JPS6337042Y2 - - Google Patents

Info

Publication number
JPS6337042Y2
JPS6337042Y2 JP1981043448U JP4344881U JPS6337042Y2 JP S6337042 Y2 JPS6337042 Y2 JP S6337042Y2 JP 1981043448 U JP1981043448 U JP 1981043448U JP 4344881 U JP4344881 U JP 4344881U JP S6337042 Y2 JPS6337042 Y2 JP S6337042Y2
Authority
JP
Japan
Prior art keywords
chamber
cathode
anode chamber
anode
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981043448U
Other languages
Japanese (ja)
Other versions
JPS57156103U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981043448U priority Critical patent/JPS6337042Y2/ja
Publication of JPS57156103U publication Critical patent/JPS57156103U/ja
Application granted granted Critical
Publication of JPS6337042Y2 publication Critical patent/JPS6337042Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、電気透析装置に係り、特に、運転に
必要な薬剤が少なくしかも運転を安定に継続でき
る電気透析装置の系統構成に関するものである。
[Detailed description of the invention] [Field of industrial application] The present invention relates to an electrodialysis machine, and in particular, to a system configuration of an electrodialysis machine that requires fewer drugs for operation and can continue to operate stably. .

[従来の技術] イオン交換膜を使用した従来の電気透析装置に
おいては、電解質溶液特にハロゲン化物溶液を濃
縮または脱塩するにあたり、その電極室に前記原
料溶液またはその濃縮液を流している。
[Prior Art] In a conventional electrodialysis apparatus using an ion exchange membrane, when concentrating or desalting an electrolyte solution, particularly a halide solution, the raw material solution or its concentrated solution is passed through the electrode chamber.

そのうち陽極室では、陽極で発生するハロゲン
元素特に塩素ガスにより、または塩素から二次的
に生成される塩素酸により、陽極室と接するイオ
ン交換膜の劣化を招きやすかつた。また、生成さ
れるハロゲンガスそのものも強い毒性を有し、何
らかの処理が必要であつた。
In the anode chamber, the ion exchange membrane in contact with the anode chamber was susceptible to deterioration due to halogen elements, particularly chlorine gas, generated at the anode, or chloric acid secondarily generated from chlorine. Furthermore, the halogen gas itself produced is highly toxic and requires some kind of treatment.

一方、陰極においては、生成されるアルカリ類
のため、溶液がアルカリ性となり、カルシウムま
たはマグネシウム等の化合物の沈澱スケールを生
じ、種々の障害があつた。
On the other hand, at the cathode, the solution became alkaline due to the generated alkalis, causing a precipitated scale of compounds such as calcium or magnesium, resulting in various problems.

これらの欠点を解消するために、 (1) 隔膜により極液を供給する方法 (2) 耐塩素性のイオン交換膜を用いる方法 (3) 電極室に隣接させて緩衝室を設置し、ここに
還元剤を含む緩衝液を流す方法 (4) 硫酸を極液に入れる方法 等の多くの対策がなされている。
In order to eliminate these drawbacks, (1) a method of supplying the polar liquid using a diaphragm, (2) a method of using a chlorine-resistant ion exchange membrane, and (3) a method of installing a buffer chamber adjacent to the electrode chamber, and Many countermeasures have been taken, including the method of flowing a buffer solution containing a reducing agent (4) and the method of adding sulfuric acid to the polar solution.

しかし、これらの方法には、薬剤の消費量が多
い、塩素等のガスの無害化ができない、調整操作
が繁雑で操業に際して細心の注意を要する、発生
したガスに混合率によつては爆発の恐れがある等
の問題があつた。
However, these methods consume a large amount of chemicals, cannot detoxify gases such as chlorine, require complicated adjustment operations and must be extremely careful during operation, and may cause explosions depending on the mixing ratio of the generated gas. There were problems such as fear.

