JPS6337060B2 - - Google Patents

Info

Publication number
JPS6337060B2
JPS6337060B2 JP58148424A JP14842483A JPS6337060B2 JP S6337060 B2 JPS6337060 B2 JP S6337060B2 JP 58148424 A JP58148424 A JP 58148424A JP 14842483 A JP14842483 A JP 14842483A JP S6337060 B2 JPS6337060 B2 JP S6337060B2
Authority
JP
Japan
Prior art keywords
component
sintering
black
partially stabilized
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58148424A
Other languages
Japanese (ja)
Other versions
JPS6042276A (en
Inventor
Mitsuhiko Furukawa
Michihito Myahara
Mitsuyoshi Nagano
Shigeki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP58148424A priority Critical patent/JPS6042276A/en
Publication of JPS6042276A publication Critical patent/JPS6042276A/en
Publication of JPS6337060B2 publication Critical patent/JPS6337060B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は時計側やペンダントを初めとする各種
装飾部材用材料並びにその製造方法に関するもの
である。 この種の装飾部材用材料は長期に渡り外観が優
雅である事が必要で、その為に耐食性、耐摩耗性
に富む事は必須要件であるが、その他にも必要以
上に重くない事や強度(靭性)が大である事等の
性質が要求される。近年超硬合金系の材料がこの
種の装飾部材用材料に多用される様になつて来た
が超硬合金の欠点としては重過ぎる事、真黒に近
い色調が得難い事等があるし耐食性、耐摩耗性の
点でも更に大なる材料が望まれる様になつて来
た。 本発明は上記現状に鑑みてなされたものであ
り、その要旨は、下記A成分及びB成分の少なく
とも1種類を0.005〜7.0重量%と、残部が2〜5
モル%のY2O3で部分安定化されたZrO2から成
り、美麗な光沢面を有することを特徴とするジル
コニア質黒色系装飾部材用材料。 A成分;Fe,Co,Ni,Cr及びTiの低級酸化物
であるFeO,Fe3O4若しくはFeOx(x<
1.5),CoOx(x<1),NiOx(x<1),
CrO若しくはCrOx(x<1.5),TiOx(x<
2)の少なくとも1種類 B成分;Al2O3:TiOx(x<2):Y2O3が重量
比で60:40:10の割合から成るもの 並びにこの様な材料の製造方法として、ホツト
プレス(以下HPという)及びホツトアイソスタ
テイツクプレス(以下HIPという)を採用する製
造方法である。 なお上記「黒色系」というのは後で詳記する如
く所謂真黒色の他に黒色に近い灰黒色も含むもの
とする。 以下本発明を開発するに至つた実験及びその結
果を示す。 <実験 1> 3モル%のY2O3で部分安定化された純度99.99
%(含むY2O3成分)のZrO2粉末を原料とし、こ
れにA成分であるFe,Co,Ni,Cr,Tiの各酸化
物を下記第1表の如く配合し、不純物混入防止策
を講じたボールミル機により、湿式粉砕したスラ
リーを乾燥整粒し焼結用原料とした。 なおプレス成型→予備焼結→HIP法による製造
工程を採用する場合は、必要に応じてワツクスを
配合し成型性及び離型性を良くした粒を製造
し、500Kg/cm2以上の圧力で成型した後、脱ワツ
クス工程を通した。 一方HP法を採用する場合は、ワツクスを配合
することなく、乾燥粉末を所定型状の黒鉛型に充
填しHPを行なつた。 上記工程の予備焼結条件としては、不活性ガス
(Ar)圧1気圧の雰囲気炉で1450℃の温度の下に
1時間保持した。またHIP処理条件はアルゴンガ
ス圧1100気圧の雰囲気で1400℃の温度で1時間保
持した。 またHP条件としては、加圧力100Kg/cm2、温
度1400℃の下で1時間保持した。 特性調査試料としては5×5×25(mm)のダイ
ヤモンド砥石による研削試片とし第2表及び第3
表に示すデータを得た。
The present invention relates to materials for various decorative members including watch parts and pendants, and methods for manufacturing the same. Materials for decorative parts of this type need to have an elegant appearance over a long period of time, and for this reason, it is essential that they have good corrosion resistance and abrasion resistance. Properties such as high toughness are required. In recent years, cemented carbide-based materials have come to be widely used for this type of decorative material, but the drawbacks of cemented carbide are that it is too heavy, it is difficult to obtain a color tone close to jet black, and it has poor corrosion resistance. Materials with even greater wear resistance have become desirable. The present invention has been made in view of the above-mentioned current situation, and its gist is that at least one of the following components A and B is contained in an amount of 0.005 to 7.0% by weight, and the balance is 2 to 5% by weight.
A zirconia black material for decorative members, which is made of ZrO 2 partially stabilized with mol% of Y 2 O 3 and has a beautiful glossy surface. A component: FeO, Fe 3 O 4 or FeOx (x<
1.5), CoOx (x<1), NiOx (x<1),
CrO or CrOx (x<1.5), TiOx (x<1.5)
At least one type of 2) component B; one consisting of Al 2 O 3 :TiOx (x<2):Y 2 O 3 in a weight ratio of 60:40:10, and as a manufacturing method for such a material, hot pressing is used. This manufacturing method employs a hot isostatic press (hereinafter referred to as HP) and a hot isostatic press (hereinafter referred to as HIP). Note that the above-mentioned "black color" includes not only so-called true black but also gray-black that is close to black, as will be described in detail later. The experiments that led to the development of the present invention and their results will be shown below. <Experiment 1> Purity 99.99 partially stabilized with 3 mol% Y 2 O 3
% (including 3 components of Y 2 O) is used as a raw material, and each oxide of Fe, Co, Ni, Cr, and Ti, which is component A, is blended as shown in Table 1 below to prevent impurity contamination. The wet-pulverized slurry was dried and sized using a ball mill equipped with the following steps, and used as a raw material for sintering. When adopting the manufacturing process of press molding → preliminary sintering → HIP method, wax is added as necessary to produce grains with improved moldability and mold release properties, and molded at a pressure of 500 kg/cm 2 or more. After that, it was passed through a wax removal process. On the other hand, when using the HP method, dry powder was filled into a graphite mold of a predetermined shape and HP was performed without adding wax. The preliminary sintering conditions for the above step were as follows: The sample was held at a temperature of 1450° C. for 1 hour in an atmosphere furnace with an inert gas (Ar) pressure of 1 atm. The HIP treatment conditions were an atmosphere of argon gas pressure of 1100 atm and a temperature of 1400° C. for 1 hour. The HP conditions were a pressure of 100 Kg/cm 2 and a temperature of 1400° C., which were maintained for 1 hour. The sample for the characteristic investigation was a 5 x 5 x 25 (mm) specimen ground with a diamond grinding wheel, as shown in Tables 2 and 3.
The data shown in the table was obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 <実験 2> 実験1に用いたのと同じZrO2粉末原料に、B
成分を第4表に示す如く配合し、実験1と同じ方
法で焼結用原料を作成した。 上記焼結用原料の圧力500Kg/cm2以上による成
型体を脱ワツクス処理した後、相対密度が94.5%
以上を有する予備焼結体とし、次いでHIP装置で
相対密度が99.0%以上になる条件の下で緻密化処
理して得た試料を調査した結果を同じく第4表に
示す。 なお上記予備焼結は1400℃の真空炉内で1時間
保持し、またHIP条件としてはアルゴンガス圧
1800気圧の雰囲気で1320℃の温度の下で1時間保
持した。
[Table] <Experiment 2> B was added to the same ZrO 2 powder raw material used in Experiment 1.
The ingredients were mixed as shown in Table 4, and a raw material for sintering was prepared in the same manner as in Experiment 1. After dewaxing the molded body using the above sintering raw material under a pressure of 500Kg/cm2 or more , the relative density is 94.5%.
Table 4 also shows the results of investigating a sample obtained by preparing a pre-sintered body having the above and then densifying it in a HIP apparatus under conditions such that the relative density is 99.0% or more. The above pre-sintering was held in a vacuum furnace at 1400℃ for 1 hour, and the HIP conditions were argon gas pressure.
It was maintained at a temperature of 1320°C in an atmosphere of 1800 atm for 1 hour.

