JPS6336791A - Production of phospholipid by enzyme - Google Patents

Production of phospholipid by enzyme

Info

Publication number
JPS6336791A
JPS6336791A JP18002486A JP18002486A JPS6336791A JP S6336791 A JPS6336791 A JP S6336791A JP 18002486 A JP18002486 A JP 18002486A JP 18002486 A JP18002486 A JP 18002486A JP S6336791 A JPS6336791 A JP S6336791A
Authority
JP
Japan
Prior art keywords
reaction
phospholipid
carrier
adsorbed
phospholipase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18002486A
Other languages
Japanese (ja)
Other versions
JPH0367676B2 (en
Inventor
Kenichi Fujita
藤田 研一
Sachiko Murakami
幸子 村上
Koichi Iwanami
岩並 孝一
Satoru Tokuyama
悟 徳山
Osamu Nakachi
仲地 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP18002486A priority Critical patent/JPS6336791A/en
Publication of JPS6336791A publication Critical patent/JPS6336791A/en
Publication of JPH0367676B2 publication Critical patent/JPH0367676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To suppress formation of by-products, by bringing a raw material phospholipid and a hydroxyl group-containing receptor into contact with phospholipase D adsorbed on a carrier to carry out reaction and minimizing water content in the reaction system. CONSTITUTION:A raw material phospholipid such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, etc., and a hydroxyl group- containing receptor such as serine, methanol, ethanol, etc., are reacted with phospholipase D adsorbed on a carrier in the presence of an organic solvent. Or a carrier having adsorbed the raw material phospholipid is blended with the receptor and the carrier having adsorbed phospholipase D and reacted. The water content in the reaction system is <=1%. Active carbon, activated clay, silicic acid, silica gel, diatomaceous earth, zeolite, alumina, etc., may be used as the carrier.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酵素によるリン脂質の製造方法に関し、特に
、塩基構造が変換されたリン脂質を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing phospholipids using an enzyme, and particularly to a method for producing phospholipids whose base structure has been converted.

(従来の技術) リン脂質は、単に乳化剤に用い得るのみならずリポソー
ムの基材として薬剤運搬体、人工血液1、人工細胞等へ
の応用が近年注目されており、また、それ自体生理活性
・薬理作用を持つものとして、医学・薬学・工学的分野
の様々な用途が考えられている。このような多様な要求
に対応するために、各々の用途に応じた構造を有するリ
ン脂質を効率的に製造する方法を開発することは、産業
上非常に意義あることである。
(Prior Art) In recent years, phospholipids have attracted attention not only for their use as emulsifiers but also for their application as liposome base materials, drug carriers, artificial blood 1, artificial cells, etc. Phospholipids themselves have physiological activities and As substances with pharmacological effects, various uses in the medical, pharmaceutical, and engineering fields are being considered. In order to meet such diverse demands, it is of great industrial significance to develop a method for efficiently producing phospholipids having structures suitable for each use.

酵素によるリン脂質の製造方法として、リン脂質にホス
ホリパーゼDを任意の受容体の存在下に作用させ、ホス
ファチジル基転移反応を利用して目的とする塩基を持つ
リン脂質を製造する技術は公知である(S、F、Yan
g、 et al、、 J、Biol、Chem、。
As a method for producing phospholipids using enzymes, a technique is known in which phospholipase D is applied to phospholipids in the presence of an arbitrary receptor, and a phospholipid having a target base is produced using a phosphatidyl group transfer reaction. (S, F, Yan
g, et al., J. Biol. Chem.

242、(3) 477〜484 (1967))  
:  CR,M、C,Dawson。
242, (3) 477-484 (1967))
: CR, M, C, Dawson.

Biochem、 J、、102.205〜210 (
1967) )。
Biochem, J., 102.205-210 (
1967) ).

ホスホリパーゼDによるホスファチジル基転移反応を利
用してリン脂質の塩基部分を交換しようとする場合、一
般に水相と有機溶媒相との二相系が用いられる。すなわ
ち、主として水溶性である酵素、受容体、pH緩衝液、
無機塩等を含む水溶液と、主として親油性である原料リ
ン脂質を含む有機溶媒相とを攪拌・混合する反応系であ
る。前出の技4iテをはじめ、その後の研究CK、Br
uzik andM、Tsai、 Biochemis
try 23.  (8) ]、656466H198
4)など〕においても広く用いられている。
When attempting to exchange the base moiety of a phospholipid using a phosphatidyl group transfer reaction by phospholipase D, a two-phase system of an aqueous phase and an organic solvent phase is generally used. namely, enzymes, receptors, pH buffers, which are primarily water soluble;
This is a reaction system in which an aqueous solution containing inorganic salts and the like and an organic solvent phase containing mainly lipophilic raw material phospholipids are stirred and mixed. Including the technique 4i mentioned above, subsequent research CK, Br
uzik andM, Tsai, Biochemis
try 23. (8) ], 656466H198
4) etc.] is also widely used.

(発明が解決しようとする問題点) しかし、従来用いられていたこのような反応系は、水溶
性成分の溶媒としての多量の水の存在が原因となり、ホ
スホリパーゼDが本質的に加水分解活性を持っているた
めに、副反応として加水分解が起こり、ホスファチジン
酸く以下PAと略す)を生成するという欠点を有してい
る。
(Problems to be Solved by the Invention) However, in such a conventionally used reaction system, the presence of a large amount of water as a solvent for water-soluble components essentially causes phospholipase D to have no hydrolytic activity. Because of this, hydrolysis occurs as a side reaction, producing phosphatidic acid (hereinafter abbreviated as PA).

加水分解によるPAの生成は、反応後の目的リン脂質の
分離精製を困難にするばかりでなく、加水分解反応によ
っても原料リン脂質が消費されるため、糖や二級アルコ
ール等の反応性の低い受容体に対し7てホスファチジル
基を転移させようとする場合、その反応速度が加水分解
の反応速度に対して極端に低いために事実上目的生成物
を得ることができなかった。
The generation of PA through hydrolysis not only makes it difficult to separate and purify the target phospholipid after the reaction, but also because the raw material phospholipid is consumed by the hydrolysis reaction, it is difficult to separate and purify the target phospholipid after the reaction. When attempting to transfer a phosphatidyl group to 7 to a receptor, it was virtually impossible to obtain the desired product because the reaction rate was extremely low compared to the hydrolysis reaction rate.

このような問題点は、ホスホリパーゼD自体が本来加水
分解酵素である以上、水が存在する限り不可避である。
Such problems are unavoidable as long as water is present, since phospholipase D itself is originally a hydrolytic enzyme.

そこで、本発明者らは、反応系中の水分含量を酵素が失
活しない範囲で極限まで減少させることによりこの問題
を解決すべく、種々検討の結果、従来水溶液として反応
系に、添加していた成分を、担体に吸着あるいは担持せ
しめて添加する新規な反応系を見出し、本発明に至った
ものである。
In order to solve this problem by reducing the water content in the reaction system to the limit without deactivating the enzyme, the inventors of the present invention have conducted various studies and found that conventional methods of adding water to the reaction system in the form of an aqueous solution. The inventors have discovered a new reaction system in which components are adsorbed or supported on a carrier and added, leading to the present invention.