[考案が解決しようとする課題] ここでは、特開昭51−106685号の電気透析法を
例にとり、上記従来例の問題点をさらに詳しく説
明する。第3図はその系統構成の概略と系統内の
PHとを示す図である。
[Problems to be Solved by the Invention] Here, the problems of the above conventional example will be explained in more detail by taking the electrodialysis method of JP-A-51-106685 as an example. Figure 3 shows the outline of the system configuration and the information within the system.
FIG.

この従来例においては、陽極室6と陰極室7と
の液を並列に取出し、混合室13でH2SO4等を
添加しながら混合し、再び陽極室6と陰極室7と
に並列に送込むようになつている。その際に、陽
極および陰極では次の反応が起こる。
In this conventional example, the liquid from the anode chamber 6 and the cathode chamber 7 is taken out in parallel, mixed while adding H 2 SO 4 etc. in the mixing chamber 13, and then sent to the anode chamber 6 and the cathode chamber 7 in parallel again. It's getting more crowded. At this time, the following reactions occur at the anode and cathode.

(陽極)H2O→2H++(1/2)O2+2e- (陰極)2H++2e-→H2↑ この反応式から明らかなように、陰極室7では
2H+が消費される。すなわち、タンク内液内の
2H+を消費することになる。
(Anode) H 2 O→2H + + (1/2) O 2 +2e - (Cathode) 2H + +2e - →H 2 ↑ As is clear from this reaction formula, in the cathode chamber 7
2H + is consumed. In other words, the liquid in the tank
It will consume 2H + .

さて、電気透析では、イオン交換膜保護を目的
として、系内をPH<8に保つ。そのためには、陰
極室7入口のPHを0.5以下に保つて運転する必要
がある。
Now, in electrodialysis, the pH inside the system is kept at <8 for the purpose of protecting the ion exchange membrane. For this purpose, it is necessary to maintain the pH at the inlet of the cathode chamber 7 at 0.5 or less during operation.

この従来例では、既に述べたように、混合タン
ク13から陽極室6と陰極室7とに並列に溶液を
供給している関係上、陽極室入口のPHも0.5以下
となる。したがつて、陽極室6出口のPHはほぼ0
となり、陽極室6内はPHが低い状況にあるから、
陽極室6のH+は陰極に向かう電気泳動および拡
散により散逸し、淡水や濃縮水に混入する。透析
した水を飲料水として使うことを考えた場合、こ
の範囲のPHは飲料水のPHとして規定された範囲を
逸脱しているから、例えば淡水の場合は、
NaOH等で中和する必要が生じ、この点で運転
コストがかさむことになる。
In this conventional example, as described above, since the solution is supplied from the mixing tank 13 to the anode chamber 6 and the cathode chamber 7 in parallel, the pH at the anode chamber entrance is also 0.5 or less. Therefore, the pH at the anode chamber 6 outlet is approximately 0.
Therefore, since the pH inside the anode chamber 6 is low,
H + in the anode chamber 6 is dissipated by electrophoresis and diffusion toward the cathode, and mixed into fresh water or concentrated water. When considering using dialysed water as drinking water, this range of PH deviates from the range specified for drinking water, so for example, in the case of fresh water,
It becomes necessary to neutralize with NaOH or the like, which increases operating costs.

実際の機械では、散逸するH+を補うため、極
液系統にH2SO4を適時補給しながら混合して、
PHを調整している。この従来例では、混合前の水
のPHが高いので、大量のH2SO4を混合タンク1
3に添加する必要があつた。
In an actual machine, in order to compensate for the dissipated H + , H 2 SO 4 is replenished and mixed into the polar liquid system at appropriate times.
Adjusting pH. In this conventional example, since the pH of the water before mixing is high, a large amount of H 2 SO 4 is pumped into the mixing tank 1.
It was necessary to add 3.

さらに、陽極室6と陰極室7とからの溶液をま
とめて取出しているので、極室で生じた酸素と水
素の混合比率によつては爆発の恐れもあつた。
Furthermore, since the solutions from the anode chamber 6 and the cathode chamber 7 were taken out at once, there was a risk of explosion depending on the mixing ratio of oxygen and hydrogen produced in the electrode chamber.

