JPS6336964B2 - - Google Patents

Info

Publication number
JPS6336964B2
JPS6336964B2 JP57035414A JP3541482A JPS6336964B2 JP S6336964 B2 JPS6336964 B2 JP S6336964B2 JP 57035414 A JP57035414 A JP 57035414A JP 3541482 A JP3541482 A JP 3541482A JP S6336964 B2 JPS6336964 B2 JP S6336964B2
Authority
JP
Japan
Prior art keywords
tread
groove
center line
mode
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57035414A
Other languages
Japanese (ja)
Other versions
JPS58152608A (en
Inventor
Tomekichi Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohtsu Tire and Rubber Co Ltd
Original Assignee
Ohtsu Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtsu Tire and Rubber Co Ltd filed Critical Ohtsu Tire and Rubber Co Ltd
Priority to JP57035414A priority Critical patent/JPS58152608A/en
Publication of JPS58152608A publication Critical patent/JPS58152608A/en
Publication of JPS6336964B2 publication Critical patent/JPS6336964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】 本発明は圃場等軟弱地走行兼用タイヤに係り、
一般道路でも湿田等の圃場でも、低騒音、低振動
にて車輛を円滑、高速に走行させることを目的と
したものの提供に関する。
[Detailed description of the invention] The present invention relates to a tire for running on soft ground such as fields,
To provide a vehicle for the purpose of running a vehicle smoothly and at high speed with low noise and low vibration both on general roads and in fields such as wet fields.

従来、一般道路走行用のタイヤは、車輛走行時
に、騒音や振動の発生を防止すべくトレツドパタ
ーンが形成されているが、この車輛を湿田等の圃
場に乗入れた場合には、タイヤが湿田中にめり込
み、かつ、泥土等がトレツド溝に嵌り込んでタイ
ヤの湿田表面上での牽引力が維持できず、結局、
タイヤがスリツプして湿田での走行が不能になる
ものであつた。
Conventionally, tires for general roads have been formed with a tread pattern to prevent the generation of noise and vibration when the vehicle is running, but when the vehicle is driven into agricultural fields such as wet fields, the tires become damp. In the end, the tire got stuck in the rice field, and mud etc. got stuck in the tread groove, making it impossible for the tire to maintain traction on the wet field surface.
The tires would slip, making it impossible to drive in the wet fields.

一方、軟弱地用のタイヤは、圃場における車輛
走行時に、タイヤの圃場での転り抵抗を維持すべ
く、起伏の大なるトレツドパターンを有してい
る。そのため、この車輛を一般道路で走行させた
場合には、上記の如きトレツドパターンであるた
め、車輛の騒音、振動が極めて大であり、この種
タイヤでは、一般道路上の走行は、特に高速にお
いて不可能なものであつた。
On the other hand, tires for soft terrain have a tread pattern with large undulations in order to maintain the rolling resistance of the tire in the field when the vehicle is running in the field. Therefore, when this vehicle is driven on a general road, the noise and vibration of the vehicle are extremely large due to the above-mentioned tread pattern. It was impossible.

然して、従来のトレツドパターンを有するタイ
ヤによつて、一般道路と圃場等軟弱地のいずれを
も走行することは不可能であつたが、特に農用ト
ラツク等の農用車輛にあつては、圃場から他の圃
場への移動時等に、一般道路を走行することが
多々あり、近時、一般道路と圃場等軟弱地のいず
れをも走行し得る軟弱地走行兼用タイヤの提供が
望まれていた。
However, it has been impossible to use tires with conventional tread patterns to drive on both general roads and soft ground such as farm fields. BACKGROUND OF THE INVENTION When moving from one farm to another, the vehicle is often driven on public roads, and recently there has been a desire to provide a tire that can be used for both general roads and soft soil such as fields.

本発明は、かかる従来の要望に呼応して鋭意創
成されたものであり、一般道路でも圃場、砂地、
雪上等の軟弱地でも低騒音、低振動にて車輛を円
滑、高速に走行させる軟弱地走行兼用タイヤの提
供を目的とするもので、従つてその特徴とすると
ころは、トレツド中心線に対するトレツド一半面
で、トレツド中心線に間隔をもつて直交する複数
の仮想線が設定され、トレツド周方向に相隣る上
記仮想線のピツチが周方向の一方に向つて最大ピ
ツチから最少ピツチに到るまで順次減少する構成
とされ、この最大ピツチから最少ピツチに到る間
でトレツド中心線と、相隣る仮想線とで区成され
た区成部群が正方向半モードとされ、該正方向半
モード端から同周方向に隣接する仮想線が上記と
逆の同ピツチに配置されて逆方向半モードとさ
れ、これら両半モードが一体として第1モードと
され、一方、トレツド他半面に、同周方向に前記
逆方向半モードと正方向半モードとが順次隣接さ
れ、これら両半モードが一体として第2モードと
され、夫々同数の上記第1、第2モードが全周の
正の整数として配置されると共に、両モードが1
モード周方向長さの(1/24〜5/24)倍で周方向に
位相差を与えられ、各区成分部に、トレツド端か
らトレツド側壁に開口して該開口からトレツド中
心線に向つて延びるトレツド溝が形成されると共
に、これらトレツド溝間がラグ部とされ、各区成
部におけるラグ部とトレツド溝の面積比が各区成
部同士で略同一とされた点にある。
The present invention was created in response to such conventional demands, and it can be used on general roads, in fields, on sandy soil,
The purpose of this tire is to provide a tire that can be used for running on soft terrain, allowing the vehicle to run smoothly and at high speed with low noise and low vibration even on soft terrain such as on snow. A plurality of imaginary lines are set perpendicular to the tread center line at intervals, and the pitch of the imaginary lines adjacent to each other in the tread circumferential direction reaches from the maximum pitch to the minimum pitch in one direction in the circumferential direction. The pitch decreases sequentially, and the group of sections defined by the tread center line and adjacent virtual lines from the maximum pitch to the minimum pitch is defined as a positive half mode. An imaginary line adjacent in the same circumferential direction from the mode end is placed at the same pitch opposite to the above, forming a reverse half mode, and these two half modes are collectively called the first mode. The reverse half mode and the forward half mode are sequentially adjacent to each other in the circumferential direction, and these half modes are integrated into a second mode, and the same number of the first and second modes are set as a positive integer of the entire circumference. At the same time, both modes are set to 1.
A phase difference is given in the circumferential direction by (1/24 to 5/24) times the mode circumferential length, and each section is opened from the tread end to the tread side wall and extends from the opening toward the tread center line. Tread grooves are formed, and the area between these tread grooves is used as a lug portion, and the area ratio of the lug portion to the tread groove in each section is made substantially the same in each section.

