JPS6336778A - Heat-resistant glucoamylase and production thereof - Google Patents

Heat-resistant glucoamylase and production thereof

Info

Publication number
JPS6336778A
JPS6336778A JP17672286A JP17672286A JPS6336778A JP S6336778 A JPS6336778 A JP S6336778A JP 17672286 A JP17672286 A JP 17672286A JP 17672286 A JP17672286 A JP 17672286A JP S6336778 A JPS6336778 A JP S6336778A
Authority
JP
Japan
Prior art keywords
glucoamylase
activity
culture
starch
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17672286A
Other languages
Japanese (ja)
Other versions
JPH047672B2 (en
Inventor
Masahiko Ishida
昌彦 石田
Ryoichi Haga
良一 芳賀
Masami Tsuchiya
土屋 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17672286A priority Critical patent/JPS6336778A/en
Priority to EP87111005A priority patent/EP0255124A3/en
Publication of JPS6336778A publication Critical patent/JPS6336778A/en
Publication of JPH047672B2 publication Critical patent/JPH047672B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a novel glucoamylase having excellent heat-resistance, resistant to acid and especially suitable for the saccharification reaction of starch in the production of glucose, by culturing a strict anaerobe belonging to Clostridium genus. CONSTITUTION:A strict anaerobe belonging to Clostridium genus and capable of producing a novel glucoamylase having excellent heat-resistance and resistant to acid, e.g. Clostridium sp G-0005 (FERM P-8737) is inoculated in a proper medium and cultured at about 60 deg.C for 1-3 days under anaerobic condition. The objective novel heat-resistant glucoamylase is separated from the cultured liquid and cultured cells.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なグルコアミラーゼとその製造法に係わ
り、特にぶどう糖製造におけるでん粉の糖化反応に好適
な耐熱性/耐酸性グルコアミラーゼとその製造法に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel glucoamylase and a method for producing the same, and in particular, a heat-resistant/acid-resistant glucoamylase suitable for the saccharification reaction of starch in glucose production and its production. Regarding the law.

〔従来技術〕[Prior art]

耐熱性酵素は、常温用酵素に比べ、加熱やpHの変化に
も安定性が高く、酵素利用工業には極めて有用である。
Thermostable enzymes are more stable against heating and pH changes than enzymes used at room temperature, and are extremely useful in enzyme utilization industries.

現在、工業的に用いられているグルコアミラーゼはリゾ
プス(Rh 1zopus)属およびアスペルギルス(
Aspergil 1us)属から産生されており、い
ずれも常温性酵素であり、50℃を越えると急速な酵素
活性の失活が起る(酵素利用ハンドブックp62.他人
書館、昭和57年)。耐熱性に優れたグルコアミラーゼ
については、V、Basaveswara等(Bioc
hem、J、、193.379.1981年)やカドコ
シン等(特開昭60−54680号)の例があるが、い
ずれも熱安定性を発揮するためにはp1)6程度の中性
条件が必要である。ところで、でん粉を原料とするぶど
う糖の製造は、10〜40%濃度のでん粉スラリーをα
−アミラーゼにより液化する液化工程及びこの液化でん
粉溶液をグルコアミラーゼにより糖化する糖化工程の2
工程により行われている。液化工程においては、原料で
ん粉中に含まれる不純物の有機酸のためにpHは5以下
、しばしば4以下を呈する。このため、先に本発明者ら
はpH4においてもすぐれた耐熱性を有する新規なα−
アミラーゼを開発しく特願昭59−236917号)、
でん粉スラリーを酸性状態のままで液化することを可能
にした。しかしながら、液化工程にひきつづいて行われ
る糖化反応に使用するグルコアミラーゼには、pH4〜
5の酸性条件下で作用可能な耐熱性酵素はまだ未開発で
ある。先に述べたカドコシン等の耐熱性グルコアミラー
ゼの作用好適pHは6付近であり、このため、液化でん
粉溶液にアルカリを加えて中和しなければならない。そ
の結果、ぶどう糖や異性化糖等の最終製品を得る場合に
は、反応後に中和剤を除去することが必要となり、イオ
ン交換樹脂を用いる脱塩工程への負荷を著しく増大させ
ている。
Glucoamylase currently used industrially is produced by Rhizopus (Rh 1zopus) and Aspergillus (
They are produced from the genus Aspergillus 1us), and both are room-temperature enzymes, and their enzyme activity rapidly deactivates when the temperature exceeds 50°C (Enzyme Utilization Handbook, p. 62, Nishinshokan, 1982). Regarding glucoamylase with excellent heat resistance, V, Basaveswara et al.
Hem, J., 193.379.1981) and cadocosin (Japanese Patent Application Laid-open No. 60-54680), but in order to exhibit thermal stability, neutral conditions of p1) 6 are required. is necessary. By the way, in the production of glucose using starch as raw material, starch slurry with a concentration of 10 to 40% is
- liquefaction step of liquefying with amylase and saccharification step of saccharifying this liquefied starch solution with glucoamylase.
This is done through a process. In the liquefaction process, the pH is 5 or less, often 4 or less, due to impurity organic acids contained in the raw starch. For this reason, the present inventors previously developed a new α-
Special Application No. 236917/1983 for the development of amylase),
This made it possible to liquefy starch slurry in an acidic state. However, glucoamylase used in the saccharification reaction that follows the liquefaction process has a pH of 4 to
5. Thermostable enzymes that can act under acidic conditions have not yet been developed. The preferred pH for action of the above-mentioned thermostable glucoamylase such as cadocosin is around 6, and therefore it is necessary to neutralize it by adding an alkali to the liquefied starch solution. As a result, when obtaining final products such as glucose and high fructose sugar, it is necessary to remove the neutralizing agent after the reaction, which significantly increases the load on the desalting process using an ion exchange resin.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術の問題点を解決し、でん
粉を原料としてぶとう等を製造するにあたりpH5以下
、60〜75℃の条件下で使用可能なグルコアミラーゼ
、すなわち偏性嫌気性菌を起源とし、耐熱性に優れるの
みならず、耐酸性をも有する新規なグルコアミラーゼと
その製造法を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above, and to provide a glucoamylase that can be used under conditions of pH 5 or less and 60 to 75°C in the production of grapes, etc. using starch as a raw material, that is, obligate anaerobic bacteria. The object of the present invention is to provide a novel glucoamylase, which originates from . and has not only excellent heat resistance but also acid resistance, and a method for producing the same.

〔問題点を解決するための技術手段〕[Technical means to solve problems]

本発明者らは、耐熱性にすぐれ、かつ耐酸性を有する新
規なグルコアミラーゼを得ることを目的に、酵素及び酵
素産生用微生物の探索を行った。
The present inventors conducted a search for enzymes and enzyme-producing microorganisms with the aim of obtaining a novel glucoamylase that has excellent heat resistance and acid resistance.