これらのことを総合すると、この従来例では、
安定した運転を長時間継続することは困難であつ
た。
Putting these things together, in this conventional example,
It was difficult to maintain stable operation for a long period of time.

本考案の目的は、有害ガスの発生がなく、運転
する際の薬剤の消費量が少なく、爆発の恐れが根
本的に解消され、系統構成が単純な電気透析装置
を提供することである。
The purpose of the present invention is to provide an electrodialysis device that does not generate harmful gases, consumes little medicine during operation, fundamentally eliminates the risk of explosion, and has a simple system configuration.

[課題を解決するための手段] 本考案は、上記目的を達成するために、陽極室
と陰極室との間に陽イオン交換膜と陰イオン交換
膜とを交互に配列した電気透析槽を有する電気透
析装置において、陽極室と陰極室とをそれぞれ陽
イオン交換膜により隣室と隔て、陽極室から陰極
室への流路と陰極室から陽極室への流路とを直列
で閉回路を形成するように設け、各流路の途中に
脱気手段を設けた電気透析装置を提案するもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the present invention has an electrodialysis tank in which cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber and a cathode chamber. In an electrodialysis device, an anode chamber and a cathode chamber are each separated from the adjacent chamber by a cation exchange membrane, and a flow path from the anode chamber to the cathode chamber and a flow path from the cathode chamber to the anode chamber are connected in series to form a closed circuit. The present invention proposes an electrodialysis apparatus in which a deaeration means is provided in the middle of each flow path.

[作用] 次に、第2図を参照して、本考案の作用を説明
する。第2図は本考案の原理的系統構成と系統内
のPHとを示す図である。
[Operation] Next, the operation of the present invention will be explained with reference to FIG. 2. FIG. 2 is a diagram showing the principle system configuration of the present invention and the PH within the system.

本考案では、陽極室6出口のPH=0.5の溶液に
脱気手段8AによりH2SO4を添加し陰極室7入
口に供給する一方、陰極室7出口のPH=7〜8の
溶液を脱気手段を8B介して陽極室6入口に供給
するように、直列で閉回路を形成してある。
In the present invention, H 2 SO 4 is added to the solution of PH = 0.5 at the outlet of the anode chamber 6 by the degassing means 8A and supplied to the inlet of the cathode chamber 7, while the solution of PH = 7 to 8 at the outlet of the cathode chamber 7 is degassed. A closed circuit is formed in series so that air is supplied to the inlet of the anode chamber 6 through 8B.

したがつて、まず、陰極室7で消費されるH+
を陽極室6から供給でき、H2SO4等の補給量が
少なくて済む。
Therefore, first, H + consumed in the cathode chamber 7
can be supplied from the anode chamber 6, and the amount of H 2 SO 4 etc. to be supplied can be small.

また、陽極室6入口のPHを6〜8程度にでき、
陽極室6から透析室内を陰極室7に向かつて電気
泳動および拡散により散逸するH+の量を大幅に
減らせるから、PHを調節するために、例えば淡水
の場合NaOH等を投入して中和する必要がない。
In addition, the pH of the anode chamber 6 inlet can be kept at around 6 to 8.
Since the amount of H + dissipated by electrophoresis and diffusion from the anode chamber 6 to the cathode chamber 7 in the dialysis chamber can be greatly reduced, in order to adjust the pH, for example, in the case of fresh water, NaOH is added to neutralize it. There's no need to.

さらに、陽極室6から陰極室7に向かう流路と
陰極室7から陽極室6に向かう流路とは完全に分
離しており、それぞれで脱気すべき気体が混合さ
れないから、爆発の恐れがなくなる。
Furthermore, the flow path from the anode chamber 6 to the cathode chamber 7 and the flow path from the cathode chamber 7 to the anode chamber 6 are completely separate, and the gases to be degassed in each are not mixed, so there is a risk of explosion. It disappears.