以下、本発明の実施例を図に従い説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、軟弱地走行兼用タイヤ1の子午断面
形状を示し、該タイヤ子午断面におけるトレツド
2のトレツド中央部外面3が長半径R1でクラウ
ン形成され、この中央部外面3端からトレツド端
4までのトレツド端部外面5が同中央部外面3端
の略接線上から延設されて短半径R2でクラウン
形成されている。
FIG. 1 shows a meridional cross-sectional shape of a tire 1 for running on soft terrain. In the meridional cross-section of the tire, the outer surface 3 of the center part of the tread 2 is crowned with a major radius R1 , and the outer surface 3 of the center part extends from the outer surface 3 of the tread to the end of the tread. The outer surfaces 5 of the tread ends up to 4 extend substantially tangentially to the ends of the outer surfaces 3 of the central portion and are crowned with a minor radius R 2 .

上記トレツド2のトレツド巾W1はタイヤ巾
(W2)の略0.9倍で、中央部外面巾W3は、トレツ
ド巾W1の(0.5±0.2)倍とされ、長半径R1はタ
イヤ巾W2の(1.5±0.3)倍で、短半径R2が同タ
イヤ巾W2の0.7±0.2倍で、長半径R1が常に短半
径R2より長寸法である。上記長半径R1の中心点
6は、トレツド中心線7に直交するタイヤ径方向
線8上にある。
The tread width W 1 of the tread 2 is approximately 0.9 times the tire width (W 2 ), the central outer surface width W 3 is (0.5±0.2) times the tread width W 1 , and the major axis R 1 is the tire width. It is (1.5±0.3) times W2 , the short radius R2 is 0.7±0.2 times the tire width W2 , and the long radius R1 is always longer than the short radius R2 . The center point 6 of the major radius R 1 is located on a tire radial direction line 8 perpendicular to the tread center line 7 .

第2図Cは、平面上に展開されたトレツドパタ
ーンの一部を示し、トレツド中心線7に対するト
レツド一半面9、即ち第2図Cで示すトレツド中
心線7から手前側部分で、トレツド中心線7に間
隔をもつて直交する複数の仮想線10が設定され
る。そして、トレツド周方向に相隣る上記仮想線
10のピツチln,ln-1,…,l1,l0が周方向の一
方、即ち、第2図C中矢印11方向に向つて最大
ピツチlnから最少ピツチl0に到るまで階段式に順
次減少する構成とされ、この最大ピツチlnから最
少ピツチl0に到る間でトレツド中心線7と、相隣
る仮想線10とで区成された区成部12群が正方
向半モード13とされている。上記相隣るピツチ
の関係は、n=2→n(nは正の整数)で、
log n/log(n−1)=log(n−1)/log(n−2
)=一定、が好まし く、また、最大ピツチlnは最少ピツチl0の(1.4〜
2.0)倍であることが好ましい。上記の場合、最
大ピツチlnが最少ピツチl0の1.4倍以下になると、
走行時のタイヤ1の騒音が大きくなり、即ち、各
周波数(Hz)における騒音レベル(dB)相互の
差が大きくなり、好ましくなく、また、上記数値
が2倍以上になると、最大ピツチlnと最少ピツチ
l0における区成部12の差が大きくなり過て偏摩
耗の原因となり好ましくない。
FIG. 2C shows a part of the tread pattern developed on a plane, and shows one half of the tread 9 with respect to the tread center line 7, that is, the front side of the tread center line 7 shown in FIG. A plurality of virtual lines 10 orthogonal to the line 7 are set at intervals. The pitches ln, ln -1 , ..., l 1 , l 0 of the virtual lines 10 adjacent to each other in the circumferential direction of the tread are the maximum pitch ln toward one side in the circumferential direction, that is, in the direction of arrow 11 in FIG. 2C. The pitch decreases stepwise from the maximum pitch ln to the minimum pitch l0 , and the distance from the maximum pitch ln to the minimum pitch l0 is defined by the tread center line 7 and the adjacent virtual line 10. The sectional part 12 group is set as the positive direction half mode 13. The relationship between the adjacent pitches above is n = 2 → n (n is a positive integer),
log n/log(n-1)=log(n-1)/log(n-2
) = constant, preferably, and the maximum pitch ln is the minimum pitch l 0 (1.4 ~
2.0) times is preferred. In the above case, if the maximum pitch ln becomes less than 1.4 times the minimum pitch l 0 ,
The noise of the tire 1 when running increases, that is, the difference between the noise levels (dB) at each frequency (Hz) increases, which is undesirable. Also, if the above value becomes more than double, the maximum pitch ln and the minimum pitch ln increase. Pituchi
The difference between the sections 12 at l 0 becomes too large, which is undesirable as it causes uneven wear.