(問題点を解決するための手段) 本発明は、原料リン脂質と、水酸基を有する受容体とを
、担体に吸着させたホスホ1jバーゼDに接触させて反
応を行うことを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that a raw material phospholipid and a receptor having a hydroxyl group are brought into contact with phospho-1jbase D adsorbed on a carrier to carry out a reaction.

本発明において用いられる原料リン脂質としては、ホス
ホリパーゼDの基質となり得るものであれば、天然から
抽出したもの、または抽出後精製したもの、あるいは合
成したものを問わず使用できる。また、市販のものある
いは公知の方法で調製したものを使用しても差し支えな
い。
The raw material phospholipid used in the present invention may be any phospholipid extracted from nature, purified after extraction, or synthesized, as long as it can serve as a substrate for phospholipase D. Moreover, commercially available products or products prepared by known methods may be used.

例として脱脂大豆レシチン、卵黄レシチン、ホスファチ
ジルコリン(以下PCと略す)、ホスファチジルエタノ
ールアミン(以下PEと略す)、ホスファチジルセリン
(以下PSと略す)、ホスファチジルグリセロール(以
下PGと略す)等またはそれらの混合物等があげられる
。本発明の効果を最大に発揮するためには1、原料リン
脂質として精製したものないしは&、1)成の9i純な
ものを用いた方が反応生成物の精製の面で都合が良い。
Examples include defatted soybean lecithin, egg yolk lecithin, phosphatidylcholine (hereinafter abbreviated as PC), phosphatidylethanolamine (hereinafter abbreviated as PE), phosphatidylserine (hereinafter abbreviated as PS), phosphatidylglycerol (hereinafter abbreviated as PG), etc., or mixtures thereof. can be given. In order to maximize the effects of the present invention, it is more convenient in terms of purification of the reaction product to use purified phospholipids or pure 9i of 1) as the raw material phospholipid.

また、原料コストと人手の容易さ、酵素に対する反応性
の面から特にPC,PP、またはPSが工業的に効果が
高く好ましい。
In addition, from the viewpoint of raw material cost, ease of labor, and reactivity to enzymes, PC, PP, or PS are particularly preferred because they are highly effective industrially.

反応は、原料リン脂質を溶解または)じ濁する有機溶媒
の存在下で行うことが好ましく、酵素を失活させること
の少ない溶媒系であればいずれも使用できる。例として
、石油エーテル、ジエチルエーテル、メチルエチルエー
テル、シイツブIコビルエーテル、クロロホルム、ジク
ロロメタン、四塩化炭素、ジクロロエタン、n−へキサ
ユ/、シクロヘキサン、n−オクタン、イソオクタン、
l1)¥酸エチル、ジオキサン、ベンゼン等の溶媒、ま
たはこれらのン昆合)各課系、またはこれらにアセトン
、アセトニトリルなどの極性溶媒を配合した混合溶媒系
があげられる。ただしアルコール類は目的反応の基質と
なるため、基質として添加する以外に用いることばあま
り好ましくない。
The reaction is preferably carried out in the presence of an organic solvent that dissolves or clouds the raw material phospholipid, and any solvent system that does not deactivate the enzyme can be used. Examples include petroleum ether, diethyl ether, methyl ethyl ether, chloroform, dichloromethane, carbon tetrachloride, dichloroethane, n-hexane, cyclohexane, n-octane, isooctane,
l1) Solvents such as ethyl acetate, dioxane, benzene, etc., or combinations thereof, or mixed solvent systems in which these are combined with polar solvents such as acetone and acetonitrile. However, since alcohols serve as substrates for the desired reaction, it is not very preferable to use them for purposes other than adding them as substrates.

ホスホリパーゼDとしては、ホスファチジル基転移活性
を有するものであれば、市販のものあるいは公知の方法
で調製したものを問わず使用できる。例として、ベーリ
ンガー・マンハイム社(Boehringer Man
nheim Gmb!l)製のキャベツ由来のホスホリ
パーゼD、東洋醸造■製の微生物由来のホスホリパーゼ
D (PLDP) 、公知の方法〔−例としてケーラと
サストリイ(M、Kates and P、S。
As phospholipase D, any phospholipase D can be used, as long as it has phosphatidyl group transfer activity, regardless of whether it is commercially available or prepared by a known method. For example, Boehringer Manheim
nheim Gmb! cabbage-derived phospholipase D (PLDP) manufactured by Toyo Jozo Co., Ltd.; known methods [--for example, Kates and P, S.

Sas try)の方法、”Methods in E
nzymology″(J、M。
``Methods in E
zymology” (J, M.

Lowenstein+  ed、)、  vol、I
4.pp197−203゜Achademic Pre
ss、 New York(1969) )により抽出
し精製または部分精製した酵素標品、または抽出した粗
酵素があげられる。
Lowenstein+ ed.), vol. I
4. pp197-203゜Academic Pre
For example, enzyme preparations extracted and purified or partially purified by the method (Ss., New York (1969)), or extracted crude enzymes can be mentioned.

受容体としては、コリン、メタノール、エタノール、エ
タノールアミン、セリン、グリセロール、グルコース等
の従来ホスファチジル基転移反応の受容体として知られ
ている化合物のみならず、ニーアミノ−2−プロパノー
ル、1−オルソメチルグルコシド、トレハロースをはじ
めとする従来ホスファチジル基転移反応の受容体とはな
らないとされていた糖類を含む一級または二級アルコー
ル構造を持つ化合物をも用いることができる。
Receptors include not only compounds conventionally known as receptors for phosphatidyl group transfer reactions such as choline, methanol, ethanol, ethanolamine, serine, glycerol, and glucose, but also ni-amino-2-propanol and 1-orthomethylglucoside. It is also possible to use compounds having a primary or secondary alcohol structure containing sugars, such as trehalose, which were conventionally considered not to be receptors for phosphatidyl group transfer reactions.

ホスホリパーゼDを吸着あるいは担持させる担体の材質
としては活性炭、活性白土、ケイ酸、シリカゲル、ケイ
藻土、ゼオライト、アルミナ、多孔質ガラス、陶”J’
j=、Ln器、樹脂などがあげられ、形状としては粒径
0.02〜0.5mm程度の粒状あるいはビーズ状が好
ましい。またこれらの担体は、原料リン脂質および受容
体を吸着あるいは担持させることもできる。
Examples of carrier materials that adsorb or support phospholipase D include activated carbon, activated clay, silicic acid, silica gel, diatomaceous earth, zeolite, alumina, porous glass, and ceramic "J'".
Examples include j=, Ln, resin, etc., and the shape is preferably granular or bead-like with a particle size of about 0.02 to 0.5 mm. These carriers can also adsorb or support raw material phospholipids and receptors.