その結果、60℃で培養した高温メタン醗酵液より分離
したクロスツリジウム属に属する偏性嫌気性細菌である
クロスツリジウム・エスピーG−0005(clost
ridium sp G−0005)(微工研菌寄第8
737号)が、酵素の特性が従来のグルコアミラーゼと
全く異なる新規な耐熱性グルコアミラーゼを産生ずるこ
とを見い出し、本発明に至った。本発明のグルコアミラ
ーゼを産生ずるクロスツリジウム属細菌は、工業技術院
微生物工業技術研究所に寄託している(受託番号:微工
研菌寄第8737号(14RM P−8737))。ま
ず、本田の菌学的性質の詳細を説明する。
As a result, Clostridium sp. G-0005 (clostridium sp.
ridium sp G-0005)
No. 737) discovered that a novel thermostable glucoamylase with enzyme properties completely different from conventional glucoamylases was produced, leading to the present invention. The bacterium of the genus Clostridium that produces the glucoamylase of the present invention has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology (Accession number: Fiber Science and Technology Research Institute No. 8737 (14RM P-8737)). First, the details of Honda's mycological properties will be explained.

なお、以下の記載において%は特に指示しない限り重量
%である。
In the following description, % is by weight unless otherwise specified.

A、形態的性質 (1)栄養細胞の形態 下記のデキストリン・ペプトン培地の寒天平板上、嫌気
性雰囲気中、60℃で2日間培養した場合、栄養細胞は
0.3〜0.5 X 2〜4μmの大きさの直状の桿菌
である。上記の栄養細胞は単独あるいは連鎖して存在す
る。液体培養においても同様となる。また、細胞の多形
性はみられない。
A. Morphological properties (1) Morphology of vegetative cells When cultured on an agar plate in the following dextrin-peptone medium in an anaerobic atmosphere at 60°C for 2 days, the vegetative cells are 0.3-0.5 x 2- It is a straight bacillus with a size of 4 μm. The above vegetative cells exist singly or in chains. The same applies to liquid culture. Moreover, no cell pleomorphism is observed.

デキストリン−ペプトン培地の組成 デキストリン          1.5%ペプトン 
          0.5%酵母エキス      
    0.5%Kll□PO40,7% Na1l!P0.           0.2%Mg
5O,・7H,00,001% 寒天      2.0% チオグリコール酸ナトリウム  0.1%水道水 pH6,0 (2)運動性の有無 運動性は認められない (3)胞子の有無 でん粉−ペプトン培地の寒天平板培養において胞子の形
成が認められる。胞子は栄養細胞内端部に形成され、直
径0.5μm程度の球状をなしている。
Dextrin-peptone medium composition Dextrin 1.5% peptone
0.5% yeast extract
0.5% Kll□PO40,7% Na1l! P0. 0.2%Mg
5O, 7H, 00,001% Agar 2.0% Sodium thioglycolate 0.1% Tap water pH 6.0 (2) Mobility No motility observed (3) Spores present Starch-peptone medium Spore formation is observed in agar plate culture. Spores are formed at the inner end of vegetative cells and are spherical with a diameter of about 0.5 μm.

(4)ダラム染色性 陰性 B、各培地における生産状態 (1)コロニーの形態 でん粉−ペプトン培地の寒天平板培養でのコロニーは、
中心部がやや隆起した扁平な円形となり、周縁部は不規
則である。色素は産生せず、乳白色半透明である。
(4) Durham staining negative B, production status in each medium (1) Colony morphology Colonies in agar plate culture of starch-peptone medium are as follows:
It has a flat circular shape with a slightly raised center and irregular edges. It does not produce any pigment and is milky white and translucent.

(2)肉汁寒天平板培養 生育は認められない 肉汁寒天培地組成 肉エキス          1.0%ペプトン   
       1.0%食塩     0.2% チオグリコール酸ナトリウム 0.1%寒天     
2.0% 蒸留水 pH6,0 (3)肉汁寒天斜面培養 生育は認められない (4)肉汁寒天穿刺培養 穿刺線にそってわずかに増殖していることが観察される
。色素の産生は認められない。
(2) Meat juice agar plate culture No growth observed Meat juice agar medium Composition Meat extract 1.0% peptone
1.0% salt 0.2% sodium thioglycolate 0.1% agar
2.0% Distilled water pH 6.0 (3) No growth observed in broth agar slant culture (4) Broth agar puncture culture Slight growth is observed along the puncture line. No pigment production is observed.

(5)肉汁液体培養 生育は認められない 肉汁培地の組成 肉エキス          1.0%ペプトン   
       l・0%食塩     0.2% チオグリコール酸ナトリウム 0.01%蒸留水 pH6,0 (6)肉汁・ゼラチン培養 生育は認められない。ゼラチンの液化も認められない。
(5) Meat juice liquid culture Composition of meat juice medium where no growth is observed Meat extract 1.0% peptone
1.0% salt 0.2% sodium thioglycolate 0.01% distilled water pH 6.0 (6) No growth of meat juice/gelatin culture was observed. No liquefaction of gelatin was observed.

肉汁ゼラチン培地の組成 肉エキス          1.0%ペプトン   
       1.0%食塩     0.2% ゼラチン         15.0%チオグリコール
酸ナトリウム 0.1%蒸留水 pH6,0 (7)リドマスミルク培養 酸を生成して赤変し、固(凝固する。ガスの発生が認め
られる。
Composition of meat juice gelatin medium Meat extract 1.0% peptone
1.0% salt 0.2% gelatin 15.0% sodium thioglycolate 0.1% distilled water pH 6.0 (7) Lidomus milk culture produces acid, turns red, and solidifies (coagulates. Gas is generated. Is recognized.

C0生理的性質 (1)生育の温度範囲 49〜64℃で生育する。46℃、69℃では生育は認
められない。57〜61℃付近で良好に生育する。
C0 Physiological properties (1) Growth temperature range: Grows at 49-64°C. No growth was observed at 46°C and 69°C. It grows well around 57-61°C.

(2)生育のpH範囲 pH4.8〜7.5で生育する。pH6,0付近で良好
に生育する。
(2) Growth pH range Grows at pH 4.8 to 7.5. Grows well around pH 6.0.

(3)酸素に対する態度 偏性嫌気性 (4)O−Fテスト (Hugh La1fson法)
陰性。空気雰囲気中及び流動パラフィン重層による嫌気
性条件下共にガス生成を伴って生育し、酸の生成により
黄色となる。空気雰囲気中での培養においては、気相境
界部より約1cs下より、底部にかけて生育した。
(3) Anaerobic attitude toward oxygen (4) O-F test (Hugh La1fson method)
negative. It grows with gas production both in air atmosphere and under anaerobic conditions with liquid paraffin layer, and turns yellow due to acid production. When cultured in an air atmosphere, growth occurred from about 1 cs below the gas phase boundary to the bottom.

培地組成 ペプトン          0.2%ぶとう糖   
        1.0%食塩     0.5% に2HP0.            0.03%ブロ
ムクレゾールパープル  0.002%寒天     
0.3% 蒸留水 pH6,0 (5)硝酸塩の還元 陰性 (6)VPテスト 陰性 (7)MRテスト 陽性。赤変化する。
Medium composition Peptone 0.2% glucose
1.0% salt 0.5% 2HP0. 0.03% bromcresol purple 0.002% agar
0.3% Distilled water pH 6.0 (5) Nitrate reduction negative (6) VP test negative (7) MR test positive. Changes to red.

(8)インドール生成 ペプトン水に生育しないため測定できない。(8) Indole production It cannot be measured because it does not grow in peptone water.

(9)硫化水素の生成 陰性(Kligrerの培地使用において)(10)で
ん粉の加水分解 陽性 (1))クエン酸の利用 陽性(Simons培地使用において)(12)アンモ
ニウム塩の利用 ペプトン水に生育せず、測定できない。
(9) Negative for the production of hydrogen sulfide (when using Kligrer's medium) (10) Positive for starch hydrolysis (1)) Positive for the use of citric acid (when using Simons medium) (12) Use of ammonium salts When grown in peptone water It cannot be measured.