【表】 <実験 3> 実験1に用いたのと同じZrO2粉末原料に、着
色剤A及びB成分を第5表に示す如く配合し、実
施例1と同じ方法で焼結用原料を作成した。 上記焼結用原料を加圧力500Kg/cm2以上で成型
して脱ワツクス処理した後、相対密度が94.5%以
上になるように予備焼結を行ない、次いでHIP装
置で相対密度が99.0%以上になる条件のもとで緻
密化して得た試料を調査した結果を同じく第6表
に示す。 なお上記予備焼結条件としては酸化性雰囲気炉
で1500℃の温度の下で2時間保持した。 またHIP条件としては不活性ガス(Ar)圧
1500気圧、温度1450℃の下で1時間保持した。
[Table] <Experiment 3> The same ZrO 2 powder raw material used in Experiment 1 was mixed with colorant A and B components as shown in Table 5, and a raw material for sintering was created in the same manner as in Example 1. did. After molding the above raw material for sintering with a pressure of 500 kg/cm 2 or more and dewaxing, pre-sintering is performed to a relative density of 94.5% or more, and then a HIP device is used to reduce the relative density to 99.0% or more. Table 6 also shows the results of investigating samples obtained by densification under the following conditions. The preliminary sintering conditions were held at a temperature of 1500° C. for 2 hours in an oxidizing atmosphere furnace. In addition, HIP conditions include inert gas (Ar) pressure.
It was held for 1 hour at 1500 atm and 1450°C.