また、正方向半モード13端から上記と同矢印
11方向に隣接する仮想線10が上記と逆の同ピ
ツチl0,l1…ln-1,lnに配置されて逆方向半モー
ド14とされ、上記正・逆方向半モード13,1
4が一体として第1モード15とされ、図例で
は、半モードが3ピツチ、即ち1モードが6ピツ
チで構成される。
Further, the virtual line 10 adjacent from the end of the forward half mode 13 in the same direction of the arrow 11 as described above is arranged at the same pitches l 0 , l 1 . , the above forward/reverse half mode 13,1
4 are integrated into the first mode 15, and in the illustrated example, a half mode consists of 3 pitches, that is, 1 mode consists of 6 pitches.

一方、トレツド中心線7に対するトレツド他半
面16に、同矢印11の周方向に前記逆方向半モ
ード14と正方向半モード13とが順次隣接さ
れ、これら両半モード14,13が一体として第
2モード17とされる。そして、夫々同数の上記
第1、第2モード15,17がトレツド全周で、
正の整数、好ましくは、1モードのピツチ数を多
数とし、単一モードとして配置される。そして、
両モード15,17が1モード周方向長さL1
(1/24〜5/24)倍で周方向に位相差lを与えられ
る。
On the other hand, on the other half of the tread 16 relative to the tread centerline 7, the reverse half mode 14 and the forward half mode 13 are sequentially adjacent to each other in the circumferential direction of the same arrow 11, and these half modes 14 and 13 are integrated into the second half mode. The mode is set to 17. Then, the same number of the first and second modes 15 and 17 are all around the tread,
A positive integer, preferably a large number of pitches in one mode, are arranged as a single mode. and,
Both modes 15 and 17 are given a phase difference l in the circumferential direction, which is (1/24 to 5/24) times the one mode circumferential length L1.

上記各区成部12に、トレツド側壁18に開口
し、該開口からトレツド中心線7に向つて延びる
トレツド溝19が形成されると共に、これらトレ
ツド溝19間がラグ部20とされ、各区成部12
におけるラグ部20とトレツド溝19の面積比が
各区成部12同士で略同一とされ、即ち、トレツ
ド2の単位面積におけるラグ部20とトレツド溝
19の面積比がトレツド1各部において略同一と
される。好ましくは、ラグ部20とトレツド溝1
9の面積比は、(1.2±0.3):1とされる。
In each of the sections 12, a tread groove 19 is formed which opens into the tread side wall 18 and extends from the opening toward the tread center line 7, and between these tread grooves 19 is a lug section 20.
The area ratio of the lug portion 20 to the tread groove 19 in each section 12 is approximately the same, that is, the area ratio of the lug portion 20 to the tread groove 19 in the unit area of the tread 2 is approximately the same in each portion of the tread 1. Ru. Preferably, the lug portion 20 and the tread groove 1
The area ratio of 9 is (1.2±0.3):1.

上記トレツド溝19は、そのトレツド端4域に
おけるトレツド端部溝21が長手方向略直線的
で、この溝心がトレツド中心線7に略直交すべく
形成され、このトレツド端部溝21のトレツド中
心線7側端から、トレツド一半面9では、矢印1
1の周方向逆方向に平面視凸状に湾曲する折曲溝
22が延設され、トレツド他半面16では、矢印
11の周方向に上記と同様に折曲溝22が延設さ
れ、各折曲溝22,22のトレツド中心線7側端
は、トレツド中心線7に向つて、溝巾寸法が漸次
略直線的に減少する三角頭形状とされる。
The tread groove 19 is formed so that the tread end groove 21 in the tread end 4 region is approximately linear in the longitudinal direction, and the groove center is approximately perpendicular to the tread center line 7. From the side edge of line 7, on one half of the tread 9, arrow 1
A bending groove 22 that curves convexly in plan view extends in the opposite circumferential direction of the tread 1, and on the other half of the tread 16, a bending groove 22 extends in the circumferential direction of the arrow 11 in the same manner as above, and each bend The ends of the curved grooves 22, 22 on the tread center line 7 side are formed into a triangular head shape in which the groove width gradually decreases substantially linearly toward the tread center line 7.

上記トレツド溝19の溝頂点たるトレツド中心
線側溝端23は、そのトレツド溝19の区成部1
2における両仮想線10中央の仮想線間中心線2
4上に位置し、かつ、トレツド中心線7の手前に
位置する。また、トレツド一半面9において、仮
想線間中心線24から矢印11の周方向位置のト
レツド端部溝21縁までの正方向溝巾W4と、仮
想線間中心線24から逆周方向での逆方向溝巾
W5との寸法比は略1:(1.15〜1.35)とされ、こ
れら正・逆方向溝巾W4,W5の和、即ち、トレツ
ド端部溝21の溝巾は、そのトレツド溝19の区
成部12における両仮想線ピツチlの略0.6倍と
される。一方、トレツド他半面16において、仮
想線間中心線24から矢印11の周方向の逆方向
に関し、上記と同様に、トレツド溝19が夫々形
成される。
The tread centerline side groove end 23, which is the groove apex of the tread groove 19, is located at the section 1 of the tread groove 19.
Center line 2 between virtual lines at the center of both virtual lines 10 in 2
4 and in front of the tread center line 7. In addition, on one half of the tread 9, the forward groove width W 4 from the center line 24 between the imaginary lines to the edge of the tread end groove 21 at the circumferential position indicated by the arrow 11, and the width W 4 in the opposite circumferential direction from the center line 24 between the imaginary lines. Reverse groove width
The dimensional ratio with W 5 is approximately 1: (1.15 to 1.35), and the sum of these forward and reverse direction groove widths W 4 and W 5 , that is, the groove width of the tread end groove 21, is the width of the tread groove 19. The pitch is approximately 0.6 times the pitch l of both virtual lines in the section 12. On the other hand, on the other half of the tread 16, tread grooves 19 are formed in the opposite circumferential direction of the arrow 11 from the imaginary line center line 24 in the same manner as described above.