(13)色素の菌体外生成 陰性 (14)ウレアーゼ 陰性 (15)オキシダーゼ 陰性 (16)カタラーゼ 陰性 (17) ttJMの資化性 糖の資化性及びダーラム管を用いたガス発生有無の観察
結果を第1表に示す。表中、資化性及びガスの生成が認
められた場合には+、認められない場合には−の記号で
示した。
(13) Negative for extracellular production of pigment (14) Negative for urease (15) Negative for oxidase (16) Negative for catalase (17) Observation results of assimilation of assimilated sugars of ttJM and presence or absence of gas generation using Durham tube are shown in Table 1. In the table, when assimilation and gas production were observed, it was indicated by a + symbol, and when it was not observed, it was indicated by a - symbol.

(本頁以下余白) 第   1   表 糖質化性試験用液体培地組成 炭素源(糖)1.0% ペプトン          1.0%NaC10,2
% チオグリコール酸ナトリウム 0.1%蒸留水 pH6,0 (18)無機塩培地への生育 生育は認められない。
(Margins below this page) Table 1 Composition of liquid medium for glycosylation test Carbon source (sugar) 1.0% Peptone 1.0% NaC 10,2
% Sodium thioglycolate 0.1% Distilled water pH 6.0 (18) Growth on inorganic salt medium No growth was observed.

これらの結果よりバージ−の細菌分類マニュアル(Be
rgey’s Manual of Determin
ative Bacteri−ology 8th E
dition)に基づき、クロスツリジウムに属する細
菌と同定した。
Based on these results, Burgee's bacterial classification manual (Be
rgey's Manual of Determin
Active Bacteri-ology 8th E
It was identified as a bacterium belonging to the genus Clostridium.

次に、本発明なる耐熱性グリコアミラーゼの酵素的特性
について記す。
Next, the enzymatic properties of the thermostable glycoamylase of the present invention will be described.

なお、グルコアミラーゼ活性の測定は次のように行った
Note that glucoamylase activity was measured as follows.

グルコアミラーゼ活性測定の基質には可溶性でん粉(和
光純薬製、生化学用)を用いた。まず、5%可溶性でん
粉溶液0.5艷、pH4.5の0.1 M酢酸−酢酸ナ
トリウム緩衝液0.5d、純水1ml。
Soluble starch (manufactured by Wako Pure Chemical Industries, Ltd., for biochemical use) was used as the substrate for measuring glucoamylase activity. First, 0.5 d of 5% soluble starch solution, 0.5 d of 0.1 M acetic acid-sodium acetate buffer with pH 4.5, and 1 ml of pure water.

酵素溶液0.5−を混合し、60℃で30分間酵素反応
を行わせた。次いで、反応液中のぶどう糖■をグルコー
ス分析器(米国、イエロー・スプリングス・インスツル
メント・カンパニー(Yellow Springs 
Instrument Company)社製、グルコ
ースオキシダーゼ法により測定する。)を用いて測定し
た。
0.5 - of the enzyme solution was mixed and the enzyme reaction was carried out at 60°C for 30 minutes. Next, the glucose in the reaction solution was measured using a glucose analyzer (Yellow Springs Instrument Company, USA).
Measured by the glucose oxidase method manufactured by Glucose Instrument Company. ).

グルコアミラーゼ活性の1単位は、上記測定条件下で1
分間に1μmolのぶとう糖を生成する能力と定義した
One unit of glucoamylase activity is 1 unit of glucoamylase activity under the above measurement conditions.
It was defined as the ability to produce 1 μmol of glucose per minute.

(1)調製方法 実施例において詳細に説明するので、ここでは筒車な説
明にとどめる。
(1) Preparation method Since it will be explained in detail in Examples, only a brief explanation will be provided here.

本発明になるクロスツリジウム属細菌G−0005菌を
、デキストリン・ペプトン及び酵母エキスを含有する液
体培地に接種し、嫌気条件下、60℃にて1〜3日間培
養する。培養液を遠心分離等により菌体及びそれ以外の
不溶物質を除去したいわゆる培養濾液を得る。次いで、
培養濾液を、モレキュラーシーブ膜濾過、塩析イオン交
換クロマト、ゲル濾過クロマト等、公知の方法を適宜利
用して本発明のグルコアミラーゼを濃縮するとともに、
それ以外の不純物を除く。
Clostridia bacterium G-0005 according to the present invention is inoculated into a liquid medium containing dextrin/peptone and yeast extract, and cultured at 60° C. for 1 to 3 days under anaerobic conditions. A so-called culture filtrate is obtained by removing bacterial cells and other insoluble substances from the culture solution by centrifugation or the like. Then,
The glucoamylase of the present invention is concentrated from the culture filtrate using appropriately known methods such as molecular sieve membrane filtration, salting out ion exchange chromatography, gel filtration chromatography, etc.
Remove other impurities.

なお、液体培養における液体培地の炭素源としては、上
記デキストリンに限るものではなく、可溶性でん粉、馬
鈴薯でん粉、コーンスターチ、甘薯でん粉、廃糖みつ等
を用いてもよい。また、その他の栄養成分も上記に限定
するものではなく、コーンステイープリカー、各種アミ
ノ酸、ビタミン、各種塩等を単独もしくは混合して用い
てもよい。
In addition, the carbon source of the liquid medium in liquid culture is not limited to the above-mentioned dextrin, and soluble starch, potato starch, corn starch, sweet potato starch, waste molasses, etc. may also be used. Further, other nutritional components are not limited to those mentioned above, and cornstarch liquor, various amino acids, vitamins, various salts, etc. may be used alone or in combination.

(2)作用及び基質特異性 本酵素は、馬鈴薯、とうもろこし、甘薯等のでん粉、お
よびこれらを加水分解して得た可溶性でん粉、デキスト
リン、マルトース等をぶとう糖に加水分解するグルコア
ミラーゼである。マルトース基質の場合、ぶどう糖生成
速度は可溶性でん粉基質の約2である。
(2) Action and substrate specificity This enzyme is a glucoamylase that hydrolyzes starches such as potato, corn, and sweet potato, as well as soluble starch obtained by hydrolyzing these, dextrin, maltose, etc., into glucose. For maltose substrates, the rate of glucose production is approximately 2 times that of soluble starch substrates.

(3)至適pH 本酵素の60℃における作用pH曲線を第1図に示す。(3) Optimal pH FIG. 1 shows the action pH curve of this enzyme at 60°C.

本酵素の60℃における最適pH域は4〜5にあり、か
つ、好適pHは(最適pHでの活性の80%を有するp
H域とする)3.8〜5.7にある。
The optimal pH range of this enzyme at 60°C is 4 to 5, and the preferred pH is (pH having 80% of the activity at the optimal pH).
H range) ranges from 3.8 to 5.7.