【表】【table】

【表】【table】

【表】 次に上記実験結果をも勘案し乍ら、装飾部材用
材料として望ましい成分や特性並びに該望ましい
材料を得る為の製造条件等を考察する。 本発明材料のベースとなつているZrO2焼結材
料は従来CaOおよびMgOによる安定化または部
分安定化品が常用されていたが、近年Y2O3によ
る安定化、部分安定化品(以下YSZという)が
強度、耐摩耗性その他の特性が優れているために
大きな期待を集めるところとなつた。 しかしながらこのYSZは一般的にプレス成型
体を大気雰囲気炉で焼結する方法が採用されてお
り、こうして得られる材料の色調は高純度品の場
合は白色系であり、純度が悪くなるにつれて黄色
から茶色系へと変化し、しかも純度が悪くなるに
つれて強度が低下する傾向にあつた。この様な白
色系のYSZでは原料粉末の純度により微妙な色
調の変化があり、かつ斑点等が存在することが多
く、商品価値の高い材料を得ることは出来なかつ
た。そこで本発明者等は種々研究の結果(主とし
て実験の結果)非酸化性雰囲気でHIP法あるいは
HP法により焼結する方法を採用することにより
美麗な灰黒色系光沢面を現出させ得る着色剤を見
出した。 ところで用いるZrO2はそれ単味では難焼結性
であり、Y2O3,MgO,CaO等で安定化、部分安
定化させなければ焼結が困難で、その中でも
Y2O3を用いたYSZが望ましい事は先に述べた通
りであるが、この場合のY2O3の量について述べ
れば、2モル%未満では焼結時のジルコニア結晶
の変態に伴う体積変化が大き過ぎて亀裂が発生し
易くなるし、一方5モル%を越えるY2O3を用い
た場合には得られる焼結体の結晶組織の粗大化を
まねき、かつ該焼結体に応力がかかつた際に結晶
が正方晶から単斜晶へと変態し難くなる結果応力
吸収作用が低下し高強度、高靭性の材料が得られ
ない。従つて用いるYSZは2〜5モル%のY2O3
を使用したものが望ましい。 この様なYSZに対し、上述のA成分、B成分
を含ませ非酸化性雰囲気で焼結して得られる本願
発明の材料が何故灰黒色系の色調を与えるのか明
確ではないが、非酸化性雰囲気で着色剤が低級酸
化物に変化すると共にYSZ成分と反応して均質
な色調を与えるのではないかと推定される。これ
らの観点から原料としてのA成分は最終製品中で
は低級酸化物となり黒色系材料となることの他、
YSZと反応し色調のみならず強度面でも優れた
特性を与えるものと思われる。なお第1表に示し
た酸化物の各々を単独でホツトプレス法及びホツ
トアイソスタテイツクプレス法の非酸化性雰囲気
で焼結した後、X線回折により分析した所全ての
酸化物に於いて酸素量がより少ない即ち低級酸化
物を示す回折線及び回折不可能な回折線が確認さ
れた。この現象から第1表に示した各種素成のも
のは焼結雰囲気を不活性ガス雰囲気とし焼結炉や
断熱材に少なくとも一部はカーボンを用いていた
為に不活性ガス中に微量酸酸素とカーボンの反応
でCOが生じそれによつて原料酸化物が還元され
た、あるいは上記TiO2,Fe2O3,NiO,Cr2O3
CoO等はその全てが高温域(O2が殆ど存在しな
い)では酸素を幾分放出解離する性質がある為の
いずれかであるものと考えられる。従つて特に還
元雰囲気での焼結をしなくても、これら原料とし
てのA成分は低級酸化物となる。しかるにH2
るいはCO等の還元性ガス雰囲気で焼結すれば、
なお一層の低級酸化物化が生成するものと思われ
る。またB成分については、Al2O3―TiO2
Y2O3の本願組成の着色原料成分中のTiO2は非酸
化性雰囲気での焼結中やはり低級酸化物TiOx
(x<2)と成り、色調および強度他耐摩耗性に
ついても優れた特性を与えることを見出したもの
である。 このB成分中のTiO2がTiOx(x<2)なる低
級酸化物となるのも上記A成分についてと同様と
考えられ、これもX線回折法により確認した。と
ころでこのB成分について上述の如く、その原料
組成をAl2O3:TiO2:Y2O3=60:40:10の割合
となしたのは、この割合の物が安定した焼成が出
来原料として使用し易いからである。即ちこのB
成分原料もそれを部分安定化ZrO2へ混入するに
際しては上記した様にある範囲を持つた適正量が
あり、その混合量を変化せしめる事で、Al2O3
TiO2,Y2O3各々の量は変化出来る訳であるから
部分安定化ZrO2へ配合する際に取扱い易い組成
が好ましいという観点から種々実験をなした結果
この60:40:10なる割合の物がそれ自体を焼成す
る際に割れもなく、かつ相対密度の点でも優れた
材料が得られ、又このB成分を上述の範囲で部分
安定化ZrO2へ配合した際に強度も大で、真黒色
に近い材料が得られる事を確認したからである。
なおこのB成分中のY2O3はそれが部分安定化
ZrO2と配合焼結される際に、ZrO2中へ固溶する
という事は考えられるが、元々ZrO2はY2O3で部
分安定化されている事もあり、B成分中のY2O3
がZrO2中へ固溶するとしてもその量は僅かであ
り、例え固溶したとしてもB成分としての割合に
変化があるものではない。 更にAおよびB成分を併用する場合においても
実施例に示す如く本願発明の用途に非常に適した
特性を与えることを見出したものである。 なお着色剤各成分を微量配合する方法は粉体混
合法で可能であるが、より均質に分散配合し得る
可能性はドーピング方法を採用する方策が優れて
いることを付言しておく。 本願発明の着色剤のA成分としてTiO2を用い
た場合、YSZ原料の調整方法により灰黒色系に
赤味を帯びた材料が得られる場合があるが、上記
実験ではこれも灰黒色系として分類した。 この様に得られる材料を灰黒色化する為A・B
成分の少なくとも1種の配合量が0.005重量%未
満の場合は灰白色系に近づくため、僅かな斑点が
存在する場合でもそれが目立ち易くなり装飾品と
しての価値が無くなり、また配合量が7重量%を
越えると急速に強度が低下する傾向があり、装飾
品を取り落とした場合破損する可能性が大きくな
るのでこれらの配合量は0.005〜7.0重量%とす
る。 次に製造方法に関し考察すれば、まずHP法で
焼結する場合はHP時の加圧力が50Kg/cm2未満の
場合は加圧力不足に伴なう緻密度不足品が出来る
頻度が多くなり、ラツピング面がくもつたりナシ
地状となつたり、またはスポツトが存在する等の
不良品が発生しやすくなる。 また加圧力の上限はホツトプレス型として用い
る黒鉛等の材料強度に左右されるのは当然のこと
である。 次にHP時の焼結温度が1300℃未満の場合は緻
密焼結体が得られ難く、また緻密に焼結する為に
は長時間の保持を要する等経済的ではない。 一方焼結温度が1600℃を越える場合はモールド
との反応接着等を起こし、割れ不良品等が発生し
やすくなる他、結晶粒径の均一微細な材料が得ら
れず強度低下あるいは美麗な光沢面が得にくくな
る。 次にHIP法による場合の不活性ガス(通常アル
ゴンガス)圧力が1000気圧未満の場合は加圧力不
足に伴なう緻密度不足品が出来る頻度が多くな
り、ラツピング面がくもつたりナシ地状となつた
り、スポツトが存在する等の不良品が発生しやす
くなる。 またHIP時の温度が1300℃未満の場合は、温度
不足に伴なうHIP効果即ち緻密化が不足すること
になる。一方温度が1600℃を越えると、過焼結の
ため結晶粒径が大きくなり、強度の高い製品が得
られなくなる。またHIPに供する予備焼結体の相
対密度が94.5%未満の場合は、予備焼結体に局部
的な密度ムラが存在する場合があり、HIP処理し
ても局部的な緻密度不足品が得られることにな
り、均質な材料を得るためには少なくとも94.5%
の相対密度を有するのが好ましいものである。 以上の如き成分組織、製造条件を選択する事に
より黒色で均質な材料が得られるが、その材料の
強度面から考えると、HIP法またはHP法により
得られた材料の密度をその材料の配合成分から算
出した理論密度で徐した値、即ち相対密度が99%
未満の場合は、1%以上に相当するマイクロポア
あるいはスポツト等が存在することになり、均質
で美麗な光沢面を有する装飾品は得られず、また
強度面でもシヤルピー値が0.1Kgfm/cm2以上の材
料が得られなくなるので相対密度は99%以上のも
のとする事が望ましい。また装飾品は取扱い中に
取り落としたり物に当たる等の可能性があり、強
度の低いもの程破損しやすいことは当然のことで
ある。 発明者等は上記現象における耐破損性は、セラ
ミツク材料に通常用いられている曲げ強さ(Kg/
mm2)よりもシヤルピー値の方が耐破損性と関連性
が高いこと、更にはシヤルピー値が0.1Kgfm/cm2
未満の場合は、破損する可能性があることを見出
したものである。 この耐破損性は落下テストにより調査した結果
得た結論であり、その落下距離は人が通常取扱う
高さである1mの高さから最高2mの範囲とし
た。 なお理論密度の値は、2モル%Y2O3および6
モル%の範囲のY2O3で部分安定化処理した焼結
体の単斜晶、正方晶及び立方晶の格子定数と組成
割合からYSZの理論密度を計算し、更に着色成
分配合割合も加味して本願発明材料の理論密度を
算出した。 以上述べて来た如く、本発明材料は硬度は大で
耐摩耗性に優れているので永年の使用によつても
傷が入り難く、しかも装飾部材として最も重要な
均質で美しい外観という点では均質な灰黒色を呈
している点で優れている。 また例えばTaC系やWC系の超硬合金と比べた
場合に材料そのものの抗折力や衝撃値では多少劣
るかもしれないが、これらの超硬合金の比重が通
常13〜14と高いのに比べ、本発明材料の比重は上
述の如く大体5〜6と超硬合金の半分以下の値で
あり非常に軽いので時計側その他の装飾品に用い
た場合に使い易く、かつ使用中に取り落としたり
した場合にあつても材料自体が軽いので落下時に