[実施例] 次に、第1図を参照して、本考案の一実施例を
説明する。
[Example] Next, an example of the present invention will be described with reference to FIG.

電気透析槽1の陽極2と陰極3との間には、陽
イオン交換膜4と陰イオン交換膜5とが交互に配
列されている。陽極室6と陰極室7とは、それぞ
れ陽イオン交換膜により隣室と隔てられ、さら
に、途中に貯液槽8A,8Bをそれぞれ設けた管
流路9,10により連結され、循環流路をなして
いる。また、貯液槽8A,8Bにおいては、脱気
と水の補給および必要に応じてPH調整を行う。な
お、11はスペーサ、12は室枠である。
Between the anode 2 and the cathode 3 of the electrodialysis cell 1, cation exchange membranes 4 and anion exchange membranes 5 are arranged alternately. The anode chamber 6 and the cathode chamber 7 are each separated from the adjacent chamber by a cation exchange membrane, and are further connected by pipe channels 9 and 10 having liquid storage tanks 8A and 8B in the middle, respectively, to form a circulation channel. ing. Further, in the liquid storage tanks 8A and 8B, deaeration, water replenishment, and pH adjustment are performed as necessary. Note that 11 is a spacer and 12 is a chamber frame.

本実施例は、塩化ナトリウムを主成分とする溶
液を処理するためのものであり、電極室には硫酸
ナトリウム溶液が充填されている。
This example is for processing a solution containing sodium chloride as a main component, and the electrode chamber is filled with a sodium sulfate solution.

このような構成の電気透析装置において、電気
透析操作を実行すると、各イオンがイオン交換膜
4,5を選択的に透過し、溶液の濃縮および希釈
が行われる。
In an electrodialysis apparatus having such a configuration, when an electrodialysis operation is performed, each ion selectively passes through the ion exchange membranes 4 and 5, and the solution is concentrated and diluted.

その際、陽極室6にはハロゲンイオンは含まれ
ておらず、しかも陽イオン交換膜4で隣室と隔て
られているため、陰イオンであるハロゲンイオン
の透過もないから、ハロゲンガスが生成されるこ
とはなく、Na+が透過してゆくことによつて減少
するとともに、硫酸および酸素ガスを生成する反
応が進行する。生成された硫酸および酸素ガスを
含む液は、管流路9を通り、陰極室7に供給され
る。酸素ガスは途中の貯液槽8Aで除去される。
At this time, since the anode chamber 6 does not contain halogen ions and is separated from the adjacent chamber by the cation exchange membrane 4, halogen ions, which are anions, do not pass through, so halogen gas is generated. Instead, Na + decreases as it permeates, and the reaction that produces sulfuric acid and oxygen gas proceeds. The generated liquid containing sulfuric acid and oxygen gas passes through the pipe flow path 9 and is supplied to the cathode chamber 7. Oxygen gas is removed in the intermediate liquid storage tank 8A.

一方、陰極室7では、水素イオンが放電して水
素ガスになるとともに、Na+が隣室から透過して
きてNaOHが生ずるが、陽極室6から供給され
る硫酸により中和され、硫酸ナトリウムとなる。
そのため、陰極室の溶液もアルカリ性となること
はなく、マグネシウムやカルシウムのスケールは
発生しない。生成された硫酸ナトリウムの溶液
は、管流路10を通り、陽極室6に供給される。
水素ガスは途中の貯液槽8Bで除去される。
On the other hand, in the cathode chamber 7, hydrogen ions are discharged and become hydrogen gas, and Na + permeates from the adjacent chamber to produce NaOH, which is neutralized by the sulfuric acid supplied from the anode chamber 6 and becomes sodium sulfate.
Therefore, the solution in the cathode chamber does not become alkaline, and no magnesium or calcium scale is generated. The generated sodium sulfate solution passes through the tube flow path 10 and is supplied to the anode chamber 6.
Hydrogen gas is removed in the intermediate liquid storage tank 8B.