なお、反応の際のpH緩衝液としては、塩化カリウム−
塩酸(pH2,0)、グリシン−塩酸(p H2,5〜
3.5)、β:β−ジメチルグルタル酸−トリス(ヒド
ロキシメチルアミノ)メタン−2−アミノ−2−メチル
−1:3−プロパンジオール(以下rGTAJと略称)
(pH3,5〜9)の0.05M緩衝液を用いた。
In addition, as a pH buffer during the reaction, potassium chloride-
Hydrochloric acid (pH 2.0), glycine-hydrochloric acid (pH 2.5~
3.5), β:β-dimethylglutarate-tris(hydroxymethylamino)methane-2-amino-2-methyl-1:3-propanediol (hereinafter abbreviated as rGTAJ)
A 0.05M buffer (pH 3,5-9) was used.

(4)pH安定性 本発明のグルコアミラーゼをpH2,3,4゜4.5,
5.6,7.9の各pH下(0,05M塩化カリウム−
塩酸、 0.05Mグリシン−塩酸及び0.05MG 
T A’ 1)衝液を使用)で70℃、30分間インキ
ュベートした。そののち、反応液を希釈し、pH4.5
に調整したのち、可溶性でん粉を基質として残存活性を
測定した。その結果を第2図に示した。本発明のグルコ
アミラーゼはpH4.5〜5.0の範囲で完全に活性が
保持されていた。したがって、本グルコアミラーゼは酸
性領域ですぐれた安定性を有する酵素であることがわか
った。
(4) pH stability The glucoamylase of the present invention has a pH of 2, 3, 4°4.5,
Under each pH of 5.6 and 7.9 (0.05M potassium chloride-
Hydrochloric acid, 0.05M glycine-hydrochloric acid and 0.05MG
The cells were incubated at 70° C. for 30 minutes. After that, the reaction solution was diluted to pH 4.5.
The remaining activity was measured using soluble starch as a substrate. The results are shown in Figure 2. The glucoamylase of the present invention completely retained its activity within the pH range of 4.5 to 5.0. Therefore, this glucoamylase was found to be an enzyme with excellent stability in an acidic region.

(5)至適温度 本発明のグルコアミラーゼの活性をpH4.5の条件下
、40.50.60.65.70.75℃の温度にて測
定したところ、第3図に示す結果を得た。本結果より、
至適温度は70℃付近にある。好適温度(最適温度での
活性の80%を有する温度域とする)は53〜73°C
である。
(5) Optimal temperature The activity of the glucoamylase of the present invention was measured at a temperature of 40.50.60.65.70.75°C under the condition of pH 4.5, and the results shown in Figure 3 were obtained. . From this result,
The optimum temperature is around 70°C. The preferred temperature (temperature range having 80% of the activity at the optimum temperature) is 53-73°C
It is.

(6)グルコアミラーゼ活性に及ぼす金属塩の影響 本発明のグルコアミラーゼの活性に及ぼす金属塩の影響
を第2表に示す。グルコアミラーゼ活性の測定において
各種の金属塩を5mM8こなるように添加した。そして
、金属塩無添加に対する活性を%で表示した。なお、ア
ンモニウム塩及びEDTA添加の場合についても第2表
に付記した。マグネシウムイオン、カルシウムイオン、
カリウムイオンがグルコアミラーゼ活性作用を有するこ
とが認められる。ニッケルイオン、鉄イオンには阻害作
用が認められる。
(6) Effect of metal salts on glucoamylase activity Table 2 shows the effects of metal salts on the activity of glucoamylase of the present invention. In measuring glucoamylase activity, various metal salts were added at 5mM8. The activity was expressed in % relative to that without addition of metal salts. In addition, the case of addition of ammonium salt and EDTA is also added to Table 2. magnesium ions, calcium ions,
It is recognized that potassium ions have a glucoamylase activating effect. Nickel ions and iron ions have an inhibitory effect.

(来夏以下余白) 第   2   表 活性測定条件 pH5,0(0,1Mクエン酸−第2クエン酸ナトリウ
ム緩衝液)活性測定温度:60”C(7)熱安定性 本発明のグルコアミラーゼを基質無添加下、pH4.5
にて、60〜80℃の加熱処理を行い、一定時間毎(2
0,40秒、  1. 2. 4.10.20.40分
、1゜2.4.6,8.16時間、1.2.4.7.1
0゜15、20日)に処理液の一部を採取し、液中のグ
ルコアミラーゼ活性を5Q’C,pH4.5にて測定し
た。
(Leaving space below next summer) Table 2 Activity measurement conditions pH 5.0 (0.1M citric acid-secondary sodium citrate buffer) Activity measurement temperature: 60"C (7) Thermal stability Using the glucoamylase of the present invention as a substrate Without additives, pH 4.5
Heat treatment was performed at 60 to 80°C at regular intervals (2
0.40 seconds, 1. 2. 4.10.20.40 minutes, 1°2.4.6,8.16 hours, 1.2.4.7.1
A portion of the treated solution was collected on 0°15 and 20 days), and the glucoamylase activity in the solution was measured at 5Q'C and pH 4.5.

これをもとに各温度における活性半減期を求め、その結
果を第4図に示した。70℃及び75℃における基質無
添加下での活性半減期はそれぞれ、6時間、1分間であ
る。本グルコアミラーゼはこれまで公知のグルコアミラ
ーゼに較べ高度の耐熱性を有している。一方、p H4
.0、4.3、4.5、5,0。
Based on this, the activity half-life at each temperature was determined, and the results are shown in FIG. The half-lives of activity in the absence of substrate at 70°C and 75°C are 6 hours and 1 minute, respectively. This glucoamylase has a higher degree of thermostability than conventionally known glucoamylases. On the other hand, pH4
.. 0, 4.3, 4.5, 5,0.

6.0の各pHにおける基質無添加下、70’Cでの活
性半減期を求め、第3表に示した。この結果から、本グ
ルコアミラーゼは、クロスツリジウム・サーモアミロリ
ディクム(Clostridium thermoam
yloly−ticum) 、サーモマイセス・ラヌギ
ノスス(Thermo−myces 1anugino
susL及びタラコミセス0デユポンテイ(Talar
omyces duponti)により産生されるグル
コアミラーゼよりも、特に、pH4〜5の酸性領域にお
いてすぐれた耐熱性をもっことを示す。
The half-lives of activity at 70'C without the addition of substrate at each pH of 6.0 were determined and shown in Table 3. From this result, the present glucoamylase is derived from Clostridium thermoamylolidicum (Clostridium thermoamylolidicum).
yloly-ticum), Thermomyces lanuginosus (Thermo-myces 1anugino)
susL and Taracomyces 0 du Ponti (Talar
It exhibits superior heat resistance, especially in the acidic range of pH 4 to 5, than glucoamylase produced by S. omyces duponti.

(本頁以下余白) (8)耐熱性に及ぼす金属塩の影響 本発明のグルコアミラーゼの耐熱性に及ぼす金属塩の影
響を第4表に示す。グルコアミラーゼの水溶液(0,0
5M酢酸−酢酸ナトリウム緩衝液に溶解、pH4.5)
に各種の金属塩を5mM濃度になるように添加し、70
℃、1時間の加熱処理を行ったのち、pH4.5,60
℃でグルコアミラーゼ活性を測定した。そして、加熱処
理前に対する加熱処理後の活性、すなわち残存活性を%
で表示した。
(Margins below this page) (8) Effect of metal salts on heat resistance Table 4 shows the effects of metal salts on the heat resistance of the glucoamylase of the present invention. Aqueous solution of glucoamylase (0,0
Dissolved in 5M acetic acid-sodium acetate buffer, pH 4.5)
Various metal salts were added to the solution at a concentration of 5mM, and 70
After heat treatment at ℃ for 1 hour, pH 4.5, 60
Glucoamylase activity was measured at °C. Then, the activity after heat treatment compared to before heat treatment, that is, the residual activity, was calculated as %.
It was displayed in

第4表から、ニッケルイオン、マンガンイオン、マグネ
シウムイオンに保護効果のあることが認められる。コバ
ルトイオン、カルシウムイオンについては保護効果は認
められない。亜鉛イオンは耐熱性を著しく低下させる。
From Table 4, it is recognized that nickel ions, manganese ions, and magnesium ions have a protective effect. No protective effect was observed for cobalt ions and calcium ions. Zinc ions significantly reduce heat resistance.