ホスホリパーゼDおよび受容体を担体に吸着あるいは担
持させる方法の例としては、該成分の水溶液を担体と接
触させ、ろ別後過剰の水を凍結乾燥し、あるいはジエチ
ルエーテルまたはクロロホルム等の酵素を失活させない
乾燥有機溶媒を繰り返しまたは連続的に接触させること
により除去する方法、あるいは粉末状にした該成分と担
体とを混合したところへ微量の水を加えて更に混合する
方法などがある。
Examples of methods for adsorbing or supporting phospholipase D and receptors on a carrier include contacting an aqueous solution of the components with the carrier, lyophilizing excess water after filtration, or deactivating the enzyme using diethyl ether or chloroform. There are methods for removing the components by repeatedly or continuously bringing them into contact with dry organic solvents that do not cause oxidation, and methods for further mixing by adding a small amount of water to a mixture of the powdered component and the carrier.

酵素、受容体その他の成分を吸着または担持させた担体
と、原料リン脂質を溶解または)懸濁した有R溶媒とを
接触させる方法としては、容器中で担体を溶媒系中に分
散、懸濁し攪拌する方法、または担体をカラムなどに充
填し溶媒系を循環させる方法などがある。
A method for bringing into contact a carrier on which enzymes, receptors, and other components have been adsorbed or supported with an R-containing solvent in which a raw material phospholipid is dissolved or suspended is to disperse and suspend the carrier in a solvent system in a container. Methods include stirring, or filling a column with the carrier and circulating the solvent system.

原料リン脂質を担体に吸着あるいは担持させる方法の例
としては、低極性有機溶媒に溶解した原料リン脂質を担
体と接触し吸着させた後、濾過により溶媒を除去する方
法、あるいは原料リン脂質を溶解した有機溶媒を担体に
含浸させた後、溶媒を溜去する方法などがある。
Examples of methods for adsorbing or supporting raw material phospholipids on a carrier include methods in which raw material phospholipids dissolved in a low polar organic solvent are brought into contact with the carrier and adsorbed, and then the solvent is removed by filtration, or methods in which raw material phospholipids are dissolved There is a method in which a carrier is impregnated with an organic solvent and then the solvent is distilled off.

反応系全体の水分含量は、好ましくは1%以下に抑える
ことにより加水分解反応が従来の反応系に比べて抑制で
きるが、更に0.5%以下に抑えることが好ましい。特
に、水分含量を0.2%以下に制御することにより従来
の反応系では反応し得なかった受容体をも反応させるこ
とができ、本発明の効果が最大に発揮される。
By suppressing the water content of the entire reaction system to preferably 1% or less, the hydrolysis reaction can be suppressed compared to conventional reaction systems, but it is further preferably suppressed to 0.5% or less. In particular, by controlling the water content to 0.2% or less, receptors that could not react in conventional reaction systems can be reacted, and the effects of the present invention are maximized.

反応温度は用いる酵素の至適温度であればよく、通常3
0〜40’Cの範囲である。ただし、用いる溶媒が低沸
点のものである場合等はこの限りではない。
The reaction temperature may be any optimum temperature for the enzyme used, and is usually 3.
It ranges from 0 to 40'C. However, this does not apply when the solvent used has a low boiling point.

反応時間は0.5〜36時間で、好ましくは4〜24時
間である。
The reaction time is 0.5 to 36 hours, preferably 4 to 24 hours.

このようにして製造した任意の塩基を持つ目的リン脂質
は溶剤分画、ケイ酸またはシリカゲルクロマトグラフィ
ー、アルミナクロマトグラフィー、DIEAE−セルロ
ースクロマトグラフィー等の公知の手段を適宜用いるこ
とにより、容易に精製することができろ。
The target phospholipid having any base produced in this manner can be easily purified by appropriately using known means such as solvent fractionation, silicic acid or silica gel chromatography, alumina chromatography, DIEAE-cellulose chromatography, etc. Be able to do that.

(発明の効果) 本発明は、反応系中の水分含量を酵素が失活しない範囲
で極限まで減少させるため、本質的に非水系の反応系を
用いるので、従来の反応系で見られたようなPAの大量
の生成はtrn制され、反応後の目的リン脂質の分離精
製が容易になり収率が向上した。
(Effects of the Invention) The present invention uses an essentially non-aqueous reaction system in order to reduce the water content in the reaction system to the limit without deactivating the enzyme, so it is different from that seen in conventional reaction systems. The production of a large amount of PA was suppressed by trn, and the separation and purification of the target phospholipid after the reaction was facilitated, resulting in an improved yield.

更に、従来の反応系では得ることのできなかった多くの
種類の目的リン脂質をも製造することが可能となった。
Furthermore, it has become possible to produce many types of target phospholipids that could not be obtained using conventional reaction systems.

(実施例) 以下、参考例、実施例、および比較例に基づいて本発明
を具体的に説明する。
(Example) Hereinafter, the present invention will be specifically described based on Reference Examples, Examples, and Comparative Examples.

なお、リン脂質の組成分析、純度検定は薄層クロマトグ
ラフィー(TLC)で行った。T t、 c +Ii(
メルク社製 m5721)に脂質試料20〜100μg
を直径3〜5mmにスポットし、クロロホルム−メタノ
ール−水(120ニア0:5)またはクロロホルム−ア
セトン−酢酸−メタノール−水(50:20:15:1
0:5)で展開した。検出にはジットマー試薬、50%
硫酸、ニンヒドリン試薬またはアンスロン試薬を目的に
応じて使用した。定量的な測定にはジットマー試薬で発
色したものを高速薄層クロマトスキャナー(島原製作所
製C5−920型)で測定した。
In addition, the compositional analysis and purity test of phospholipids were performed by thin layer chromatography (TLC). T t, c +Ii(
20-100 μg of lipid sample in Merck m5721)
Spotted to a diameter of 3 to 5 mm, chloroform-methanol-water (120 Nia 0:5) or chloroform-acetone-acetic acid-methanol-water (50:20:15:1)
0:5). For detection, Jittmer reagent, 50%
Sulfuric acid, ninhydrin reagent or Anthrone reagent were used depending on the purpose. For quantitative measurement, the color developed with the Jittmer reagent was measured using a high-speed thin layer chromatography scanner (Model C5-920, manufactured by Shimabara Seisakusho).

また、反応生成物の同定は、特に記さない限り、標卓品
とのTLC上でのRf値の比較と各種試薬に対する発色
反応で行った。
In addition, unless otherwise specified, the reaction products were identified by comparing Rf values with standard products on TLC and by color reaction with various reagents.

参考例1 ホウレン草のホスホリパーゼDを前出の公知の方法の一
例、ケーラとサストリイ(M、Kates and P
Reference Example 1 Spinach phospholipase D was prepared by an example of the above-mentioned known method, Kates and P.
.

S、5astry)の方法に従って抽出した。Extracted according to the method of S., 5astry).