受けるダメージは超硬合金に比べ著しく小である
ので欠損、破割する事がないという効果がある。
従つて本発明材料はセラミツク特有の耐摩耗性、
耐食性を損う事なく均質な黒色を有し、しかも装
飾部材としての実用強度が大なる優れた材料とい
う事が出来るものである。
[Table] Next, taking into account the above experimental results, we will discuss desirable components and characteristics as a material for decorative members, as well as manufacturing conditions for obtaining the desired material. The ZrO 2 sintered material that is the base of the present invention has conventionally been stabilized or partially stabilized with CaO and MgO, but in recent years it has been stabilized with Y 2 O 3 or partially stabilized (hereinafter referred to as YSZ). ) has attracted great expectations due to its excellent strength, wear resistance, and other properties. However, this YSZ is generally produced by sintering a press-molded body in an atmospheric furnace, and the color tone of the material obtained in this way is white in the case of high-purity products, and changes from yellow to yellow as the purity deteriorates. The color changed to brown, and the strength tended to decrease as the purity deteriorated. With such white YSZ, there are subtle changes in color tone depending on the purity of the raw material powder, and there are often spots, etc., making it impossible to obtain a material with high commercial value. Therefore, as a result of various studies (mainly experimental results), the present inventors have used the HIP method in a non-oxidizing atmosphere.
We have discovered a coloring agent that can produce a beautiful grayish-black glossy surface by employing a HP sintering method. By the way, the ZrO 2 used alone is difficult to sinter, and it is difficult to sinter it unless it is stabilized or partially stabilized with Y 2 O 3 , MgO, CaO, etc.
As mentioned above, YSZ using Y 2 O 3 is desirable, but if the amount of Y 2 O 3 is less than 2 mol%, the volume will increase due to the transformation of the zirconia crystal during sintering. If the change is too large, cracks are likely to occur.On the other hand, if more than 5 mol% of Y 2 O 3 is used, the crystal structure of the obtained sintered body will become coarser and stress will be applied to the sintered body. When this occurs, it becomes difficult for the crystal to transform from tetragonal to monoclinic, resulting in a decrease in the stress absorption effect, making it impossible to obtain a material with high strength and high toughness. Therefore, the YSZ used is 2 to 5 mol% Y 2 O 3
It is preferable to use It is not clear why the material of the present invention, which is obtained by containing the above-mentioned A and B components and sintering in a non-oxidizing atmosphere, gives a gray-black color tone to such YSZ. It is presumed that the colorant changes into a lower oxide in the atmosphere and reacts with the YSZ component to give a homogeneous color tone. From these points of view, component A as a raw material becomes a lower oxide in the final product and becomes a black material.
It is thought that it reacts with YSZ and provides excellent properties not only in terms of color tone but also in terms of strength. In addition, after sintering each of the oxides shown in Table 1 individually in a non-oxidizing atmosphere using hot pressing and hot isostatic pressing, analysis by X-ray diffraction revealed that the amount of oxygen in all oxides was Diffraction lines showing lower oxides, that is, lower oxides, and diffraction lines that could not be diffracted were confirmed. From this phenomenon, the various types of materials shown in Table 1 were sintered in an inert gas atmosphere and carbon was used at least in part in the sintering furnace and insulating material, so there was a trace amount of acid oxygen in the inert gas. The reaction between carbon and carbon produces CO, which reduces the raw material oxide, or the above-mentioned TiO 2 , Fe 2 O 3 , NiO, Cr 2 O 3 ,
This is thought to be due to the fact that all of CoO and the like have the property of releasing some oxygen and dissociating in a high temperature range (where almost no O 2 exists). Therefore, even without sintering in a particularly reducing atmosphere, component A as a raw material becomes a lower oxide. However, if sintered in a reducing gas atmosphere such as H 2 or CO,