(本頁以下余白) 第   4   表 (9)分子量 本発明のグルコアミラーゼの分子量はゲル濾過クロマト
法(スエーデン、ファルマシア製セファデックスG−1
00を使用)による溶出パターンから3.8X10’と
測定される。
(Margins below this page) Table 4 (9) Molecular weight The molecular weight of the glucoamylase of the present invention was determined by gel filtration chromatography (Sephadex G-1 manufactured by Pharmacia, Sweden).
It is determined to be 3.8 x 10' from the elution pattern (using 00).

〔作 用〕    ′ 以上述べたことから明らかなように、本発明の新しい耐
熱性グルコアミラーゼは、特にpH4〜5の酸性領域で
の耐熱性において、従来の嫌気性細菌の産生ずる耐熱性
酵素と著しく異なる。
[Function]' As is clear from the above, the new thermostable glucoamylase of the present invention is superior to conventional thermostable enzymes produced by anaerobic bacteria, especially in terms of heat resistance in the acidic region of pH 4 to 5. Significantly different.

ところで、ぶどう糖や異性化糖を製造するには、まず、
原料のでん粉をα−アミラーゼで液化し、そのあとグル
コアミラーゼで糖化している。液化の際、原料のでん粉
を20〜40%の高濃度に仕込むため、液のpHは酸性
を呈する。このため、従来の耐熱性α−アミラーゼ及び
耐熱性グルコアミラーゼを用いる場合には、作用pH域
が中性域にあるため、アルカリで中和しなければならな
い。
By the way, in order to produce glucose and high fructose sugar, first,
The raw material starch is liquefied with α-amylase, and then saccharified with glucoamylase. During liquefaction, the raw material starch is charged at a high concentration of 20 to 40%, so the pH of the liquid becomes acidic. For this reason, when using conventional thermostable α-amylase and thermostable glucoamylase, the action pH range is in the neutral range, so they must be neutralized with an alkali.

これに対し、先に本発明者らが見い出した耐熱性・耐酸
性の新規なα−アミラーゼ(特願昭59−236917
号)及び、本発明の新規なグルコアミラーゼを用いるこ
とにより、液化での中和を行うことなく酸性の状態での
まま液化及び糖化を行うことが可能となり、ひいては反
応後の脱塩工程への負荷を大幅に軽減できる。
In contrast, a new heat-resistant and acid-resistant α-amylase previously discovered by the present inventors (Japanese Patent Application No. 59-236917
By using the novel glucoamylase of the present invention, it becomes possible to carry out liquefaction and saccharification in an acidic state without neutralization during liquefaction, and as a result, it becomes possible to carry out liquefaction and saccharification in an acidic state without performing neutralization during liquefaction. The load can be significantly reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を示し、さらに詳しく説明する。 Hereinafter, examples of the present invention will be shown and explained in more detail.

実施例1 デキストリン1.5%、ポリペプトン0.5%、酵母エ
キス0.5%、リン酸第1カリウム0.7%、リン酸第
2ナトリウム0.2%、硫酸マグネシウム・7水和物0
.001%、チオグリコール酸ナトリウム0.1%及び
水道水を含む液体培地(p H6,0) 32kgを内
容積51の培養槽10基に3.15 kgづつ分注し、
120℃で15分間殺菌した。それぞれの培養槽に上記
培地を用いて嫌気的に培養したクロスツリジウム属細菌
G−0005の菌体懸濁液0.35kgを添加した。
Example 1 Dextrin 1.5%, polypeptone 0.5%, yeast extract 0.5%, monopotassium phosphate 0.7%, dibasic sodium phosphate 0.2%, magnesium sulfate heptahydrate 0
.. 001%, sodium thioglycolate 0.1%, and tap water (pH 6,0), 32 kg was dispensed into 10 culture tanks each having an internal volume of 51, each weighing 3.15 kg.
It was sterilized at 120°C for 15 minutes. To each culture tank was added 0.35 kg of a cell suspension of Clostridium bacteria G-0005 that had been anaerobically cultured using the above medium.

次いで、ガス出口に水封トラップを付し、培養槽内気相
部をアルゴンガス(酸素濃度i ppm以下)で十分置
換後、嫌気条件下で培養した。培養液のpHは6.0に
、培養液の温度は60℃にそれぞれ自動調整した。21
時間培養後、培養液を合せ、6000rpmで遠心分離
し、菌体を除去した。回収した上澄液についてガラス濾
紙(東洋科学産業型、 GA−100及びGC−50)
メンブレンフィルタ (東洋科学産業型、ポアサイズ1
μm及び0.45μm)を用いて加圧濾過し、菌体及び
その他の固形物を除去して培養濾液を得た。この培養濾
液よりIO−を採取し、純水にて24時間透析したのち
、グルコアミラーゼ活性を測定したところ、培養濾液1
gあたり0.05単位のグルコアミラーゼが存在してい
た。
Next, a water seal trap was attached to the gas outlet, and the gas phase in the culture tank was sufficiently replaced with argon gas (oxygen concentration i ppm or less), followed by culturing under anaerobic conditions. The pH of the culture solution was automatically adjusted to 6.0, and the temperature of the culture solution was automatically adjusted to 60°C. 21
After culturing for an hour, the culture solutions were combined and centrifuged at 6000 rpm to remove the bacterial cells. Glass filter paper (Toyo Kagaku Sangyo type, GA-100 and GC-50) was used for the collected supernatant liquid.
Membrane filter (Toyo Kagaku Sangyo type, pore size 1
Microbial cells and other solid matter were removed by pressure filtration using microbial filters (μm and 0.45 μm) to obtain a culture filtrate. After collecting IO- from this culture filtrate and dialyzing it against pure water for 24 hours, glucoamylase activity was measured.
There were 0.05 units of glucoamylase per g.