近在の農家から入手した新鮮なホウレン草(バレート種
)を水洗後細断し、100gに水20(1mlを加え、
水冷下で5分間ホモジナイズした。5重にしたガーゼで
濾過した濾液を4°Cで2,000Xg、15分間遠心
分離し、上清210m1を得た。この上清を4℃で水l
Ilに対し3回透析し、4℃でto、000×g、15
分間遠心分離した上清195m1をホウレン草粗酵素液
として用いた。なお、この粗酵素液には検出可能量のリ
ン脂質は含まれていないことを確認した。
Fresh spinach (Barreto species) obtained from a nearby farmer was washed with water and shredded, and 20 g of water (1 ml) was added to 100 g.
Homogenization was performed for 5 minutes under water cooling. The filtrate filtered through 5 layers of gauze was centrifuged at 2,000×g for 15 minutes at 4° C. to obtain 210 ml of supernatant. Transfer this supernatant to 1 liter of water at 4°C.
Dialyzed 3 times against Il, 15,000 x g at 4°C.
195 ml of the supernatant obtained by centrifugation for 1 minute was used as a spinach crude enzyme solution. It was confirmed that this crude enzyme solution did not contain a detectable amount of phospholipid.

参考例2 大豆PCおよびPEをパルダン(Von H。Reference example 2 Soybean PC and PE were prepared by Paldan (Von H.

Pardun)の方法(Fette 5etfen A
nstrichmitte並、  (2) 55−62
 (1984))により分離、分画した。
Pardun's method (Fette 5etfen A)
nstrichmitte average, (2) 55-62
(1984)).

市販脱脂大豆レシチン粉末(PC24%、PE21%、
ホスファチジルイノシトール14%、PA8%)20g
をイソプロパノ−ルーメタノール−水(50:45:5
) 100mff1に分散し、40℃で加熱撹拌し溶解
した。攪拌しながら20℃まで冷却し、20℃に1時間
保った。不溶物を20℃に保ったまま遠心分離またはガ
ラスフィルターで減圧濾過した。集めた上清を・減圧下
で乾固し、PCおよびP F、濃縮物(PC68%、P
E17%、PA7%、psは含まない)9.7gを得た
Commercially available defatted soybean lecithin powder (PC24%, PE21%,
Phosphatidylinositol 14%, PA 8%) 20g
isopropanol-methanol-water (50:45:5
) It was dispersed in 100mff1 and dissolved by heating and stirring at 40°C. The mixture was cooled to 20°C with stirring and kept at 20°C for 1 hour. The insoluble matter was centrifuged or filtered under reduced pressure using a glass filter while maintaining the temperature at 20°C. The collected supernatant was dried under reduced pressure, and PC and PF were concentrated (PC68%, P
(E17%, PA7%, PS not included) 9.7g was obtained.

参考例3 卵黄レシチ°ンから常法によりPCを精製した。Reference example 3 PC was purified from egg yolk lecithin by a conventional method.

市販卵黄レシチン(PC67%、PE19%、PA8%
、リゾPC3%)10gをシリカゲルカラム(径3.8
cm X 60cm)を用いて分画した。溶出溶媒とし
てクロロホルム−メタノール(5:1) 1.57!、
クロロホルム−メタノール(3:1) 3pを流し、P
Cを多く含む両分を集め、減圧乾固してPC(PC97
%)4.3 gを得た。
Commercially available egg yolk lecithin (PC67%, PE19%, PA8%
, Lyso PC 3%) was transferred to a silica gel column (diameter 3.8
cm x 60 cm). Chloroform-methanol (5:1) as elution solvent 1.57! ,
Pour 3p of chloroform-methanol (3:1) and
Both parts containing a large amount of C were collected and dried under reduced pressure to form PC (PC97).
%) 4.3 g was obtained.

参考例4 精製卵黄PCを多孔質ガラスに担持させた。Reference example 4 Purified egg yolk PC was supported on porous glass.

参考例3で得た精製卵黄P C500mgを100mf
のn−ヘキサンに溶かし、直径0.5mm以下に砕いた
多孔質ガラス5gに含浸させた後、n−ヘキサンを減圧
乾固して担持させた。
500mg of purified egg yolk PC obtained in Reference Example 3 was added to 100mf
was dissolved in n-hexane and impregnated into 5 g of porous glass crushed to a diameter of 0.5 mm or less, and then the n-hexane was dried under reduced pressure to be supported.

参考例5 牛脳からリーズ(M、Lees)の方法(”Metho
ds inEnzymology”(S、P、Colo
wick and N、0.Kaplan ed、)+
vo1.3+  pp328.Achademic  
Press、Neh  York(1957) )によ
り粗セファリンを抽出し、DEAE−セルロースカラム
クロマトグラフィーで精製した。
Reference example 5 M, Lees method (“Metho”) from cow brain
ds in Enzymology” (S, P, Colo
wick and N, 0. Kaplan ed,)+
vo1.3+ pp328. Academic
Press, Neh York (1957)) and purified by DEAE-cellulose column chromatography.

近在の屠殺場で入手した新鮮な牛脳の脳膜および血管を
取り除いたもの300 gを1.2βのアセトン中でホ
モジナイズし、抽出した。濾過残渣をもう一度1.2β
のアセトンで抽出する。濾過残渣を1.2 I!のエタ
ノールで抽出する。濾過残渣を同様にして1.21の石
油エーテルで2回抽出し、抽出液を集めて減圧乾固し、
粗セファリン画分3.9gを得た。
300 g of fresh bovine brain membranes and blood vessels removed obtained from a local slaughterhouse were homogenized in 1.2β acetone and extracted. 1.2β of the filtration residue again
Extract with acetone. The filter residue is 1.2 I! Extract with ethanol. The filtration residue was similarly extracted twice with 1.21 petroleum ether, the extracts were collected and dried under reduced pressure,
3.9 g of crude cephalin fraction was obtained.

このものをクロロホルムに溶解し、酢酸型に調製したD
EAE−セルロースカラム(ワットマン社製DE32、
径2.5cm X 20cm)を用いて分画した。クロ
ロホルム−メタノール(1:4)16でカラムを洗浄後
、酢酸750m!で溶出した両分を集めた。@酸溶出画
分に等容のクロロホルムを加え、2倍容の水で4回洗浄
した。クロロホルム層を減圧乾固し、PS(PS98%
) 0.8 gを得た。
D was dissolved in chloroform and prepared in acetic acid form.
EAE-cellulose column (Whatman DE32,
2.5 cm x 20 cm). After washing the column with 16 chloroform-methanol (1:4), 750 m of acetic acid! Both eluted fractions were collected. An equal volume of chloroform was added to the @ acid elution fraction, and the mixture was washed four times with 2 volumes of water. The chloroform layer was dried under reduced pressure, and PS (PS98%
) 0.8 g was obtained.

参考例6 市販ケイ藻土を水および溶剤で洗浄し精製した。Reference example 6 Commercially available diatomaceous earth was purified by washing with water and solvent.

1)h503セライト(ジョンズ・マンビル・セイルズ
社製、商品名)100gを21の水に懸濁し洗浄すると
同時にデカンテーションにより微粒子を除去した。同様
にして更に水で2回、メタノールで1回、クロロホルム
で1回洗浄し、最後にアセトン500 mlに懸濁した
ものを減圧濾過した。風乾後120℃で5時間乾燥し、
精製セライト74gを得た。
1) 100 g of h503 Celite (manufactured by Johns Manville Sails, trade name) was suspended in 21 water, washed, and at the same time fine particles were removed by decantation. In the same manner, it was further washed twice with water, once with methanol, and once with chloroform, and finally, the suspension in 500 ml of acetone was filtered under reduced pressure. After air drying, dry at 120℃ for 5 hours,
74 g of purified Celite was obtained.