Furthermore, it is thought that further conversion to lower oxides is generated. Regarding B component, Al 2 O 3 ―TiO 2
TiO 2 in the coloring raw material component of the present composition of Y 2 O 3 is also converted to a lower oxide TiOx during sintering in a non-oxidizing atmosphere.
(x<2), and it has been found that it provides excellent properties in terms of color tone, strength, and abrasion resistance. It is believed that the TiO 2 in component B becomes a lower oxide TiOx (x<2) in the same manner as in the case of component A, and this was also confirmed by X-ray diffraction. By the way, as mentioned above for component B, the raw material composition was set at a ratio of Al 2 O 3 :TiO 2 :Y 2 O 3 = 60:40:10 because a product with this ratio can be fired stably. This is because it is easy to use. That is, this B
When mixing component raw materials into partially stabilized ZrO 2 , there is an appropriate amount within a certain range as described above, and by changing the mixing amount, Al 2 O 3 ,
Since the amounts of TiO 2 and Y 2 O 3 can be changed, various experiments were conducted from the viewpoint that a composition that is easy to handle when blended into partially stabilized ZrO 2 resulted in the following ratio of 60:40:10. When the product itself is fired, a material with no cracks and excellent relative density can be obtained, and when this B component is blended into the partially stabilized ZrO 2 in the above range, the strength is also high. This is because it was confirmed that a material close to pure black can be obtained.
Furthermore, Y 2 O 3 in this B component is partially stabilized.
It is conceivable that ZrO 2 becomes a solid solution in ZrO 2 when mixed and sintered with ZrO 2 , but since ZrO 2 is originally partially stabilized with Y 2 O 3 , Y 2 in component B O 3
Even if it dissolves into ZrO 2 as a solid solution, the amount is small, and even if it does, there is no change in the proportion as the B component. Furthermore, it has been found that even when components A and B are used in combination, characteristics very suitable for the use of the present invention can be provided as shown in the examples. It should be noted that although it is possible to mix small amounts of each component of the colorant by a powder mixing method, the doping method is better for achieving a more homogeneous dispersion and blending. When TiO 2 is used as the A component of the colorant of the present invention, a gray-black material with a reddish tinge may be obtained depending on the method of preparing the YSZ raw material, but in the above experiment, this was also classified as a gray-black material. did. A and B to make the material obtained in this way grayish black.
If the amount of at least one of the ingredients is less than 0.005% by weight, the color will approach grayish white, so even if there are slight spots, they will be more noticeable and have no value as a decorative item, and if the amount is less than 7% by weight. If the content exceeds 0.2%, the strength tends to decrease rapidly and there is a high possibility that the decorative item will be damaged if it is removed. Next, considering the manufacturing method, first of all, when sintering using the HP method, if the pressure during HP is less than 50 kg/cm 2 , products with insufficient density will often be produced due to insufficient pressure. It is easy to produce defective products such as those where the wrapping surface becomes cloudy or has a pear-like appearance, or where there are spots. It goes without saying that the upper limit of the pressing force depends on the strength of the material such as graphite used for the hot press mold. Next, if the sintering temperature during HP is less than 1300°C, it is difficult to obtain a dense sintered body, and it is not economical as it requires holding for a long time to achieve dense sintering. On the other hand, if the sintering temperature exceeds 1,600°C, reaction adhesion with the mold will occur, resulting in cracks and defective products.In addition, it will not be possible to obtain a material with uniform and fine crystal grain size, resulting in decreased strength or a beautiful glossy surface. becomes difficult to obtain. Next, when using