上記各トレツド端部溝21のトレツド中心線7
側端は、トレツド巾方向に略同一位置とされ、か
つ、トレツド中心線7からトレツド巾W1の略
0.36倍の位置に形成され、また、折曲溝22の折
曲頂点25も、トレツド巾方向に略同一位置とさ
れ、かつ、トレツド中心線7からトレツド巾W1
の略0.27倍の位置に形成される。
Tread center line 7 of each of the above-mentioned tread end grooves 21
The side ends are located at approximately the same position in the tread width direction, and are located approximately at the tread width W 1 from the tread center line 7.
The bending apex 25 of the bending groove 22 is also located at approximately the same position in the tread width direction, and is located at a distance W 1 from the tread center line 7
It is formed at a position approximately 0.27 times that of

上記トレツド中心線側溝端23は、トレツド中
心線7に対し、トレツド周方向で交互に遠・近位
置に形成され、遠位置の各トレツド中心線側溝端
23と近位置の各トレツド中心線側溝端23とが
夫々トレツド巾方向に略同一位置とされ、近位置
のトレツド中心線側溝端23は、トレツド中心線
7からトレツド巾W1の(0.04〜0.16)倍の寸法位
置とされ、遠位置のトレツド中心線側溝端23
は、トレツド中心線7からトレツド巾W1
(0.12〜0.25)倍の寸法位置とされる。
The tread centerline side groove ends 23 are formed alternately at far and near positions in the tread circumferential direction with respect to the tread centerline 7, and each tread centerline side groove end 23 at a far position and each tread centerline side groove end at a near position. 23 are located at substantially the same position in the tread width direction, and the tread center line side groove end 23 at the near position is located at a dimension position (0.04 to 0.16) times the tread width W 1 from the tread center line 7, and the tread center line side groove end 23 at the far position Tread centerline side groove end 23
is a dimensional position from the tread center line 7 to (0.12 to 0.25) times the tread width W1 .

トレツド中心線7に対し、対向するトレツド溝
19間のラグ部20には、トレツド周方向に沿つ
て連続し、トレツド溝1から離間した環状溝26
が形成される。図例では、トレツド中心線7に対
し、トレツド周方向交互に対向するトレツド溝1
9のトレツド中心線側溝端23を迂回するよう
に、環状溝26がジグザグ状に形成され、このジ
グザグ形状の振れ巾W6はトレツド巾W1の略0.1
倍であることが好ましく、同ピツチは、そのトレ
ツドパターンを形成するピツチに対応して略等し
い長さであることが好ましい。また、この環状溝
26の溝巾W7はトレツド巾W1の(0.02〜0.05)
倍で、同溝深さL2はトレツド2の巾方向1/4点に
おけるトレツド溝19深さの(0.2〜0.6)倍であ
ることが好ましい。
The lug portion 20 between the tread grooves 19 facing each other with respect to the tread center line 7 has an annular groove 26 that is continuous along the circumferential direction of the tread and is spaced apart from the tread groove 1.
is formed. In the illustrated example, tread grooves 1 alternately oppose the tread center line 7 in the tread circumferential direction.
The annular groove 26 is formed in a zigzag shape so as to bypass the tread center line side groove end 23 of No. 9, and the swing width W 6 of this zigzag shape is approximately 0.1 of the tread width W 1 .
Preferably, the pitches are twice as long, and the pitches are preferably of substantially equal length, corresponding to the pitches forming the tread pattern. Also, the groove width W 7 of this annular groove 26 is (0.02 to 0.05) of the tread width W 1 .
The groove depth L2 is preferably (0.2 to 0.6) times the depth of the tread groove 19 at the 1/4 point in the width direction of the tread 2.

尚、この環状溝26は交互に反転する円弧形を
連続的に配置する波形状でもよく、直線状や複数
であつてもよい。
The annular groove 26 may have a wavy shape in which alternately inverted circular arc shapes are continuously arranged, or may have a linear shape or a plurality of grooves.

第2図aは、トレツド中心線7に直交する仮想
線10に対し傾斜したトレツド溝19を、簡略化
したトレツドパターンとして示すもので、トレツ
ド端4域のトレツド溝部分が長手方向略直線的
で、かつ、全てのトレツド溝19の上記部分、即
ちトレツド端部溝21が、上記仮想線10に対
し、所定の交差角度θ1で相互に略平行に形成され
ている。該交差角度θ1は0゜であることが好ましい
が、0〜10゜の範囲であつてもよい。
FIG. 2a shows a simplified tread pattern in which the tread groove 19 is inclined with respect to an imaginary line 10 perpendicular to the tread center line 7, and the tread groove portion in the tread end 4 region is approximately linear in the longitudinal direction. Moreover, the above-mentioned portions of all the tread grooves 19, that is, the tread end grooves 21, are formed substantially parallel to each other at a predetermined intersection angle θ 1 with respect to the above-mentioned imaginary line 10. The crossing angle θ 1 is preferably 0°, but may be in the range of 0 to 10°.

第2図bは、トレツド溝19の変形例を示す簡
略図で、トレツド中心線7に対するトレツド各半
面9,16において、トレツド周方向に列設する
トレツド溝19のトレツド中心線側溝端23がト
レツド巾方向同一位置に形成されている。
FIG. 2b is a simplified diagram showing a modified example of the tread groove 19, in which the groove ends 23 on the tread center line side of the tread grooves 19 arranged in the circumferential direction of the tread on each half surface 9, 16 of the tread with respect to the tread center line 7 are connected to the tread center line. They are formed at the same position in the width direction.