実施例I L−セリン50g1キヤベツホスホリパーゼD(ベーリ
ンガー・マンハイム社製)  0.5 g 、k7jx
 化カルシウム・二水塩0.25gを500mIlの5
mM酢酸緩衝液pH5,6に溶かし、特級活性炭(和光
純薬(株製)40gを加え、室温で30分間撹拌した。
Example I L-serine 50 g 1 cabbage phospholipase D (manufactured by Boehringer Mannheim) 0.5 g, k7jx
Calcium chloride dihydrate 0.25g to 500ml 5
The mixture was dissolved in mM acetate buffer pH 5.6, 40 g of special grade activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 30 minutes.

濾別後、8時間凍結乾燥し、酵素、受容体その他を吸着
させた活性炭53.7 gを得た。
After filtration, the mixture was freeze-dried for 8 hours to obtain 53.7 g of activated carbon adsorbed with enzymes, receptors, and other substances.

参考例2で得た大豆pcおよびPE濃縮物8gを500
m1のジエチルエーテルに溶かし、酵素、受容体その他
を吸着させた活性炭53.5gを加え分散させた。密閉
容器中で37℃に保温し、17時間500rpmで撹拌
して反応させた。
500 g of soybean pc and PE concentrate obtained in Reference Example 2
53.5 g of activated carbon, which had been dissolved in ml of diethyl ether and adsorbed with enzymes, receptors, etc., was added and dispersed. The reaction mixture was kept at 37° C. in a closed container and stirred at 500 rpm for 17 hours.

反応溶媒を濾過により回収し、活性炭は200mff1
のクロロホルムで3回洗った。反応溶媒と洗液を合わせ
て減圧乾固し、リン脂質混合物(PC8%、PE8%、
PA9%、P372%)6.9gを得た。
The reaction solvent was collected by filtration, and the activated carbon was collected at 200 mff1.
Washed three times with chloroform. The reaction solvent and washing liquid were combined and dried under reduced pressure to form a phospholipid mixture (PC8%, PE8%,
6.9 g of PA9%, P372%) was obtained.

このものをクロロホルムに?容かしてDEAE−セルロ
ースカラム(ワットマン社製DE32 、径3.8×2
7 cm)で分画した。カラムをクロロホルム−メタノ
ール(1:4N、!Mで洗浄後、酢酸1.21!で溶出
した画分から参考例5に示したと同様にしてPS(PS
99%)3.4gを回収した。
Chloroform this stuff? A DEAE-cellulose column (Whatman DE32, diameter 3.8 x 2
7 cm). After washing the column with chloroform-methanol (1:4N, !M), PS (PS
99%) was recovered.

実施例2 塩酸でpi(5,0に調整したIMエタノールアミ′ン
水溶液25m1と参考例1で調製したホウレン草粗酵素
液25m1の混合液に参考例6で得た精製セライト2.
5gを加え、室温で30分間攪拌した。・濾別後少量の
ジイソプロピルエーテルにyL!、′IiJシ、カラム
(径I X3.5 cm)に充填した。乾燥したジイソ
プロピルエーテル2.51を流して過剰の水を吸収、除
去した後、市販卵黄レシチン(PC67%、PE19%
、PA8%、リゾPC3%)3gを溶かしたジイソプロ
ピルエーテル20m1を定量ポンプを用いて流速0.3
〜0.5 d/分、30℃で6時間循環させ、反応させ
た。
Example 2 A mixed solution of 25 ml of IM ethanolamine aqueous solution adjusted to pi (5.0 with hydrochloric acid) and 25 ml of the spinach crude enzyme solution prepared in Reference Example 1 was added with purified Celite obtained in Reference Example 6.
5 g was added and stirred at room temperature for 30 minutes.・After filtration, add yL to a small amount of diisopropyl ether! , 'IiJ' column (diameter I x 3.5 cm). After absorbing and removing excess water by passing 2.51 g of dry diisopropyl ether, commercially available egg yolk lecithin (67% PC, 19% PE) was added.
, PA 8%, Lyso PC 3%) was dissolved in 20 ml of diisopropyl ether at a flow rate of 0.3 using a metering pump.
It was circulated and reacted at ~0.5 d/min at 30° C. for 6 hours.

反応溶媒を回収し、カラムを10m1のクロロホルムで
3回洗った。反応溶媒と洗液を合わせて減圧乾固し、リ
ン脂質混合物(PC1%、PE85%、PAIO%、リ
ゾPC2%)2.7gを得た。
The reaction solvent was collected and the column was washed three times with 10 ml of chloroform. The reaction solvent and washing liquid were combined and dried under reduced pressure to obtain 2.7 g of a phospholipid mixture (PC1%, PE85%, PAIO%, LysoPC2%).

このものをクロロホルムに溶かしてシリカゲルカラム(
径2.5 X 40cm)で分画した。クロロホルム−
メタノール−水(65:25:2) 21で?容出し、
PEを含む画分を集めて減圧乾固し、PE(PE97%
)1.6gを得た。
Dissolve this in chloroform and use a silica gel column (
2.5 x 40 cm). Chloroform-
Methanol-water (65:25:2) 21? Discharge,
Fractions containing PE were collected and dried under reduced pressure to obtain PE (PE97%
) 1.6g was obtained.

実施例3 塩酸でpH5,5に調整した333mM1−アミノ−2
−プロパノール水溶液2艷にキャベツホスホリパーゼD
(ベーリンガー・マンハイム社製)50mg、塩化カル
シウム・二水塩0.5mgを溶解し、参考例6で得た精
製セライト200mgを加え、15分間よく振り混ぜた
。12.000 X gで15分間遠心分雛した沈殿を
6時間凍結乾燥し、酵素、受容体その他を吸着させたセ
ライト278mgを得た。
Example 3 333mM 1-amino-2 adjusted to pH 5.5 with hydrochloric acid
- Cabbage phospholipase D in propanol aqueous solution
(manufactured by Boehringer Mannheim) and 0.5 mg of calcium chloride dihydrate were dissolved, 200 mg of purified Celite obtained in Reference Example 6 was added, and the mixture was shaken well for 15 minutes. The precipitate obtained by centrifugation at 12,000 x g for 15 minutes was freeze-dried for 6 hours to obtain 278 mg of Celite adsorbed with enzymes, receptors, and the like.

10m1のn−ヘキサン−アセトン(95:5)に参考
例4で得た精製卵黄PCを担持させた多孔質ガラス60
0mg、および酵素、受容体その他を吸着させたセライ
) 276mgを懸濁、分散した。37°Cで24時間
500rpmで攪拌し、反応させた。
Porous glass 60 with purified egg yolk PC obtained in Reference Example 4 supported on 10 ml of n-hexane-acetone (95:5)
0 mg, and 276 mg of Serai to which enzymes, receptors, etc. were adsorbed were suspended and dispersed. The mixture was stirred at 500 rpm for 24 hours at 37°C to react.