the HIP method, if the inert gas (usually argon gas) pressure is less than 1,000 atmospheres, products that are insufficiently dense due to insufficient pressurizing pressure will be produced more often, and the wrapping surface will become cloudy and pear-like. Defective products with wrinkles or spots are more likely to occur. Furthermore, if the temperature during HIP is less than 1300°C, the HIP effect, that is, densification, will be insufficient due to insufficient temperature. On the other hand, if the temperature exceeds 1600°C, the crystal grain size increases due to oversintering, making it impossible to obtain a product with high strength. In addition, if the relative density of the pre-sintered body to be subjected to HIP is less than 94.5%, there may be local density unevenness in the pre-sintered body, and even after HIP treatment, a product with a local lack of density may be obtained. at least 94.5% to obtain a homogeneous material.
It is preferable to have a relative density of . A black, homogeneous material can be obtained by selecting the composition structure and manufacturing conditions as described above, but from the viewpoint of the strength of the material, the density of the material obtained by the HIP method or HP method is The value divided by the theoretical density calculated from , that is, the relative density is 99%
If it is less than 1%, there will be micropores or spots equivalent to 1% or more, and it will not be possible to obtain a decorative item with a homogeneous and beautiful glossy surface, and in terms of strength, the shear value will be 0.1Kgfm/cm 2 It is desirable that the relative density be 99% or higher, since it will not be possible to obtain a material with a relative density of 99% or higher. Furthermore, there is a possibility that decorative items may be dropped or hit by objects during handling, and it is natural that the lower the strength of the decorative item, the more likely it is to be damaged. The inventors believe that the breakage resistance in the above phenomenon is based on the bending strength (Kg/kg) commonly used for ceramic materials.
mm 2 ) is more closely related to breakage resistance, and furthermore, the sharpy value is 0.1Kgfm/cm 2
It has been found that if it is less than that, there is a possibility of damage. This breakage resistance was a conclusion obtained as a result of a drop test, and the fall distance ranged from a height of 1 m, which is the height normally handled by humans, to a maximum of 2 m. The theoretical density values are 2 mol% Y 2 O 3 and 6
The theoretical density of YSZ is calculated from the monoclinic, tetragonal, and cubic lattice constants and composition ratios of the sintered body partially stabilized with Y 2 O 3 in the range of mole%, and the coloring component composition ratio is also taken into account. The theoretical density of the invention material was calculated. As mentioned above, the material of the present invention has high hardness and excellent abrasion resistance, so it is difficult to get scratches even after long-term use, and it has a uniform and beautiful appearance, which is the most important for decorative materials. It is excellent in that it exhibits a gray-black color. Also, when compared to, for example, TaC-based or WC-based cemented carbide, the transverse rupture strength and impact value of the material itself may be somewhat inferior, but compared to the high specific gravity of these cemented carbide, which is usually 13 to 14. As mentioned above, the specific gravity of the material of the present invention is approximately 5 to 6, which is less than half that of cemented carbide, and it is very light, so it is easy to use when used for watch parts and other decorative items, and it does not fall off during use. Even if the material itself is light, the damage it receives when falling is significantly smaller than that of cemented carbide, so it has the advantage of not breaking or breaking.
Therefore, the material of the present invention has wear resistance unique to ceramics,
It can be said to be an excellent material that has a homogeneous black color without impairing its corrosion resistance and has great practical strength as a decorative member.