次に上記培養濾液29ksrを中空繊維型モレキュラー
シーブ膜(分画分子ff1lo、000.米国アミコン
製(Amicon Co、)HIPIO−20)で加圧
濾過し、2 kgに濃縮した。上記濃縮液について硫安
を用いた塩析を行い、飽和度(硫安飽和濃度に対す割合
、%で表わす)20%にて析出せず、飽和度55%にて
析出した固形物を14.OOOrpmで遠心分離し回収
した。次いで飽和度55%の硫安溶液で固形物を洗浄し
回収した。次いで、固形物を0.05M )リス−塩酸
緩衝液(pH7,5)に溶解し240gとした。次いで
上記緩衝液10βを用いて、24時間の透析を2回繰返
し実施した。そののち、透析した液中の固形物を、ガラ
ス濾紙(東洋濾紙製、 GC〜50)を用いた濾過で除
去した。清澄化した透析液は310gであった。
Next, 29 ksr of the culture filtrate was filtered under pressure using a hollow fiber molecular sieve membrane (fraction molecule ff1lo, 000. HIPIO-20, manufactured by Amicon Co., USA) and concentrated to 2 kg. The above concentrated solution was subjected to salting out using ammonium sulfate, and a solid substance that did not precipitate at 20% saturation (ratio to the saturated ammonium sulfate concentration, expressed as %) but precipitated at 55% saturation was determined in step 14. It was centrifuged and collected at OOOrpm. The solids were then washed and collected with a 55% saturated ammonium sulfate solution. Next, the solid matter was dissolved in 0.05M) Lis-HCl buffer (pH 7.5) to give a total weight of 240 g. Next, dialysis for 24 hours was repeated twice using the above buffer 10β. Thereafter, solid matter in the dialyzed solution was removed by filtration using glass filter paper (GC-50, manufactured by Toyo Roshi). The clarified dialysate weighed 310 g.

次に、上記透析液をジエチルアミノエチル化架橋アガロ
ースゲル(ファルマシア製、 DEARセファロースC
L−68)を用いたイオン交換クロマト (カラムサイ
ズφ44 X 500mm)により精製した。0.05
Mトリス−塩酸緩衝液で平衡化したゲルカラムに上記透
析液をチャージし、洗滌した。次いで緩衝液中の塩化ナ
トリウム濃度を直線勾配で上昇しつつ展開した。グルコ
アミラーゼの溶出パターンを第5図に示す。塩化ナトリ
ウム濃度0.25Mの溶出位置にグルコアミラーゼ活性
を有するピークが認められた。グルコアミラーゼフラク
ションとして360gを回収し、次いでモレキュラーシ
ーブ膜(分画分子量10,000.米国アミコン製、 
PM−10)を用い、純水10kgを加えて加圧濾過し
、脱塩、濃縮を行い粗精製グルコアミラーゼ液160g
を得た。本溶液中のグルコアミラーゼ活性は3.3単位
/gであった。
Next, the above dialysate was mixed with diethylaminoethylated cross-linked agarose gel (manufactured by Pharmacia, DEAR Sepharose C).
Purification was performed by ion exchange chromatography (column size φ44 x 500 mm) using L-68). 0.05
The above dialysate was charged onto a gel column equilibrated with M Tris-HCl buffer and washed. The sodium chloride concentration in the buffer was then developed in an increasing linear gradient. The elution pattern of glucoamylase is shown in FIG. A peak with glucoamylase activity was observed at the elution position at a sodium chloride concentration of 0.25M. 360 g was collected as a glucoamylase fraction, and then a molecular sieve membrane (molecular weight cutoff 10,000, manufactured by Amicon, USA,
PM-10), add 10 kg of pure water, filter under pressure, desalt, and concentrate to obtain 160 g of crudely purified glucoamylase solution.
I got it. The glucoamylase activity in this solution was 3.3 units/g.

次に上記粗精製グルコアミラーゼにつきゲル濾過により
精製した。まず、上記ゲルコミラーゼ液100gを40
Torrの減圧下で凍結乾燥し、これを0゜05Mクエ
ン酸・第2クエン酸緩衝液(pH4.5)  4dに溶
解し、固形物を400Orpmの遠心分離で除去した。
Next, the crudely purified glucoamylase was purified by gel filtration. First, add 100g of the above gelcomylase solution to 40g
The product was lyophilized under reduced pressure of Torr, dissolved in 4 d of 0.05 M citric acid/second citrate buffer (pH 4.5), and the solid matter was removed by centrifugation at 400 Orpm.

次に、上記緩衝液で平衡化した架橋デキストランゲル(
ファルマシア製、セファデックスG−100)を充填し
たクロマトカラム(φ15 X 900mm)に上記グ
ルコアミラーゼ液1−をチャージし同じ緩衝液で展開し
た。その結果を第6図に示した。溶出液ff165mZ
の位置にグルコアミラーゼ活性のピークが認められた。
Next, cross-linked dextran gel (
The above glucoamylase solution 1- was charged into a chromatography column (φ15 x 900 mm) packed with Sephadex G-100 (manufactured by Pharmacia) and developed with the same buffer. The results are shown in FIG. Eluent ff165mZ
A peak of glucoamylase activity was observed at the position.

上記ゲル濾過を残りの粗精製グルコアミラーゼについて
も実施し、精製グルコアミラーゼフラクション40gを
得た。本フラクションのグルコアミラーゼ活性は12単
位/gであった。
The above gel filtration was also performed on the remaining crudely purified glucoamylase to obtain 40 g of purified glucoamylase fraction. The glucoamylase activity of this fraction was 12 units/g.

以上の精製操作により、培養濾液基準の比活性は171
倍に向上した。また、培養濾液基準の活性回収率は23
%である。培養濾液を基準とした各工程の標品の比活性
、収量、活性回収率を第5表に示した。
Through the above purification procedure, the specific activity based on the culture filtrate was 171.
improved twice. In addition, the activity recovery rate based on culture filtrate was 23
%. Table 5 shows the specific activity, yield, and activity recovery rate of the preparation in each step based on the culture filtrate.

(本頁以下余白) 実施例2 実施例1において、培養液から遠心分離により菌体を含
む固形物400gを回収した。次いで、生理食塩水60
0gを加えてスラリー化し、菌体スラリー1000 g
を得た。次いで菌体スラリーより40gを分取し、フレ
ンチプレス(大岳製作所製)用加圧セルにセントした。
(Margins below this page) Example 2 In Example 1, 400 g of solid matter containing bacterial cells was collected from the culture solution by centrifugation. Then, physiological saline 60
Add 0g to make a slurry, and make 1000g of bacterial cell slurry.
I got it. Next, 40 g was taken from the bacterial cell slurry and placed in a pressure cell for a French press (manufactured by Otake Seisakusho).

次いで油圧プレスにより、1600kg/cnlの圧力
をかけたのち、細口より5−7分の速度で大気中に噴出
させて菌体を破砕した。
Next, a pressure of 1,600 kg/cnl was applied using a hydraulic press, and the microbial cells were crushed by ejecting into the atmosphere from the narrow opening at a speed of 5 to 7 minutes.

残りの菌体スラリーについても上記操作を行って菌体破
砕スラリー1000 gを得た。
The above operation was performed for the remaining bacterial cell slurry to obtain 1000 g of crushed bacterial cell slurry.

次いで、菌体スラリーより16.00Orpmの遠心分
離により固形物を除去しさらにガラス濾紙(東洋濾紙層
、 GA−100,GC−50)及びメンブレンフィル
タ(東洋濾紙製、ポアサイズ1,0.45μm)を用い
て加圧濾過し、菌体破砕上澄液800dを得た。
Next, solid matter was removed from the bacterial cell slurry by centrifugation at 16.00 rpm, and glass filter paper (Toyo Roshi Layer, GA-100, GC-50) and membrane filter (Toyo Roshi Layer, pore size 1, 0.45 μm) were filtered. 800 d of crushed bacterial cell supernatant was obtained.

次いで、菌体破砕上澄液に70℃、5分間の熱処理を行
い、熱変性を起しやすいたん白質を変性させた。5℃以
下まで冷却したのち、8000rpmの遠心分離により
固形物を除去した。得られた熱処理上澄液は760dで
あった。
Next, the supernatant of the disrupted bacterial cells was heat-treated at 70°C for 5 minutes to denature proteins that tend to be thermally denatured. After cooling to below 5°C, solid matter was removed by centrifugation at 8000 rpm. The heat-treated supernatant obtained had a weight of 760 d.