反応溶媒を濾過により回収し、担体は5 mlのクロロ
ホルムで3回洗った。反応溶媒と洗液を合わせて減圧乾
固し、リン脂質混合物42mgを得た。
The reaction solvent was collected by filtration and the carrier was washed three times with 5 ml of chloroform. The reaction solvent and washing liquid were combined and dried under reduced pressure to obtain 42 mg of a phospholipid mixture.

このものにはPA4%が含まれるが、PCは検出されず
、残りの94%を占めるものはシソI・マー試薬にもニ
ンヒドリン試薬にも陽性で、TLC上のRf値が標準P
Eときわめて近いことから、1−アミノ−2−プロパノ
ールにホスファチジル基が思入された目的リン脂質であ
ると判定した。
This substance contains 4% PA, but no PC was detected, and the remaining 94% was positive for both Shiso I-Mar reagent and ninhydrin reagent, and the Rf value on TLC was that of standard P.
Since it was very similar to E, it was determined that the target phospholipid was 1-amino-2-propanol with a phosphatidyl group.

実施例4 参考例1で得たホウレン草粗酵素液を凍結乾燥した粉末
100mgと活性炭300mgとをよく混ぜ、グリセロ
ール(水分3%) 60mgを加えてよく練り混ぜた。
Example 4 100 mg of freeze-dried powder of the spinach crude enzyme solution obtained in Reference Example 1 and 300 mg of activated carbon were thoroughly mixed, and 60 mg of glycerol (water content 3%) was added and mixed well.

このものを参考例5で得た牛脳PS50mgを溶かした
15m1のクロロホルム中に分散し、35℃で5時間5
00rpmで撹拌し、反応させた。
This material was dispersed in 15 ml of chloroform in which 50 mg of bovine brain PS obtained in Reference Example 5 was dissolved, and the mixture was heated at 35°C for 5 hours.
The mixture was stirred at 00 rpm to react.

反応溶媒を濾過により回収し、活性炭は5 mlのクロ
ロホルムで3回洗った。反応溶媒と洗液を合わせて減圧
乾固し、リン脂質混合物(PS28%、PA3  %、
  PC67%)  44mgを得ノこ。
The reaction solvent was collected by filtration and the activated carbon was washed three times with 5 ml of chloroform. The reaction solvent and washing liquid were combined and dried under reduced pressure to obtain a phospholipid mixture (PS28%, PA3%,
PC67%) 44mg obtained.

実施例5 1−オルソメチルグルコシド600mg、ホスホリパー
ゼD(東洋醸造(横裂PLDP)12/、1gを5 m
lの5mM酢酸緩衝液p H5,6に溶かし、活性炭1
gに実施例3と同様にして吸着させ、凍結乾燥した。
Example 5 600 mg of 1-orthomethyl glucoside, 1 g of phospholipase D (Toyo Jozo Co., Ltd. (Horizona PLDP) 12/, 5 m
Dissolved in 1 liter of 5mM acetate buffer pH 5,6 and 1 liter of activated carbon.
g in the same manner as in Example 3, and freeze-dried.

ジパルミトイルPC45mgを?容かしたクロロホルム
−イソオクタン(1:1) 15mfに酵素、受容体等
を吸着させた活性炭950mgを分散し、38°Cで1
2時間500rpm T:攪拌して反応させた。
Dipalmitoyl PC45mg? Disperse 950 mg of activated carbon adsorbed with enzymes, receptors, etc. in 15 mf of chloroform-isooctane (1:1), and heat at 38°C for 1
500 rpm T: Stirred for 2 hours to react.

実施例4と同様にしてリン脂質混合物48mgを得た。48 mg of a phospholipid mixture was obtained in the same manner as in Example 4.

このものをl1h5745分取用TLCプレート(メル
ク社製)を用い、クロロホルム−メタノール−水(12
0ニア0:5)を展開溶媒として分画、分取し、未同定
リン脂質29mgを得た。
This was mixed with chloroform-methanol-water (12
0nia 0:5) was used as a developing solvent to obtain 29 mg of unidentified phospholipid.

このリン脂質をJMS−DX303型質量分析装置(日
本電子es製)を用い、下記条件にて分析したところ、
陽イオン側の親ピークがm/e 847、陰イオン側の
親ピークがm/e 823であった。
This phospholipid was analyzed using a JMS-DX303 mass spectrometer (manufactured by JEOL ES) under the following conditions.
The parent peak on the cation side was m/e 847, and the parent peak on the anion side was m/e 823.

測定条件 イオン化法    CFAB法 衝撃ガス     :Xe 一部イオン加速電圧:5kV フィラメント電流 :20mA 検出器      :コンバージョン・ダイノード 押し出し電圧   :15に、V マトリクス     ニトリエタノールアミン(陽イオ
ンの場合塩化 ナトリウム添加) データ処理    :JM八−DA5000これらの値
は1−オルソメチルグルコシドにホスファチジル基が導
入されたと仮定した分子量(824)の各々ナトリウム
塩(分子量824 + 23)および陰イオン(分子f
fi 824−1)と−敗したことから、目的リン脂質
であると同定した。
Measurement conditions Ionization method CFAB method Impact gas: Xe Partial ion acceleration voltage: 5kV Filament current: 20mA Detector: Conversion dynode extrusion voltage: 15 to V Matrix Nitriethanolamine (sodium chloride added for cations) Data processing: JM 8-DA5000 These values are based on the assumption that a phosphatidyl group has been introduced into 1-orthomethylglucoside, respectively, and the sodium salt (molecular weight 824 + 23) and anion (molecular weight
fi 824-1), it was identified as the target phospholipid.

実施例6 I・レバロース1gとホスホリパーゼD(東洋醸造(掬
製PLDP)10t!gを5 mlの水に溶かし、乾燥
した市販のビーズ状スチレン−ジビニルベンゼン樹脂を
加えて4°Cで5時間攪拌し、含浸させた。
Example 6 1 g of levalose I and 10 t!g of phospholipase D (Toyo Jozo Co., Ltd. (Kikai PLDP)) were dissolved in 5 ml of water, dried commercially available beaded styrene-divinylbenzene resin was added, and the mixture was stirred at 4°C for 5 hours. and impregnated.

濾別後18時間凍結乾燥したものをジパルミトイルPC
45mgを溶かした乾燥したジクロロメタン2Qml中
に分散させ、37°Cで24時間、4Orpmで回転鏝
のし、反応させた。
Dipalmitoyl PC was lyophilized for 18 hours after filtration.
It was dispersed in 2Qml of dry dichloromethane in which 45mg was dissolved, and reacted in a rotary trowel at 4Orpm at 37°C for 24 hours.

反応溶媒を濾過により回収し、樹脂を2Qmlのジクロ
ロメタンで3回洗った。反応溶媒と洗液とを合わせて減
圧乾固し、リン脂質混合物43mgを得た。
The reaction solvent was collected by filtration and the resin was washed three times with 2Qml of dichloromethane. The reaction solvent and washing liquid were combined and dried under reduced pressure to obtain 43 mg of a phospholipid mixture.