このようにして、塩素ガスやスケールの発生を
だ電気透析がなされる。また、電極充填液におい
ても、硫酸ナトリウムが消費されることはなく、
電気分解により失われる少量の水を添加するだけ
で良い。
In this way, electrodialysis is performed to prevent the generation of chlorine gas and scale. In addition, sodium sulfate is not consumed in the electrode filling liquid,
Only the small amount of water that is lost during electrolysis needs to be added.

本実施例においては、管流路9,10に貯液槽
8A,8Bを設けてあるが、これらは通常の脱気
槽でもよく、電極室または管流路に脱気孔を設け
るだけでもよい。
In this embodiment, the liquid storage tanks 8A and 8B are provided in the pipe channels 9 and 10, but these may be ordinary deaeration tanks, or a deaeration hole may simply be provided in the electrode chamber or the pipe flow path.

なお、電極充填液としては、被処理液に含まれ
る陽イオンと同一の陽イオンおよび陽極酸化作用
で気体になることのない陰イオンからなる可溶性
の塩の溶液であればよいから、硫酸ナトリウムの
ほかリン酸ナトリウムなども使用できる。
Note that the electrode filling liquid may be any soluble salt solution consisting of the same cations as those contained in the liquid to be treated and anions that do not turn into gas due to anodic oxidation. Other substances such as sodium phosphate can also be used.

[考案の効果] 本考案によれば、陽極室出口の溶液を脱気し陰
極室入口に供給する一方、陰極室出口の溶液を脱
し陽極室入口に供給するように、直列で閉回路を
形成してあるので、陰極室で消費されるH+を陽
極室から供給でき、H2SO4等の薬剤の補給量が
例えば従来の1/5以下と極めて少なくて済む。
[Effect of the invention] According to the invention, a closed circuit is formed in series so that the solution at the outlet of the anode chamber is deaerated and supplied to the inlet of the cathode chamber, while the solution at the outlet of the cathode chamber is deaerated and supplied to the inlet of the anode chamber. Therefore, the H + consumed in the cathode chamber can be supplied from the anode chamber, and the amount of replenishment of chemicals such as H 2 SO 4 can be extremely small, for example, less than 1/5 of the conventional amount.

また、陽極室から透析室内を陰極室に向かつて
電気泳動および拡散により散逸するH+の量を大
幅に減らせるから、PHを調節するために、例えば
淡水の場合、NaOH等を投入して中和する必要
がない。
In addition, since the amount of H + dissipated by electrophoresis and diffusion from the anode chamber to the cathode chamber in the dialysis chamber can be greatly reduced, in order to adjust the pH, for example, in the case of fresh water, NaOH etc. can be added to the solution. There is no need to reconcile.

さらに、陽極室から陰極室に向かう流路と陰極
室から陽極室に向かう流路とは完全に分離してお
り、それぞれで脱気すべき気体が混合されないか
ら、爆発の恐れがなくなる。
Furthermore, the flow path from the anode chamber to the cathode chamber and the flow path from the cathode chamber to the anode chamber are completely separated, and the gases to be degassed in each do not mix, eliminating the risk of explosion.

加えて、ハロゲン等の有毒ガスの発生がなく、
イオン交換膜の寿命も長くなる。
In addition, there is no generation of toxic gases such as halogens,
The life of the ion exchange membrane will also be extended.

しかも、スケールの発生がない。 Moreover, no scale occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による電気透析装置の一実施例
の構成を示す図、第2図は本考案の原理的系統構
成と系統内のPHとを示す図、第3図は従来例の系
統構成の概略と系統内のPHとを示す図である。 1……電気透析槽、2……陽極、3……陰極、
4……陽イオン交換膜、5……陰イオン交換膜、
6……陽極室、7……陰極室、8A,8B……貯
液槽、9,10……管流路、11……スペーサ、
12……室枠、13……混合物。
Fig. 1 is a diagram showing the configuration of an embodiment of the electrodialysis device according to the present invention, Fig. 2 is a diagram showing the principle system configuration of the present invention and PH in the system, and Fig. 3 is the system configuration of the conventional example. FIG. 1... Electrodialysis tank, 2... Anode, 3... Cathode,
4... Cation exchange membrane, 5... Anion exchange membrane,
6...Anode chamber, 7...Cathode chamber, 8A, 8B...Liquid storage tank, 9, 10...Pipe channel, 11...Spacer,
12... Chamber frame, 13... Mixture.