次に、実施例1記載の手法により、硫安沈澱、透析、イ
オン交換クロマト、ゲル濾過の各精製を実施した。菌体
破砕上澄液を基準とした各工程の標品の比活性、収量、
活性回収率を表6に示した。
Next, purification by ammonium sulfate precipitation, dialysis, ion exchange chromatography, and gel filtration was performed using the method described in Example 1. The specific activity, yield, and
The activity recovery rate is shown in Table 6.

(不貞以下余白) 実施例3 コーンスターチ2.3%、ポリペプトン0.2%。(blank below unfaithfulness) Example 3 Corn starch 2.3%, polypeptone 0.2%.

酵母エキス0.2%、硫酸アンモニウム0.2%、リン
酸1カリウム0.2%、硫酸マグネシウム・7水和物0
゜002%、システィン0.1%及び水道水を含む液体
培地(pH6,4) 20kgを内容積50βの培養槽
に仕込み、槽内及び培養槽外壁に設けたジャケット部に
蒸気を吹込み、120℃、20分間の殺菌を実施した。
Yeast extract 0.2%, ammonium sulfate 0.2%, monopotassium phosphate 0.2%, magnesium sulfate heptahydrate 0
20kg of a liquid medium (pH 6,4) containing 0.002% cysteine, 0.1% cysteine, and tap water was placed in a culture tank with an internal volume of 50β, steam was blown into the jacket part provided inside the tank and on the outer wall of the culture tank, and 120 Sterilization was carried out at ℃ for 20 minutes.

次いで、培養槽内を60℃まで冷却したのち、無菌水を
加えて培地量を32kirとした。次に、実施例1に示
した培地及び手法により調製したクロスツリジウム属細
菌G−0005菌懸濁液3.5 kgを添加した。次い
で、ガス出口に水封トラップを付し、培養槽内気相部を
窒素ガスで置換したのち、嫌気条件下、60℃、PH6
,5で培養した。40時間培養したのち、直ちに連続型
遠心分離機により固形物を除去し培養上澄液33.5k
gを得た。本培養上澄液には0.09単位7gのグルコ
アミラーゼ活性が存在していた。次いで、上記培養上澄
液の21をロークリエバポレータ用フラスコにとり、6
0℃の水浴に浸漬下でロータリエバポレータを用いて減
圧蒸留を行った。なお、蒸留開始時の発泡を抑えるため
、n−オクチルアルコールl−を添加したのち減圧を開
始した。フラスコ内の培養上澄液の減少量に応じてフラ
スコ内に外部より新たな培養上澄液を供給して減圧蒸留
をm続した。なお、フラスコ内での発泡が著しくなった
場合には随時n−オクチルアルコールを添加した。減圧
蒸留によって、濃縮液2.3pを得た。
Next, the inside of the culture tank was cooled to 60°C, and sterile water was added to make the culture medium volume 32kir. Next, 3.5 kg of Clostridium G-0005 bacterial suspension prepared by the culture medium and method shown in Example 1 was added. Next, a water seal trap was attached to the gas outlet, and after replacing the gas phase in the culture tank with nitrogen gas, the temperature was 60°C and pH 6 under anaerobic conditions.
, 5. After culturing for 40 hours, solid matter was immediately removed using a continuous centrifuge to obtain a culture supernatant of 33.5 kg.
I got g. The main culture supernatant contained 0.09 units of glucoamylase activity, 7 g. Next, 21 of the above culture supernatant was placed in a low evaporator flask, and 6
Vacuum distillation was performed using a rotary evaporator while immersed in a 0°C water bath. In order to suppress foaming at the start of distillation, pressure reduction was started after n-octyl alcohol l- was added. Depending on the amount of decrease in the culture supernatant in the flask, new culture supernatant was supplied from the outside into the flask, and vacuum distillation was continued for m. Note that n-octyl alcohol was added at any time when foaming in the flask became significant. 2.3 p of a concentrated solution was obtained by distillation under reduced pressure.

次いで、上記濃縮液について70℃、5分間の熱処理を
加え、直ちに50℃以下まで冷却した。次いで、700
0rpmの遠心分離によって、熱処理で析出した固形物
を除去し、熱処理上澄液2.1)を得た。
Next, the concentrate was heat treated at 70°C for 5 minutes, and immediately cooled to 50°C or lower. Then 700
Solid matter precipitated by heat treatment was removed by centrifugation at 0 rpm to obtain heat-treated supernatant 2.1).

次に熱処理上澄液について硫安を用いた塩析を行い、飽
和度20%−55%の両分を回収した。次いでこれを飽
和度55%の硫安溶液で洗浄したのち固形物を蒸留水に
溶解し、粗グルコアミラーゼ溶液520gを得た。
Next, the heat-treated supernatant liquid was subjected to salting out using ammonium sulfate, and both fractions with a saturation degree of 20% to 55% were recovered. After washing this with ammonium sulfate solution having a saturation degree of 55%, the solid matter was dissolved in distilled water to obtain 520 g of a crude glucoamylase solution.

次に、粗グルコアミラーゼ?容?夜にコーンスターチ2
00gを添加し、十分攪拌混合したのち、遠心分離によ
りコーンスターチを分離して上澄液を回収した。さらに
コーンスターチを蒸留水200gで洗浄して洗浄液を回
収し、上記上澄液とあわせて490gのでん粉吸着処理
液を得た。次いで、ガラス濾紙(東洋濾紙製、 GA−
100,GC−50)を用いて加圧濾過し、粗グルコア
ミラーゼ溶液480gを得た。本溶液のグルコアミラー
ゼ活性は5.3単位/gであり、培養上澄液基準で、比
活性は59倍に向上し、活性回収率は84%であった。
Next, crude glucoamylase? Yong? Cornstarch 2 at night
After adding 00 g and stirring and mixing thoroughly, corn starch was separated by centrifugation and a supernatant liquid was collected. Furthermore, the corn starch was washed with 200 g of distilled water, the washing liquid was collected, and together with the above supernatant liquid, 490 g of a starch adsorption treatment liquid was obtained. Next, glass filter paper (manufactured by Toyo Roshi Co., Ltd., GA-
100, GC-50) to obtain 480 g of a crude glucoamylase solution. The glucoamylase activity of this solution was 5.3 units/g, and the specific activity was 59 times higher than that of the culture supernatant, and the activity recovery rate was 84%.