Claims (1)

【特許請求の範囲】 1 下記A成分及びB成分の少なくとも1種類を
0.005〜7.0重量%と、残部が2〜5モル%のY2O3
で部分安定化されたZrO2から成り、美麗な光沢
面を有することを特徴とするジルコニア質黒色系
装飾部材用材料。 A成分;Fe、Co、Ni、Cr及びTiの低級酸化物
であるFeO、Fe3O4若しくはFeOx(x<
1.5)、CoOx(x<1)、NiOx(x<1)、
CrO若しくはCrOx(x<1.5)、TiOx(x<
2)の少なくとも1種類 B成分;Al2O3:TiOx(x<2):Y2O3が重量
比で60:40:10の割合から成るもの 2 相対密度が99%以上でかつシヤルピー衝撃値
が0.1Kgfm/cm2以上であることを特徴とする特許
請求の範囲第1項記載のジルコニア質黒色系装飾
部材用材料。 3 下記A成分及びB成分の少なくとも1種類を
0.005〜7.0重量%と、残部が2〜5モル%のY2O3
の部分安定化されたZrO2との均一混合粉末とを
所要形状の型内で非酸化性雰囲気のホツトプレス
法により焼結することを特徴とするジルコニア質
黒色系装飾部材用材料の製造方法。 A成分;Fe、Co、Ni、Cr及びTiの酸化物の少
なくとも1種類 B成分;Al2O3:TiO2:Y2O3が重量比で60:
40:10の割合から成るもの 4 ホツトプレス法の条件が、加圧力50Kg/cm2
上、温度1300〜1600℃であることを特徴とする特
許請求の範囲第3項記載の製造方法。 5 下記A成分及びB成分の少なくとも1種類を
0.005〜7.0重量%と、残部が2〜5モル%のY2O3
で部分安定化されたZrO2との均一混合粉末とを
所要形状に成型し、次いで該成型体を相対密度
94.5%以上に予備焼結した後非酸化性雰囲気のホ
ツトアイソスタテイツクプレス法により焼結する
ことを特徴とするジルコニア質黒色系装飾部材用
材料の製造方法。 A成分;Fe、Co、Ni、Cr及びTiの酸化物の少
なくとも1種類 B成分;Al2O3:TiO2:Y2O3が重量比で60:
40:10の割合から成るもの 6 ホツトアイソスタテイツクプレス法の条件
が、不活性ガス圧500気圧以上、温度1300〜1600
℃であることを特徴とする特許請求の範囲第5項
記載の製造方法。
[Claims] 1. At least one of the following A component and B component
Y 2 O 3 of 0.005 to 7.0% by weight and the balance 2 to 5 mol%
A black zirconia material for decorative parts, which is made of partially stabilized ZrO 2 and has a beautiful glossy surface. Component A: FeO, Fe 3 O 4 or FeOx (x<
1.5), CoOx (x<1), NiOx (x<1),
CrO or CrOx (x<1.5), TiOx (x<
At least one type of 2) B component: Al 2 O 3 : TiOx (x<2): Y 2 O 3 in a weight ratio of 60:40:10 2 A relative density of 99% or more and a sharpy impact The zirconia black material for decorative members according to claim 1, which has a value of 0.1 Kgfm/cm 2 or more. 3 At least one of the following A component and B component
Y 2 O 3 of 0.005 to 7.0% by weight and the balance 2 to 5 mol%
A method for producing a black zirconia material for decorative members, characterized by sintering a homogeneous mixed powder with partially stabilized ZrO 2 in a mold of a desired shape by hot pressing in a non-oxidizing atmosphere. A component: At least one kind of oxide of Fe, Co, Ni, Cr, and Ti B component: Al 2 O 3 :TiO 2 :Y 2 O 3 in a weight ratio of 60:
4. The manufacturing method according to claim 3, wherein the hot pressing conditions are a pressing force of 50 Kg/cm 2 or more and a temperature of 1300 to 1600°C. 5 At least one of the following A component and B component
Y 2 O 3 of 0.005 to 7.0% by weight and the balance 2 to 5 mol%
The uniform mixed powder with partially stabilized ZrO 2 is molded into the desired shape, and then the molded body is
1. A method for producing a black zirconia decorative member material, which comprises preliminary sintering to 94.5% or more and then sintering by a hot isostatic press method in a non-oxidizing atmosphere. A component: At least one kind of oxide of Fe, Co, Ni, Cr, and Ti B component: Al 2 O 3 :TiO 2 :Y 2 O 3 in a weight ratio of 60:
6 The hot isostatic press method has an inert gas pressure of 500 atmospheres or more and a temperature of 1300 to 1600.
6. The manufacturing method according to claim 5, wherein the temperature is .degree.
JP58148424A 1983-08-12 1983-08-12 Zirconia black dressing material and manufacture Granted JPS6042276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148424A JPS6042276A (en) 1983-08-12 1983-08-12 Zirconia black dressing material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148424A JPS6042276A (en) 1983-08-12 1983-08-12 Zirconia black dressing material and manufacture