このものはPC38%、PA5%を含んでいたが、54
94を占めるリン脂質はジットマー試薬とアンスロン試
薬に陽性であることから、トレハロースにホスファチジ
ル基が導入された目的リン脂質であると判定した。
This one contained 38% PC and 5% PA, but 54%
Since the phospholipid occupying No. 94 was positive to Jittmer's reagent and Anthrone's reagent, it was determined that it was the target phospholipid in which a phosphatidyl group was introduced into trehalose.

更に、実施例5と同様にして一部をTLCで分取し、質
量分析を行ったところ、陽イオン側視ピークm/e 9
95、陰イオン側視ピークm/e 971で、計算分子
!! (972)の各々ナトリウム塩(分子量972+
23) 、陰イオン(分子量972−1)と一致したこ
とから、目的リン脂質であると同定した。
Furthermore, in the same manner as in Example 5, a portion was fractionated by TLC and subjected to mass spectrometry, and a cation side-view peak m/e 9
95, anion side viewing peak m/e 971, computational molecule! ! Each sodium salt of (972) (molecular weight 972+
23), it was identified as the target phospholipid because it matched with the anion (molecular weight 972-1).

比較例1 従来の反応系で、実施例1とできるだけ近い条件で反応
を行った。
Comparative Example 1 A reaction was carried out using a conventional reaction system under conditions as close as possible to those of Example 1.

L−セゾン200 m M 、塩化カルシウム40mM
、ホスホリパーゼD(ベーリンガー・マンハイム社製)
2.5mgを含むpH5,6の50mM酢酸緩衝液5 
rrl。
L-saison 200mM, calcium chloride 40mM
, Phospholipase D (manufactured by Boehringer Mannheim)
50mM acetate buffer pH 5,6 containing 2.5mg
rrl.

と、参考例2で得た大豆pcおよびPEの濃縮物40m
gを溶かしたジエチルエーテル5 mlを37°CC1
500rpで撹拌した。
and 40 m of the soybean pc and PE concentrate obtained in Reference Example 2.
5 ml of diethyl ether dissolved in
Stirred at 500 rpm.

同一のもの5検体を平行して各1.2.4.8.16時
間反応させた。反応後、5mlのジエチルエーチルで3
回脂質を抽出し、リン脂質N■成を分析した。結果を第
1表に示す。
Five identical samples were reacted in parallel for 1, 2, 4, 8, and 16 hours each. After the reaction, add 5 ml of diethyl ethyl
The lipids were extracted and the phospholipid N composition was analyzed. The results are shown in Table 1.

第1表 組成(%) 比較例2 従来の反応系で、実施例2とできるだけ近い条件で反応
を行った。
Table 1 Composition (%) Comparative Example 2 A reaction was carried out using a conventional reaction system under conditions as close as possible to those of Example 2.

塩酸でpH5,0に調整した1Mエタノールアミン水溶
液0.35mfと参考例1で得たホウレン草粗酵素液0
.375mA!、水4.215m1、市販卵黄レシチン
45mgを溶かしたジイソプロピルエーテル5−を30
℃、500rpmで攪拌した。
1M ethanolamine aqueous solution adjusted to pH 5.0 with hydrochloric acid 0.35mf and spinach crude enzyme solution obtained in Reference Example 1 0.
.. 375mA! , 4.215 ml of water, 30% of diisopropyl ether 5- dissolved in 45 mg of commercially available egg yolk lecithin.
The mixture was stirred at 500 rpm.

同一のもの4検体を平行して各1.2.4.6時間反応
させ、比較例1と同様にして分析した。
Four identical samples were reacted in parallel for 1, 2, and 4.6 hours each, and analyzed in the same manner as in Comparative Example 1.

結果を第2表に示す。The results are shown in Table 2.

第2表 組成(%) 比較例3 従来の反応系で、実施例5とできるだけ近い条件で反応
を行った。
Table 2 Composition (%) Comparative Example 3 A reaction was carried out using a conventional reaction system under conditions as close as possible to those of Example 5.

1−オルソ−メチルグルコシド600mg 、ホスホ、
リパーゼD(東洋醸造(4菊!!!!PLDP)12μ
gを溶かしたpH5,6の50mM酢酸aM fJi液
5 mRとジパルミトイルPC45mgを溶かしたクロ
ロホルム−イソオクタン(1:1)  5mlを38℃
、500rpmで攪拌し、反応させた。
1-ortho-methylglucoside 600mg, phosphor,
Lipase D (Toyo Jozo (4 Kiku!!! PLDP) 12μ
5 mR of 50mM acetic acid aM fJi solution at pH 5,6 in which 100 g of chloroform-isooctane (1:1) in which 45 mg of dipalmitoyl PC was dissolved was mixed at 38°C.
, and stirred at 500 rpm to react.

比較例1および2と同様にして経時的に分析したが、実
施例5で認められた目的リン脂質に相当するスボ7)が
TLC上に認められず、8時間反応した時点で基質が完
全に分解されたため、分析を打ち切った。
Analysis was carried out over time in the same manner as in Comparative Examples 1 and 2, but the substrate 7), which corresponds to the target phospholipid observed in Example 5, was not observed on TLC, and the substrate was completely removed after 8 hours of reaction. Analysis was discontinued due to decomposition.

Claims (6)

【特許請求の範囲】[Claims] (1)塩基構造が変換されたリン脂質を製造するにあた
り、原料リン脂質と水酸基を有する受容体とを、担体に
吸着させたホスホリパーゼDに接触させて反応を行うこ
とを特徴とする酵素によるリン脂質の製造方法。
(1) In producing a phospholipid with a converted base structure, an enzymatic phospholipid is used, which is characterized in that the reaction is carried out by bringing the raw material phospholipid and a receptor having a hydroxyl group into contact with phospholipase D adsorbed on a carrier. Method for producing lipids.
(2)反応を有機溶媒の存在下で行う特許請求の範囲第
1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the reaction is carried out in the presence of an organic solvent.
(3)原料リン脂質を吸着させた担体と、受容体および
ホスホリパーゼDを吸着させた担体とを混合し反応させ
る特許請求の範囲第1項記載の製造方法。
(3) The production method according to claim 1, wherein a carrier adsorbed with a raw material phospholipid and a carrier adsorbed with a receptor and phospholipase D are mixed and reacted.
(4)担体が活性炭、活性白土、ケイ酸、シリカゲル、
ケイ藻土、ゼオライト、アルミナ、多孔質ガラス、陶器
、磁器、または樹脂である特許請求の範囲第1項記載の
製造方法。
(4) The carrier is activated carbon, activated clay, silicic acid, silica gel,
The manufacturing method according to claim 1, wherein the material is diatomaceous earth, zeolite, alumina, porous glass, earthenware, porcelain, or resin.
(5)受容体が、セリン、エタノールアミン、1−アミ
ノ−2−プロパノール、1−オルソメチル−グルコシド
、トレハロースのいずれかである特許請求の範囲第1、
2、3または4項記載の製造方法。
(5) Claim 1, wherein the receptor is any one of serine, ethanolamine, 1-amino-2-propanol, 1-orthomethyl-glucoside, and trehalose;
The manufacturing method according to item 2, 3 or 4.
(6)反応系中の水分含量が1%以下の状態で反応を行
う特許請求の範囲第1〜5項のいずれか1項に記載の製
造方法。
(6) The manufacturing method according to any one of claims 1 to 5, wherein the reaction is carried out in a state where the water content in the reaction system is 1% or less.
JP18002486A 1986-08-01 1986-08-01 Production of phospholipid by enzyme Granted JPS6336791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18002486A JPS6336791A (en) 1986-08-01 1986-08-01 Production of phospholipid by enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18002486A JPS6336791A (en) 1986-08-01 1986-08-01 Production of phospholipid by enzyme