〔発明の効果〕〔Effect of the invention〕

本発明の新規な耐熱性/耐酸性グルコアミラーゼは、特
にpH4〜5の酸性領域下にてすぐれた耐熱性を有する
ため、でん粉を原料としてぶどう糖を製造する際、でん
粉溶液を中和することなく酸性状態での糖化が可能とな
る。これに比べ、従来公知の耐熱性グルコアミラーゼを
用いる場合には、でん粉溶液を中性化するためにアルカ
リを添加しなければならない。したがって、本発明のグ
ルコアミラーゼを用いることにより、でん粉溶液の中和
工程が不要となり、かつ反応後の脱塩工程への負荷を大
幅に軽減できる。
The novel heat-resistant/acid-resistant glucoamylase of the present invention has excellent heat resistance, especially in the acidic range of pH 4 to 5, so it can be used to produce glucose from starch without neutralizing the starch solution. Saccharification is possible under acidic conditions. In contrast, when using conventionally known thermostable glucoamylases, an alkali must be added to neutralize the starch solution. Therefore, by using the glucoamylase of the present invention, the step of neutralizing the starch solution becomes unnecessary, and the load on the desalting step after the reaction can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のグルコアミラーゼの活性に及ぼすpH
の影響を示す特性図、第2図は本グルコアミラーゼの熱
安定性に及ぼすpHの影響を示す特性図、第3図は本グ
ルコアミラーゼの活性に及ぼす温度の影響を示す特性図
、第4図は本グルコアミラーゼの耐熱性を示す特性図、
第5図は本グルコアミラーゼのジエチルアミノエチル架
橋アガロースゲルを用いたイオン交換液体クロマトグラ
フにおけるグルコアミラーゼ活性溶出パターン図、第6
図は本グルコアミラーゼの架橋デキストランゲルを用い
たゲル濾過におけるグルコアミラーゼ活性溶出パターン
図である。 特許出願人 株式会社日立製作所 代理人 弁理士 平 木 祐 輔 pH 第2図 H 第4図
Figure 1 shows the effect of pH on the activity of glucoamylase of the present invention.
Figure 2 is a characteristic diagram showing the influence of pH on the thermostability of this glucoamylase, Figure 3 is a characteristic diagram showing the influence of temperature on the activity of this glucoamylase, Figure 4 is a characteristic diagram showing the heat resistance of this glucoamylase,
Figure 5 is a glucoamylase activity elution pattern diagram of this glucoamylase in an ion exchange liquid chromatograph using diethylaminoethyl cross-linked agarose gel.
The figure is a diagram showing the glucoamylase activity elution pattern of the present glucoamylase in gel filtration using a cross-linked dextran gel. Patent applicant Hitachi, Ltd. Representative Patent attorney Yusuke HirakipH Figure 2H Figure 4

Claims (1)

【特許請求の範囲】 1、下記の理化学的性質を示す耐熱性グルコアミラーゼ
。 (1)作用至適pH:4〜5 (2)作用至適温度:70℃ (3)安定pH:4.5〜5.0 (4)pH4.5かつ温度70℃における酵素活性半減
期が6時間以上 (5)pH4.0かつ温度70℃における酵素活性半減
期が5.5時間 (6)分子量:3.8×10^4 2、クロスツリジウム属に属する下記理化学的性質のグ
ルコアミラーゼ生産菌を培養し、菌体及び培地中に該グ
ルコアミラーゼを蓄積せしめ、菌体及び又は培地中から
該グルコアミラーゼを回収することを特徴とする耐熱性
グルコアミラーゼの製造法。 (1)作用至適pH:4〜5 (2)作用至適温度:70℃ (3)安定pH:4.5〜5.0 (4)pH4.5かつ温度70℃における酵素活性半減
期が6時間以上 (5)pH4.0かつ温度70℃における酵素活性半減
期が5.5時間 (6)分子量:3.8×10^4 3、クロスツリジウム属に属するグルコアミラーゼ生産
菌がクロスツリジウム・エスピーG−0005であるこ
とを特徴とする特許請求の範囲第2項記載の耐熱性グル
コアミラーゼの製造法。
[Claims] 1. A thermostable glucoamylase exhibiting the following physicochemical properties. (1) Optimum pH for action: 4-5 (2) Optimum temperature for action: 70°C (3) Stable pH: 4.5-5.0 (4) Half-life of enzyme activity at pH 4.5 and temperature 70°C 6 hours or more (5) Enzyme activity half-life at pH 4.0 and temperature 70°C is 5.5 hours (6) Molecular weight: 3.8 x 10^4 2, glucoamylase belonging to the genus Clostridium and having the following physicochemical properties 1. A method for producing thermostable glucoamylase, which comprises culturing a producing bacterium, accumulating the glucoamylase in the bacterium and culture medium, and recovering the glucoamylase from the bacterium and/or the medium. (1) Optimum pH for action: 4-5 (2) Optimum temperature for action: 70°C (3) Stable pH: 4.5-5.0 (4) Half-life of enzyme activity at pH 4.5 and temperature 70°C 6 hours or more (5) Enzyme activity half-life at pH 4.0 and temperature 70°C is 5.5 hours (6) Molecular weight: 3.8 x 10^4 3. Glucoamylase-producing bacteria belonging to the genus Clostridia 3. The method for producing a thermostable glucoamylase according to claim 2, wherein the glucoamylase is G-0005.
JP17672286A 1986-07-29 1986-07-29 Heat-resistant glucoamylase and production thereof Granted JPS6336778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17672286A JPS6336778A (en) 1986-07-29 1986-07-29 Heat-resistant glucoamylase and production thereof
EP87111005A EP0255124A3 (en) 1986-07-29 1987-07-29 Thermostable glucoamylase, a method for production of glucose using same and a plant for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17672286A JPS6336778A (en) 1986-07-29 1986-07-29 Heat-resistant glucoamylase and production thereof

Publications (2)

Publication Number Publication Date
JPS6336778A true JPS6336778A (en) 1988-02-17
JPH047672B2 JPH047672B2 (en) 1992-02-12

Family

ID=16018633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17672286A Granted JPS6336778A (en) 1986-07-29 1986-07-29 Heat-resistant glucoamylase and production thereof

Country Status (1)

Country Link
JP (1) JPS6336778A (en)

Also Published As

Publication number Publication date
JPH047672B2 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
JPS5953038B2 (en) Manufacturing method of cyclodextrin
EP0135138A2 (en) A novel thermostable glucoamylase and method for its production
JPH0365156B2 (en)
US4778760A (en) Thermostable α-amylase-producing, thermophilic anaerobic bacteria, thermostable α-amylase and process for producing the same
US3806421A (en) Amylase inhibitor and method of producing the same
US5281527A (en) Process for producing pullalanase
FI87934B (en) FRAMSTAELLNINGSFOERFARANDE FOER NY TRANSMISSION OF TRANSMISSIONS
CA1081633A (en) Heat and acid-stable alpha-amylase enzymes and processes for producing the same
JPS6336778A (en) Heat-resistant glucoamylase and production thereof
EP0255124A2 (en) Thermostable glucoamylase, a method for production of glucose using same and a plant for production thereof
JPS62283988A (en) Production of maltooligosaccharide
JPS6339577A (en) Anaerobic bacterium capable of producing thermostable/ aciduric glucoamylase
JPH0515368A (en) New pullulanase and production thereof
JPS6015312B2 (en) Novel lipase production method
JPS6219081A (en) Production of heat-resistant alpha-amylase
JPH0365149B2 (en)
JPH062071B2 (en) Saccharide manufacturing method
KR960007741B1 (en) Novel(alpha)-1,6-glucosidase and process for producing the same
JPH04211369A (en) Halophilic alkali amylase and production thereof
JPS6342695A (en) Method for producing sugar and production plant therefor
JPH10136979A (en) Novel acidic alpha-amylase and its production
JPH0324197B2 (en)
JPH0568546A (en) New cyclomaltodexstrinase, its production and microorganism producing the same enzyme
JPS5912274B2 (en) Method for producing an enzyme that decomposes α-1,3-glucoside bonds
JPH0119878B2 (en)