Claims (1)

【実用新案登録請求の範囲】 陽極室と陰極室との間に陽イオン交換膜と陰イ
オン交換膜とを交互に配列した電気透析槽を有す
る電気透析装置において、 前記陽極室と陰極室とをそれぞれ陽イオン交換
膜により隣室と隔て、 前記陽極室から陰極室への管流路と陰極室から
陽極室への管流路とを直列で閉回路を形成するよ
うに設け、 各管流路の途中に脱気手段を設けた ことを特徴とする電気透析装置。
[Scope of Claim for Utility Model Registration] An electrodialysis device having an electrodialysis tank in which cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber and a cathode chamber, Each chamber is separated from the adjacent chamber by a cation exchange membrane, and the tube flow path from the anode chamber to the cathode chamber and the tube flow path from the cathode chamber to the anode chamber are arranged in series to form a closed circuit, and each tube flow path is An electrodialysis device characterized in that a deaeration means is provided in the middle.
JP1981043448U 1981-03-27 1981-03-27 Expired JPS6337042Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981043448U JPS6337042Y2 (en) 1981-03-27 1981-03-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981043448U JPS6337042Y2 (en) 1981-03-27 1981-03-27

Publications (2)

Publication Number Publication Date
JPS57156103U JPS57156103U (en) 1982-10-01
JPS6337042Y2 true JPS6337042Y2 (en) 1988-09-30

Family

ID=29840423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981043448U Expired JPS6337042Y2 (en) 1981-03-27 1981-03-27

Country Status (1)

Country Link
JP (1) JPS6337042Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106685A (en) * 1975-03-18 1976-09-21 Asahi Chemical Ind DENKITOSEKIHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106685A (en) * 1975-03-18 1976-09-21 Asahi Chemical Ind DENKITOSEKIHO

Also Published As

Publication number Publication date
JPS57156103U (en) 1982-10-01

Similar Documents

Publication Publication Date Title
CA2270199C (en) Electrolytic cell and electrolyzed water generating device
US5536387A (en) Silver removal
US6837986B2 (en) Device for producing electrolytic water and process for producing electrolytic water
US9611555B2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
JPS58224189A (en) Chlorine gas generator and method
US4240884A (en) Electrolytic production of alkali metal hypohalite
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
US4978438A (en) Electrolytic cell
US4217188A (en) Method for storing developers
JPS5956587A (en) Manufacture of choline base and color stabilization
US4089760A (en) Method for regenerating waste developers used for processing silver halide photographic materials and method for storing developers
JPH0416554B2 (en)
JPH081168A (en) Treatment method for drainage containing monovalent neutral salt
JPS6337042Y2 (en)
FI79824C (en) FOERFARANDE FOER FRAMSTAELLNING AV KLORDIOXID MEDELST FOERAONGNING GENOM EN MEMBRAN.
JP3265495B2 (en) Method for producing nickel hypophosphite
TW200426112A (en) Method and apparatus for generating electrolytic gas
US3574084A (en) Specialized halogen generator for purification of water
JP3568290B2 (en) Electrolyzed water generator
JP6215419B2 (en) Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
RU2100286C1 (en) Method of disinfecting water
CN216799396U (en) Electrolytic electrodialysis device
US3318788A (en) Method of forming acid in concentrating chambers of electrodialysis apparatus
EP0708363B1 (en) Method and apparatus for altering the pH of a photographic developing solution
JPH06328078A (en) Alkaline water producing process