Publications (2)

Publication Number Publication Date
JPS6336791A true JPS6336791A (en) 1988-02-17
JPH0367676B2 JPH0367676B2 (en) 1991-10-23

Family

ID=16076130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18002486A Granted JPS6336791A (en) 1986-08-01 1986-08-01 Production of phospholipid by enzyme

Country Status (1)

Country Link
JP (1) JPS6336791A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022381A (en) * 1988-03-30 1990-01-08 Kanegafuchi Chem Ind Co Ltd Production of phospholipid
EP0776976A2 (en) 1995-12-08 1997-06-04 ITALFARMACO SUD S.p.A. A process for the industrial preparation of phosphatidylserine
EP0819760A4 (en) * 1995-11-08 1998-09-30 Yakult Honsha Kk Process for producing phosphatidylserines having polybasic unsaturated fatty acid as side chain
WO2000077183A1 (en) * 1999-06-15 2000-12-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Enzymatic preparation of phospholipids in aqueous media
WO2003091263A1 (en) * 2002-04-25 2003-11-06 Doosan Corporation Method for producing phosphatidylethanolamine and lysophosphatidylethanolamine using non-organic solvent system
KR100442538B1 (en) * 2001-05-07 2004-07-30 주식회사 두산 Method for producing phosphatidylserine and lysophosphatidylserine in organic solvent
WO2007063886A1 (en) * 2005-11-30 2007-06-07 Nagase Chemtex Corporation Method for producing phospholipid containing polyvalent unsaturated fatty acid, and phospholipid containing polyvalent unsaturated fatty acid obtained by such method
KR101055094B1 (en) * 2009-05-23 2011-08-08 주식회사 고센바이오텍 Biosynthesis Method of Phosphatidylserine from Egg Yolk Phospholipids by Cabbage Phospholipase D
KR101122388B1 (en) * 2009-05-23 2012-03-23 주식회사 고센바이오텍 The method for biosynthesis of phosphatidylserine by chinese cabbage phospholipase D from egg yolk phospholipid
CN103074390A (en) * 2011-11-02 2013-05-01 江南大学 Enzyme method for preparing phosphatidyl propanol containing no lysophospholipid or phosphatidic acid
CN103074392A (en) * 2011-11-26 2013-05-01 江南大学 Method for improving soybean alcohol-soluble phosphatidylcholine content with enzyme method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187787A (en) * 1983-04-11 1984-10-24 Meito Sangyo Kk Production of sphingolipid derivative using enzymic method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187787A (en) * 1983-04-11 1984-10-24 Meito Sangyo Kk Production of sphingolipid derivative using enzymic method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022381A (en) * 1988-03-30 1990-01-08 Kanegafuchi Chem Ind Co Ltd Production of phospholipid
JPH0560357B2 (en) * 1988-03-30 1993-09-02 Kanegafuchi Chemical Ind
EP0819760A4 (en) * 1995-11-08 1998-09-30 Yakult Honsha Kk Process for producing phosphatidylserines having polybasic unsaturated fatty acid as side chain
EP0776976A2 (en) 1995-12-08 1997-06-04 ITALFARMACO SUD S.p.A. A process for the industrial preparation of phosphatidylserine
WO2000077183A1 (en) * 1999-06-15 2000-12-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Enzymatic preparation of phospholipids in aqueous media
KR100442538B1 (en) * 2001-05-07 2004-07-30 주식회사 두산 Method for producing phosphatidylserine and lysophosphatidylserine in organic solvent
WO2003091263A1 (en) * 2002-04-25 2003-11-06 Doosan Corporation Method for producing phosphatidylethanolamine and lysophosphatidylethanolamine using non-organic solvent system
WO2007063886A1 (en) * 2005-11-30 2007-06-07 Nagase Chemtex Corporation Method for producing phospholipid containing polyvalent unsaturated fatty acid, and phospholipid containing polyvalent unsaturated fatty acid obtained by such method
KR101055094B1 (en) * 2009-05-23 2011-08-08 주식회사 고센바이오텍 Biosynthesis Method of Phosphatidylserine from Egg Yolk Phospholipids by Cabbage Phospholipase D
KR101122388B1 (en) * 2009-05-23 2012-03-23 주식회사 고센바이오텍 The method for biosynthesis of phosphatidylserine by chinese cabbage phospholipase D from egg yolk phospholipid
CN103074390A (en) * 2011-11-02 2013-05-01 江南大学 Enzyme method for preparing phosphatidyl propanol containing no lysophospholipid or phosphatidic acid
CN103074392A (en) * 2011-11-26 2013-05-01 江南大学 Method for improving soybean alcohol-soluble phosphatidylcholine content with enzyme method

Also Published As

Publication number Publication date
JPH0367676B2 (en) 1991-10-23

Similar Documents

Publication Publication Date Title
Fisher et al. Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes
Robles et al. Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides
Arvidson et al. Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering
STOFFEL et al. Biosynthesis and composition of phosphatides in outer and inner mitochondrial membranes
Fiscus et al. The role of phospholipids in stimulating phosphorylcholine cytidyltransferase activity
Benveniste et al. Structural analysis of purified platelet-activating factor by lipases
Rubalcava et al. The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase
Ames Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism
US6492146B1 (en) Process for the preparation of phosphatidylserines
De Siervo et al. Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus
Gray Chromatography of lipids. I. An improved chromatographic procedure for the quantitative isolation of the neutral ceramide-containing glycolipids from mammalian tissues
JPS6336791A (en) Production of phospholipid by enzyme
US20040235119A1 (en) Method for the production of phospholipids
Majeska et al. Localization of phosphatidylserine in isolated chick epiphyseal cartilage matrix vesicles with trinitrobenzenesulfonate
Dawson The incorporation of labelled phosphate into the lipids of a brain dispersion
AU780828B2 (en) Enzymatic preparation of phospholipids in aqueous media
Masoro et al. Skeletal muscle lipids: I. Analytical method and composition of monkey gastrocnemius and soleus muscles
Juneja et al. Increasing productivity by removing choline in conversion of phosphatidylcholine to phosphatidylserine by phospholipase D
Sawada et al. Effect of lipid on protoheme ferro-lyase
JPS6336792A (en) Production of phospholipid by enzyme
O'Doherty et al. Stimulation of CDP-choline biosynthesis by enantiomeric lysophosphatidylcholines in rat intestinal mucosa
JP2002272493A (en) Method for base exchange of phospholipid
Kolomiytseva et al. The effect of ionizing radiation on lipid metabolism in lymphoid cells
Sherr et al. Choline and serine incorporation into the phospholipids of Neurospora crassa
Yamagami et al. Differences in phospholipid composition between wild strains and streptomycin resistant mutants of certain enteric bacteria