第3図a乃至iの各図は、トレツド溝19の長
手方向各位置における断面を示し、この各断面は
トレツド溝19の底部から開口部に向い漸次溝巾
が広くなる構成とされ、ラグ部20外面近傍のト
レツド溝19の壁面27は、ラグ部20外面の垂
直線28に対し(20゜〜40゜)の溝縁角度θ2とされ、
トレツド溝1の底面は、対向する両壁面27,2
7下端を接線とする円弧で形成される。上記の場
合、対向する両壁面27,27の溝縁角度θ2は相
互に同一である必要はない。
Each of the figures in FIGS. 3a to 3i shows a cross section at each position in the longitudinal direction of the tread groove 19, and each cross section has a configuration in which the groove width gradually increases from the bottom of the tread groove 19 toward the opening, and the lug portion The wall surface 27 of the tread groove 19 near the outer surface of the lug portion 20 has a groove edge angle θ 2 (20° to 40°) with respect to the vertical line 28 of the outer surface of the lug portion 20,
The bottom surface of the tread groove 1 is connected to both opposing wall surfaces 27, 2.
7. It is formed by a circular arc with the lower end as a tangent. In the above case, the groove edge angles θ 2 of the opposing wall surfaces 27, 27 do not need to be the same.

より具体的には、トレツド端部溝21での溝縁
角度θ2は略25゜が好ましい(第3図a、第3図
b)。また、折曲溝22位置では、仮想線間中心
線24からみて凹弧溝縁部における溝縁角度θ2
トレツド端4側で略30゜(第3図c左溝縁)、トレ
ツド中心線7側で略35゜であり(第3図d)、凸弧
溝縁部では略25°が好ましい(第3図c右溝縁、
第3図g)。また、折曲溝22のトレツド中心線
7側端位置での溝縁角度θ2は、凹弧溝縁部側で略
35゜であり(第3図e)、凸弧溝縁部側で略30゜で
ある(第3図f)。この場合、第2図C示の如く、
トレツド中心線7から遠位置にあるトレツド中心
線側溝端23を有するトレツド溝19の場合、折
曲溝22のトレツド中心線7側端位置での溝縁角
度θ2は、凹弧溝縁部側で略30゜であり(第3図
h)、凸弧溝縁部側で略25゜である(第3図i)。
More specifically, the groove edge angle θ 2 at the tread end groove 21 is preferably approximately 25° (FIGS. 3a and 3b). In addition, at the bent groove 22 position, the groove edge angle θ 2 at the concave groove edge when viewed from the imaginary line center line 24 is approximately 30° on the tread end 4 side (left groove edge in Fig. 3c), 7 side (Fig. 3 d), and approximately 25° at the convex arc groove edge (Fig. 3 c right groove edge,
Figure 3g). Furthermore, the groove edge angle θ 2 at the end position on the tread center line 7 side of the bending groove 22 is approximately
35° (Fig. 3e), and approximately 30° on the convex arc groove edge side (Fig. 3f). In this case, as shown in Figure 2C,
In the case of a tread groove 19 having a groove end 23 on the tread center line side located far from the tread center line 7, the groove edge angle θ 2 at the end position of the bent groove 22 on the tread center line 7 side is The angle is approximately 30° at the edge of the convex arc groove (Fig. 3h), and approximately 25° at the edge of the convex arc groove (Fig. 3i).

第3図jは、トレツド溝19の長手方向におけ
る断面図であり、該断面は、上方開口コの字状溝
とされ、ラグ部20外面近傍のトレツド溝19の
壁面27はラグ部20外面に略垂直とされてい
る。
FIG. 3J is a cross-sectional view in the longitudinal direction of the tread groove 19. The cross section is a U-shaped groove with an upward opening, and the wall surface 27 of the tread groove 19 near the outer surface of the lug portion 20 is It is said to be approximately vertical.

上記の場合、トレツド溝19の底面は、対向す
る両壁面27,27を接線とする凹弧面でもよ
い。また、同上断面は、その他、三角形状でもよ
い。
In the above case, the bottom surface of the tread groove 19 may be a concave arc surface with the opposing wall surfaces 27, 27 as tangents. Moreover, the cross section of the same as above may also be triangular.

第1図において、各トレツド溝19の長手方向
断面におけるトレツド中心線側溝端23はトレツ
ド中心線7の手前に位置し、トレツド溝19のト
レツド中心線側底面29が第1半径(R3)によ
る凹弧面に形成されている。該第1半径R3
(35±15mm)の寸法を有し、上記凹弧面が、トレ
ツド中心線側溝端23、若しくはその近傍を通過
すると共に、タイヤ径方向線8上に中心を有する
第2半径R4の円弧に略接するように第1半径R3
の中心が定められる。上記第2半径R4の中心は
次の如く定められる。即ち、JISD4202における
S70値(この値は、あるタイヤの子午断面におけ
るタイヤ巾の70%に値するリムに、該タイヤを装
着したときに測定したタイヤ巾を示す。)の略0.1
倍の寸法でタイヤ径方向線8の直角方向に偏した
位置であつて、トレツド2の表面から所定の溝深
さである仮想点30を通過するように第2半径
R4の円弧31が描かれ、該第2半径R4の寸法は、
上記S70値の(0.7〜1.0)倍とされる。
In FIG. 1, the tread centerline side groove end 23 in the longitudinal section of each tread groove 19 is located in front of the tread centerline 7, and the tread centerline side bottom surface 29 of the tread groove 19 is defined by a first radius (R 3 ). It is formed into a concave arc surface. The first radius R 3 has a dimension of (35±15 mm), and the concave arc surface passes through the tread center line side groove end 23 or the vicinity thereof, and the first radius R 3 has a radius R 3 having a center on the tire radial direction line 8. 2. The first radius R 3 is approximately tangent to the arc of radius R 4 .
The center of is determined. The center of the second radius R4 is determined as follows. That is, in JISD4202
Approximately 0.1 of the S70 value (this value indicates the tire width measured when the tire is mounted on a rim that is equivalent to 70% of the tire width in the meridian section).
The second radius is located at a position that is twice the size and is offset in the direction perpendicular to the tire radial direction line 8, and passes through a virtual point 30 that is a predetermined groove depth from the surface of the tread 2.
An arc 31 of R 4 is drawn, and the dimension of the second radius R 4 is
It is set to be (0.7 to 1.0) times the above S70 value.

上記中心側底面29のトレツド端4側は、上記
第2半径R4による円弧31で形成され、この中
心側底面29端から中間底面32が凸弧面として
延設され、更に該中間部底面32端からトレツド
端側底面33が第2凹弧面として延設され、トレ
ツド端側底面33はトレツド端4及びトレツド側
壁18に開口する。
The tread end 4 side of the center side bottom surface 29 is formed by a circular arc 31 having the second radius R 4 , and an intermediate bottom surface 32 extends as a convex arc surface from the end of the center side bottom surface 29 . A tread end side bottom surface 33 extends from the end as a second concave arc surface, and the tread end side bottom surface 33 opens into the tread end 4 and the tread side wall 18.

上記トレツド端側底面33は第3半径R5によ
り形成され、該第3半径R5の中心34は、トレ
ツド中心線7を通りタイヤ径方向線8に直交する
線35上に略位置し、その寸法は、第2半径R4
の(0.7〜1.0)倍とされ、かつ、トレツド端側底
面33とトレツド側壁18との境界は、トレツド
端4からタイヤ断面高さL3の(0.2〜0.35)倍の
寸法だけ離間した位置にある。
The tread end bottom surface 33 is formed by a third radius R 5 , and the center 34 of the third radius R 5 is approximately located on a line 35 passing through the tread center line 7 and perpendicular to the tire radial direction line 8 . The dimensions are the second radius R 4
(0.7 to 1.0) times the tire cross-sectional height L3, and the boundary between the tread end side bottom surface 33 and the tread side wall 18 is spaced from the tread end 4 by a dimension equal to (0.2 to 0.35) times the tire cross-sectional height L3 . be.

上記中間底面32は第4半径R6により形成さ
れ、この中間部底面32の両端は夫々第2半径
R4による円弧31、即ち中心側底面29端と、
第3半径R5による円弧、即ちトレツド端側底面
33端とに接しており、第4半径R6の寸法は、
第2半径R4の(0.1〜0.3)倍とされる。
The intermediate bottom surface 32 is formed by a fourth radius R6 , and both ends of the intermediate bottom surface 32 are each formed by a second radius.
The arc 31 due to R 4 , that is, the end of the bottom surface 29 on the center side,
It is in contact with the arc defined by the third radius R5 , that is, the bottom surface 33 of the tread end, and the dimension of the fourth radius R6 is as follows:
It is set to be (0.1 to 0.3) times the second radius R4 .

第1図及び第4図において、タイヤ1における
カーカス36とブレーカ37のコードアングルθ3
は次の如き構成である。
1 and 4, the cord angle θ 3 between the carcass 36 and the breaker 37 in the tire 1
has the following structure.

即ち、第1に、トレツドゴムの材質が、硬度
JIS−A)が60゜〜65゜、動的粘弾性特性が20℃、
110Hzで損失正接(tanδ)0.15以上、動的弾性率
(E)′20Kg/cm2以上、かつヒステレシスロスが比
較的大の場合、カーカス36のコードアングル
θ3、即ち、トレツド中心線7に直交する仮想線3
8に対するカーカス36のコードの角度は、47゜
から52゜未満までとされる。
That is, firstly, the material of the tread rubber has a hardness
JIS-A) is 60° to 65°, dynamic viscoelastic properties are 20°C,
When the loss tangent (tan δ) is 0.15 or more at 110 Hz, the dynamic elastic modulus (E) is 20 Kg/cm 2 or more, and the hysteresis loss is relatively large, the cord angle θ 3 of the carcass 36, that is, perpendicular to the tread center line 7. virtual line 3
The angle of the cord of the carcass 36 with respect to 8 is from 47° to less than 52°.

第2に、トレツドゴムの材質が、同硬度55゜〜
60゜、動的粘弾性特性が20℃、110Hzが損失正接
(tanδ)0.15以下、動的弾性率(E)′15Kg/cm2
下、かつ、ヒステシスロスが比較的小の場合、カ
ーカス36のコードアングルθ3は、52゜以上から
57゜までとされる。
Second, the material of the tread rubber has a hardness of 55°~
60°, dynamic viscoelastic properties at 20°C and 110Hz, loss tangent (tan δ) 0.15 or less, dynamic elastic modulus (E) '15 Kg/cm 2 or less, and hysteresis loss relatively small, carcass 36 code. Angle θ 3 is from 52° or more
It is said to be up to 57°.

第3に、上記第2のトレツドゴム材質で、カー
カス36にブレーカ37が付加されている場合、
カーカス36及びブレーカ37のコードアングル
θ3は47゜から52゜未満までとされる。
Thirdly, when a breaker 37 is added to the carcass 36 using the second tread rubber material,
The cord angle θ 3 of the carcass 36 and the breaker 37 is from 47° to less than 52°.

上記の場合、カーカス36、ブレーカ37の材
質は、ナイロンコードの840デニールの2本撚り、
若しくは1260デニールの2本撚り、若しくはポリ
エステルコードであり、カーカス36は2プラ
イ、ブレーカ37は1若しくは2プライとされ、
相隣るプライは上記仮想線38に対し、逆方向の
コードアングルθ3′にて順次積層される。
In the above case, the material of the carcass 36 and breaker 37 is two-stranded 840 denier nylon cord.
Or it is a 1260 denier two-stranded or polyester cord, the carcass 36 is 2 ply, the breaker 37 is 1 or 2 ply,
Adjacent plies are sequentially laminated at a cord angle θ 3 ' opposite to the virtual line 38.

然して、上記各条件下で、上記コーードアング
ルθ3の範囲内では騒音程度が小さく、同範囲外で
は騒音程度が大きくなる。
However, under each of the above conditions, the noise level is small within the range of the code angle θ 3 , and the noise level is large outside the range.

次に、上記の如き構成のタイヤによる実験結果
を示す。
Next, experimental results using tires configured as described above will be shown.

<タイヤサイズ5.00−10のタイヤの場合> モード数:5 1モードのピツチ数:6 短半径:80mm 長半径:150mm タイヤ内圧:1.8Kg/cm2 荷重:260Kg 上記諸条件下で一般道路上を80Kg/hで走行
し、車内音を測定したところ、騒音レベルが75
(dB)程度であり、これは、スノータイヤを同速
にて測定した騒音レベルに比し、やや低いもので
車輛走行上何ら支障となるものではなかつた。し
かも、上記騒音の各周波数(Hz)に対する騒音レ
ベル(dB)は、スノータイヤにおいてその差が
大であるのに対し、本発明に係るタイヤは比較的
小であり、従つて、本発明に係るタイヤでは騒音
レベル比して感覚的に低騒音化が達成された。
<For tires with tire size 5.00-10> Number of modes: 5 Number of pitches in 1 mode: 6 Short radius: 80 mm Long radius: 150 mm Tire internal pressure: 1.8 Kg/cm 2 Load: 260 Kg On general roads under the above conditions When I measured the sound inside the car while driving at 80kg/h, the noise level was 75.
(dB), which was slightly lower than the noise level measured using snow tires at the same speed, and did not pose any problem for vehicle operation. Moreover, while the noise level (dB) for each frequency (Hz) of the above-mentioned noise has a large difference in snow tires, the tire according to the present invention has a relatively small difference. The tires achieved a perceptible reduction in noise compared to the noise level.

また、圃場における走行実験では、表・中層硬
(読取値)が共に25LbSのとき、本発明に係るタ
イヤは走行、発進が可能であり、スノータイヤ、
一般リブタイヤでは下可能であつた。
In addition, in a running experiment in a field, when both the front and middle layer hardness (read value) were 25LbS, the tire according to the present invention was able to run and start, and the snow tire
This was possible with regular ribbed tires.

その他、草地、砂地における走行実験でも、ス
ノータイヤ、一般リブタイヤに比して何ら走行上
劣るものではなかつた。
In addition, in running tests on grass and sand, the tires showed no inferiority in running performance compared to snow tires or regular ribbed tires.

本発明によれば、第1、第2モード15,17
の各ピツチを種々に変化させ、かつ、両モード1
5,17を周方向に偏位させたため、走行時のタ
イヤ1からの発生騒音、振動が分散されて平均化
され、よつて、低騒音、低振動が達成されて有益
である。
According to the invention, the first and second modes 15, 17
The pitch of each mode is changed variously, and both modes 1
Since the tires 5 and 17 are offset in the circumferential direction, the noise and vibration generated by the tire 1 during running are dispersed and averaged, thereby achieving low noise and vibration, which is beneficial.

然して、本発明の全体構成からすれば、本発明
に係るタイヤ1は、一般道路でも圃場等軟弱地で
も、低騒音、低振動にて走行が可能であり有益で
ある。
However, in view of the overall configuration of the present invention, the tire 1 according to the present invention is advantageous because it can run with low noise and low vibration both on general roads and on soft ground such as fields.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図はタイヤの
子午断面図、第2図Cはトレツドの部分図、第2
図aはトレツドの変形例を示す簡略図、第2図b
はトレツドの他の変形例を示す簡略図、第3図a
乃至i図、夫々第2図CのA−A線矢視乃至−
線矢視に相当する部分断面図、第3図jはトレ
ツド溝の変形例を示す断面図、第4図はカーカス
とブレーカのコードアングルを示す説明図であ
る。 1……タイヤ、2……トレツド、3……トレツ
ド中央部外面、4……トレツド端、5……トレツ
ド端部外面、7……トレツド中心線、9……トレ
ツド一半面、10……仮想線、12……区成部、
13……正方向半モード、14……逆方向半モー
ド、15……第1モード、16……トレツド他半
面、17……第2モード、18……トレツド側
壁、19……トレツド溝、20……ラグ部、21
……トレツド端部溝、23……トレツド中心線側
溝端、26……環状溝、27……壁面、29……
トレツド中心線側底面、32……中間部底面、3
3……トレツド端側底面、R1……長半径、R2
…短半径、W1……トレツド巾、W2……タイヤ
巾、W3……トレツド中央部外面巾、L1……1モ
ード周方向長さ。
The figures show embodiments of the present invention, in which Figure 1 is a meridional cross section of the tire, Figure 2C is a partial view of the tread, and Figure 2C is a partial view of the tread.
Figure a is a simplified diagram showing a modified example of the tread, Figure 2 b
Figure 3a is a simplified diagram showing another modification of the tread.
Figures i to i, respectively from the A-A line arrow view in Figure 2C to -
FIG. 3J is a sectional view showing a modification of the tread groove, and FIG. 4 is an explanatory view showing the cord angle between the carcass and the breaker. 1...Tire, 2...Tread, 3...Tread center outer surface, 4...Tread end, 5...Tread end outer surface, 7...Tread center line, 9...Tread half surface, 10...Virtual Line, 12...Ku Naribe,
13...Forward half mode, 14...Reverse half mode, 15...First mode, 16...Other half of the tread, 17...Second mode, 18...Tread side wall, 19...Tread groove, 20 ...Lug section, 21
... Tread end groove, 23 ... Tread center line side groove end, 26 ... Annular groove, 27 ... Wall surface, 29 ...
Tread center line side bottom surface, 32...Intermediate portion bottom surface, 3
3...Tread end bottom surface, R 1 ... Major radius, R 2 ...
...short radius, W 1 ... tread width, W 2 ... tire width, W 3 ... tread center outer surface width, L 1 ... 1 mode circumferential length.

Claims (1)

【特許請求の範囲】[Claims] 1 トレツド中心線7に対するトレツド一半面9
で、トレツド中心線7に間隔をもつて直交する複
数の仮想線10が設定され、トレツド周方向に相
隣る上記仮想線10のピツチln,ln-1…l1,l0
周方向の一方に向つて最大ピツチlnから最少ピツ
チl0に到るまで順次減少する構成とされ、この最
大ピツチlnから最少ピツチl0に到る間でトレツド
中心線7と相隣る仮想線10とで区成された区成
部12群が正方向半モード13とされ、該正方向
半モード13端から同周方向に隣接する仮想線1
0が上記と逆の同ピツチl0,l1…ln-1,lnに配置
されて逆方向半モード14とされ、これら両半モ
ード13,14が一体として第1モード15とさ
れ、一方、トレツド他半面16に、同周方向に前
記逆方向半モード14と正方向半モード13とが
順次隣接され、これら両半モード14,13が一
体として第2モード17とされ、夫々同数の上記
第1、第2モード15,17が全周で正の整数と
して配置されると共に、両モード15,17が1
モード周方向長さL1の(1/24〜5/24)倍で周方
向に位相差を与えられ、各区成部12に、トレツ
ド端4からトレツド側壁18に開口して該開口か
らトレツド中心線7に向つて延びるトレツド19
が形成されると共に、これらトレツド溝19間が
ラグ部20とされ、各区成部12におけるラグ部
20とトレツド溝19の面積比が各区成部12同
士で略同一とされたことを特徴とする軟弱地走行
兼用タイヤ。
1 One half of the tread 9 relative to the tread center line 7
A plurality of imaginary lines 10 are set perpendicular to the tread center line 7 at intervals, and the pitches ln, ln -1 ...l 1 , l 0 of the imaginary lines 10 adjacent to each other in the tread circumferential direction are The pitch gradually decreases in one direction from the maximum pitch ln to the minimum pitch l0 , and between the maximum pitch ln and the minimum pitch l0 , the tread center line 7 and the adjacent virtual line 10 A group of 12 divided sections is defined as a positive direction half mode 13, and an imaginary line 1 adjacent in the same circumferential direction from the end of the positive direction half mode 13
0 is arranged at the same pitches l 0 , l 1 . On the other half of the tread 16, the reverse half mode 14 and the forward half mode 13 are sequentially adjacent to each other in the same circumferential direction. 1, the second modes 15 and 17 are arranged as positive integers all around, and both modes 15 and 17 are arranged as 1.
A phase difference is given in the circumferential direction by (1/24 to 5/24) times the mode circumferential length L1 . Tread 19 extending towards line 7
is formed, and the area between these tread grooves 19 is used as a lug portion 20, and the area ratio of the lug portion 20 and the tread groove 19 in each section 12 is made to be approximately the same in each section 12. Tire for driving on soft ground.
JP57035414A 1982-03-06 1982-03-06 Tire serving concurrently as soft ground running use Granted JPS58152608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035414A JPS58152608A (en) 1982-03-06 1982-03-06 Tire serving concurrently as soft ground running use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035414A JPS58152608A (en) 1982-03-06 1982-03-06 Tire serving concurrently as soft ground running use

Publications (2)

Publication Number Publication Date
JPS58152608A JPS58152608A (en) 1983-09-10
JPS6336964B2 true JPS6336964B2 (en) 1988-07-22

Family

ID=12441213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035414A Granted JPS58152608A (en) 1982-03-06 1982-03-06 Tire serving concurrently as soft ground running use

Country Status (1)

Country Link
JP (1) JPS58152608A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT378741B (en) * 1983-01-19 1985-09-25 Semperit Ag RUNNING PROFILE FOR A VEHICLE AIR TIRE
JPS6082408A (en) * 1983-10-13 1985-05-10 Sumitomo Rubber Ind Ltd Low noise tire
JPS616007A (en) * 1984-06-20 1986-01-11 Sumitomo Rubber Ind Ltd Radial tire
JP4596662B2 (en) * 2001-02-26 2010-12-08 株式会社ブリヂストン Tire vulcanizing mold
EP1676724A1 (en) * 2003-10-09 2006-07-05 Bridgestone Corporation Tread structure with high traction and low vibration
JP6934842B2 (en) * 2018-06-25 2021-09-15 株式会社ブリヂストン Pneumatic tires for agricultural vehicles

Also Published As

Publication number Publication date
JPS58152608A (en) 1983-09-10

Similar Documents

Publication Publication Date Title
JP2799127B2 (en) Pneumatic tire
JP2004533951A (en) Automotive tires with wide tread, especially for snow-covered ground
JPH04266504A (en) Tread of winter tire
EP1107872A1 (en) An on/off-road tread
US4791971A (en) Pneumatic tractor tire
JP3377407B2 (en) Pneumatic tire
US6026874A (en) Pneumatic tire having circumferential groove
JP3676534B2 (en) Pneumatic tire
US6302174B1 (en) Pneumatic tire
WO2000006398A1 (en) Pneumatic tire
JP3495593B2 (en) Motorcycle front wheel tires
JPS6336964B2 (en)
JP3471396B2 (en) Pneumatic radial tires for passenger cars
JP3467081B2 (en) Pneumatic radial tire
US5472030A (en) Pneumatic tire
WO1998025776A1 (en) Pneumatic tire and pneumatic tire set
JPS58152605A (en) Tire serving concurrently as soft ground running use
JPH0124083B2 (en)
JPS6336963B2 (en)
JPH06320914A (en) Pneumatic radial tire for heavy load
JP3079048B2 (en) Pneumatic tire
JPH04372406A (en) Pneumatic tire
JPS6336965B2 (en)
JPH0717217A (en) Pneumatic tire
JPS6336962B2 (en)