Publications (2)

Publication Number Publication Date
JPS6042276A JPS6042276A (en) 1985-03-06
JPS6337060B2 true JPS6337060B2 (en) 1988-07-22

Family

ID=15452482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148424A Granted JPS6042276A (en) 1983-08-12 1983-08-12 Zirconia black dressing material and manufacture

Country Status (1)

Country Link
JP (1) JPS6042276A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272552A (en) * 1985-09-26 1987-04-03 住友セメント株式会社 Colored ceramic dressing member
JPH08698B2 (en) * 1986-04-21 1996-01-10 第一稀元素化学工業株式会社 Partially stabilized zirconia powder
JPH0712978B2 (en) * 1986-12-27 1995-02-15 京セラ株式会社 Black zirconia ceramics and manufacturing method thereof
JPH083964B2 (en) * 1989-08-16 1996-01-17 三菱電機株式会社 Oil-filled electrical equipment
JPH1079272A (en) * 1996-09-03 1998-03-24 Yazaki Corp Multi-stage connector, its manufacture and method for assembling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931723A (en) * 1972-07-20 1974-03-22
JPS4975609A (en) * 1972-09-18 1974-07-22
JPS5623532A (en) * 1979-08-02 1981-03-05 Fuji Heavy Ind Ltd Air-fuel ratio controller
JPS57140376A (en) * 1981-02-20 1982-08-30 Ngk Spark Plug Co Partially stabilized zirconium oxide sintered body for oxygen sensor and manufacture
JPS5836653A (en) * 1981-08-28 1983-03-03 日本タングステン株式会社 Media for crushing magnetic material and production thereof
JPS5838843A (en) * 1981-08-31 1983-03-07 Masayuki Isomura Color grade discriminating reference stone for diamond
JPS59105055A (en) * 1982-12-07 1984-06-18 Kyocera Corp Zirconia coloring material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931723A (en) * 1972-07-20 1974-03-22
JPS4975609A (en) * 1972-09-18 1974-07-22
JPS5623532A (en) * 1979-08-02 1981-03-05 Fuji Heavy Ind Ltd Air-fuel ratio controller
JPS57140376A (en) * 1981-02-20 1982-08-30 Ngk Spark Plug Co Partially stabilized zirconium oxide sintered body for oxygen sensor and manufacture
JPS5836653A (en) * 1981-08-28 1983-03-03 日本タングステン株式会社 Media for crushing magnetic material and production thereof
JPS5838843A (en) * 1981-08-31 1983-03-07 Masayuki Isomura Color grade discriminating reference stone for diamond
JPS59105055A (en) * 1982-12-07 1984-06-18 Kyocera Corp Zirconia coloring material

Also Published As

Publication number Publication date
JPS6042276A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
US4908171A (en) Method of sintering articles of silicon nitride
JPH04228471A (en) Sintered ceramic material based on aluminum titanate, preparation thereof and use thereof
JPH06505225A (en) High-density, self-strengthening silicon nitride ceramic produced by pressureless or low-pressure gas sintering
JPH07110785B2 (en) Method for producing brown zirconia sintered body
JPS6337060B2 (en)
EP1928806B1 (en) Boron suboxide composite material
JPH039062B2 (en)
JPH04238864A (en) Light transmittable sintered material of yttria and production thereof
US20090291011A1 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
US5118457A (en) Colored zirconia ceramics and process for preparation thereof
JPH08310860A (en) Black zirconia ceramic sintered compact and its production
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JPH02255570A (en) Zirconia ceramics material and production thereof
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JPH0712978B2 (en) Black zirconia ceramics and manufacturing method thereof
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JPH03346B2 (en)
JPS62105986A (en) Process for blackening zirconia ceramics
JPH01160870A (en) Silicon nitride sintered compact and production thereof
JPH02302360A (en) Bluish green alumina-based sintered material and its production
JPH03261659A (en) Black sintered zirconia-based ceramics and production thereof
Takata et al. Improvement of a Porous Material Mechanical Property by Hot Isostatic Process
JP2616801B2 (en) Colored zirconia ceramics and its manufacturing method
JPH08319168A (en) Production of sialon ceramic
JP3250869B2 (en) Partially stabilized zirconia sintered body and method for producing the same