用いることを特徴とする石炭ガス化におけ
る脱硫剤の再生方法。
(2) A method for regenerating a desulfurization agent in coal gasification according to claim 1, characterized in that finely powdered limestone is used as the desulfurization agent.
JP61180948A 1986-07-31 1986-07-31 Regeneration method of desulfurizing agent in coal gasification Expired - Fee Related JPH083103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180948A JPH083103B2 (en) 1986-07-31 1986-07-31 Regeneration method of desulfurizing agent in coal gasification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180948A JPH083103B2 (en) 1986-07-31 1986-07-31 Regeneration method of desulfurizing agent in coal gasification

Publications (2)

Publication Number Publication Date
JPS6337197A true JPS6337197A (en) 1988-02-17
JPH083103B2 JPH083103B2 (en) 1996-01-17

Family

ID=16092073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180948A Expired - Fee Related JPH083103B2 (en) 1986-07-31 1986-07-31 Regeneration method of desulfurizing agent in coal gasification

Country Status (1)

Country Link
JP (1) JPH083103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762105A (en) * 2015-03-13 2015-07-08 李毅强 Biomass gasifier flue gas self-purification device
CN113600246A (en) * 2021-08-23 2021-11-05 中冶赛迪上海工程技术有限公司 Desulfurization catalyst regeneration method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872202A (en) * 1971-11-12 1973-09-29
JPS55808A (en) * 1978-06-14 1980-01-07 Babcock Hitachi Kk Desulfurizing agent regenerating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872202A (en) * 1971-11-12 1973-09-29
JPS55808A (en) * 1978-06-14 1980-01-07 Babcock Hitachi Kk Desulfurizing agent regenerating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762105A (en) * 2015-03-13 2015-07-08 李毅强 Biomass gasifier flue gas self-purification device
CN113600246A (en) * 2021-08-23 2021-11-05 中冶赛迪上海工程技术有限公司 Desulfurization catalyst regeneration method and system

Also Published As

Publication number Publication date
JPH083103B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JP5166443B2 (en) Electric energy generation method and equipment in gas / steam turbine (combined cycle) power plant
US20080202985A1 (en) Method for recovery of hydrocarbon oils from oil shale and other carbonaceous solids
CN101802143A (en) Method for purifying the crude gas from a solid matter gasification
BRPI0722330B1 (en) PROCESS AND INSTALLATION TO PRODUCE COAL AND FUEL GAS
CN1212730A (en) Process for production of liquid pig iron or liquid intermediate products of steel and plant for carrying out said process
JPH0653206B2 (en) Removal method of sulfur from exhaust gas of reduction blast furnace
JP4250472B2 (en) Method for producing reduced iron and reducing gas for blast furnace charge, method for using reduced iron, and method for using reducing gas
JPS621784A (en) Gasification of hydrocarbon fuel
JPS6150995B2 (en)
JPS6337197A (en) Method for regenerating desulfurizing agent in coal gasification
JPS63191894A (en) Treatment of fly slag
JP2635652B2 (en) Dry desulfurization of coal gas
US4064222A (en) Nitrogen fixation and molecular magneto hydrodynamic generation using a coal gasification gas stream
JP2000212620A (en) Production of reduced iron
KR101149601B1 (en) Carbon dioixde sequester using molten slag
JPS63297496A (en) Sulfur recover in high-temperature desulfurization process
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
JPH06293888A (en) Method for recovering sulfur from plant for gasifying coal and device therefor
CA2413563C (en) Power generation from sulphur-containing fuels
JPS62260889A (en) Method of desulfurization in gasifying oven
JP2604430B2 (en) Coal gasification method
KR20070067830A (en) Method of production of hydrogen and pig-iron utilizing coal and iron ore
JPH01272693A (en) Method for desulfurizing coat gas and apparatus therefor
KR20160071573A (en) The apparatus for removing hydrogen sulfide from coke oven gas and the method thereof
JPH0832894B2 (en) Spouted bed coal gasifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees