JPS6336581B2 - - Google Patents

Info

Publication number
JPS6336581B2
JPS6336581B2 JP6138880A JP6138880A JPS6336581B2 JP S6336581 B2 JPS6336581 B2 JP S6336581B2 JP 6138880 A JP6138880 A JP 6138880A JP 6138880 A JP6138880 A JP 6138880A JP S6336581 B2 JPS6336581 B2 JP S6336581B2
Authority
JP
Japan
Prior art keywords
circuit
switched capacitor
capacitor
configuration
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6138880A
Other languages
Japanese (ja)
Other versions
JPS56158526A (en
Inventor
Mitsuo Tsunoishi
Seiji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6138880A priority Critical patent/JPS56158526A/en
Publication of JPS56158526A publication Critical patent/JPS56158526A/en
Publication of JPS6336581B2 publication Critical patent/JPS6336581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks

Description

【発明の詳細な説明】 本発明はスイツチトキヤパシタを用いた並列同
調回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a parallel tuned circuit using switched capacitors.

従来技術の説明:スイツチトキヤパシタ回路を
使つてフイルタを構成する手法として、元になる
LC構成フイルタの等価インダクタLを演算増幅
器を含むスイツチトキヤパシタ回路で実現する手
法がある。
Description of conventional technology: This is the original method for configuring a filter using a switch capacitor circuit.
There is a method of realizing the equivalent inductor L of the LC configuration filter using a switched capacitor circuit including an operational amplifier.

この場合、しばしば演算増幅器の出力レベルが
入力レベルに比べて高くなり、かかる等価インダ
クタンスを用いるときフイルタの歪特性が著るし
く悪くなるという欠点があり、結果的にフイルタ
のダイナミツクレンジが狭くなるという問題点を
有していた。
In this case, the output level of the operational amplifier is often higher than the input level, and when such an equivalent inductance is used, the distortion characteristics of the filter deteriorate significantly, resulting in a narrow dynamic range of the filter. There was a problem.

発明の目的:本発明は、LC構成フイルタの並
列同調回路をまとめてスイツチトキヤパシタ回路
で実現し、スイツチトキヤパシタ回路内の演算増
幅器の出力端レベルを下げることによりスイツチ
トキヤパシタ回路のダイナミツクレンジを可能な
限り広くすることを目的とする。
Purpose of the invention: The present invention realizes the parallel tuning circuits of LC configuration filters together in a switch capacitor circuit, and lowers the output terminal level of the operational amplifier in the switch capacitor circuit, thereby increasing the dynamic range of the switch capacitor circuit. The aim is to make it as wide as possible.

そして本発明の構成は、入力にスイツチトキヤ
パシタ容量C0,帰還回路に積分容量Caを有する
演算増幅器よりなるスイツチトキヤパシタ積分器
とスイツチトキヤパシタ構成の1サンプル時間遅
延回路とを縦続接続し、該スイツチトキヤパシタ
積分器の出力端および該遅延回路の出力端から入
力端にスイツチトキヤパシタ回路を介して信号を
帰還する構成で、積分係数C0/CaがC0/Ca<4
の関係を有することを特徴とするものである。
In the configuration of the present invention, a switched capacitor integrator consisting of an operational amplifier having a switched capacitor capacitance C 0 at the input and an integral capacitance Ca in the feedback circuit is connected in cascade with a 1 sample time delay circuit having a switched capacitor configuration, The configuration is such that a signal is fed back from the output end of the switched capacitor integrator and the output end of the delay circuit to the input end via the switched capacitor circuit, and the integral coefficient C 0 /Ca is C 0 /Ca < 4.
It is characterized by having the following relationship.

発明の構成および作用の説明:以下図面に従つ
て本発明の詳細を説明する。
Description of structure and operation of the invention: The details of the invention will be described below with reference to the drawings.

第1図は従来のスイツチトキヤパシタ構成のイ
ンダクタ回路の例である。その原理図を第2図に
示す。第2図でスイツチS1,S11,S2,S21,S3
S31は信号サンプリング周期をTsecとしてT/
2sec毎に切替えられる。第1図で各スイツチはス
イツチの番号1→2→3→4→1と切替えられ
る。第2図で入力電圧をV(Z)(但しZ=ej2fT
として、スイツチが左に倒れたときの端子BB′,
CC′,DD′それぞれの端子の電圧をV0(Z),V1(Z),
V2(Z)とおくと、入力端子AA′に流れる電荷の変
化量である電流ΔQは次式で与えられる。
FIG. 1 is an example of a conventional inductor circuit having a switched capacitor configuration. The principle diagram is shown in Fig. 2. In Figure 2, switches S 1 , S 11 , S 2 , S 21 , S 3 ,
S 31 is T/ with the signal sampling period being Tsec.
Switched every 2 seconds. In FIG. 1, each switch is switched in the order of switch numbers 1→2→3→4→1. In Figure 2, the input voltage is V(Z) (Z=e j2fT )
As, the terminal BB′ when the switch falls to the left,
The voltages at the terminals of CC′ and DD′ are V 0 (Z), V 1 (Z),
When V 2 (Z) is set, the current ΔQ, which is the amount of change in the charge flowing to the input terminal AA', is given by the following equation.

ΔQ(Z) =V(Z)2i=0 Ci(1−Vi(Z)/V(Z)) (1) ところで、S=j2πfとして第2図の回路が等価
的にインダクタLとして動作するためには S=2/T 1−Z-1/1+Z-1であるから ΔQ(Z)=(1−Z-1)Q(Z) =V(Z)T2/4L (1+Z-12/1−Z-1(2) の関係が成り立つ必要がある。
ΔQ(Z) = V(Z) 2i=0 Ci(1-Vi(Z)/V(Z)) (1) By the way, assuming S=j2πf, the circuit in Figure 2 equivalently operates as an inductor L. In order to _ _ ) 2 /1−Z -1 (2) must hold.

第2図の回路が等価的にインダクタLとして動
作するには、式(1)と式(2)とを比較して Ci(1−Vi(Z)/V(Z)) =T2/4L (1+Z-12/1−Z-1 (3) が成り立つように伝達関数Vi(Z)/V(Z)を決める
必要 がある。式(3)を満足するT1,T2はいろいろある
が、その1つが第1図の回路であつて、次式が成
立つ。
In order for the circuit in Fig. 2 to equivalently operate as an inductor L, by comparing equations (1) and (2), Ci(1-Vi(Z)/V(Z)) = T 2 /4L It is necessary to determine the transfer function Vi(Z)/V(Z) so that (1+Z −1 ) 2 /1−Z −1 (3) holds. There are various T 1 and T 2 that satisfy equation (3), one of which is the circuit shown in FIG. 1, where the following equation holds true.

ΔQ(Z)/V(Z)=C0+C1+C0C0/Ca Z-1/1−Z
-1 +C1C0/Ca Z-2/1−Z-1 (4) Zに無関係に式(3)と式(4)とが等しくなるには
C0,C1,Caは次の値でなければならない。
ΔQ(Z)/V(Z)=C 0 +C 1 +C 0 C 0 /Ca Z -1 /1-Z
-1 +C 1 C 0 /Ca Z -2 /1-Z -1 (4) For equations (3) and (4) to be equal regardless of Z
C 0 , C 1 , and Ca must have the following values.

C0=3/16 T2/L,C1=T2/16L,Ca=3/64 T2
/L(5) このとき Vi(Z)/V(Z)=−C0/Ca Z-1/1−Z-1=−4Z-
1
/1−Z-1(6) となり、スイツチトキヤパシタ積分係数C0/Ca
は4となる。積分係数が大きいということは、出
力電圧Vi(Z)の振幅が大きくなることを意味して
いる。従つて演算増幅器の歪特性を考慮すると、
この積分係数はできるだけ小さい方がよい。第1
図回路と別な回路例えば文献ELECTRONICS
LETTERS lst February1979Vol.15No.3pp.87〜
88“Switched Capacitor Circuits Bilinearly
Equivalent to Floating Inductor or F.D.N.R”
のFig.3a,bに示される回路ではさらに積分係数
が大きくなる。現状では第1図に示される回路の
積分係数4が最も小さい。
C 0 = 3/16 T 2 /L, C 1 = T 2 /16L, Ca = 3/64 T 2
/L(5) At this time, Vi(Z)/V(Z)=-C 0 /Ca Z -1 /1-Z -1 =-4Z -
1
/1−Z -1 (6), and the switch capacitor integral coefficient C 0 /Ca
becomes 4. A large integral coefficient means that the amplitude of the output voltage Vi(Z) becomes large. Therefore, considering the distortion characteristics of the operational amplifier,
This integral coefficient should be as small as possible. 1st
Circuits different from diagram circuits e.g. literature ELECTRONICS
LETTERS lst February1979Vol.15No.3pp.87~
88“Switched Capacitor Circuits Bilinearly
Equivalent to Floating Inductor or FDNR”
In the circuits shown in Figures 3a and 3b, the integral coefficient becomes even larger. At present, the integral coefficient 4 of the circuit shown in FIG. 1 is the smallest.

次に、このスイツチトキヤパシタ構成のインダ
クタンスを使つてコンデンサCβとの並列共振回
路を構成することについて説明する。
Next, we will explain how to use the inductance of this switched capacitor configuration to configure a parallel resonant circuit with the capacitor Cβ.

第3図がその説明図であり、第3図1が元の
L1Cβ構成の並列共振回路であり、第3図2はこ
のL1を第1図のスイツチトキヤパシタ構成のイ
ンダクタンスL1で実現したものである。そして
スイツチトキヤパシタ構成のインダクタンスL1
には前述したような問題点があるので、これを解
決したのが第3図3に示す本発明である。
Figure 3 is an explanatory diagram, and Figure 3 1 is the original
This is a parallel resonant circuit having an L 1 Cβ configuration, and FIG. 32 shows this L 1 realized by the inductance L 1 of the switched capacitor configuration shown in FIG. 1. and the inductance L 1 of the switch capacitor configuration
Since there are the above-mentioned problems, the present invention shown in FIG. 3 solves these problems.

即ちNは本発明によつてCβとL1との並列同調
回路を一括して第1図に示すスイツチトキヤパシ
タ回路で実現したものであり、以下のように各素
子を求めることにより得られるものである。時刻
tまでに第3図1に示す並列同調回路を通過した
電荷q(t)と並列同調回路の端子電圧V(t)との関
係は次式で与えられる。
That is, according to the present invention, N is realized by combining the parallel tuning circuit of Cβ and L1 with the switch capacitor circuit shown in FIG. 1, and is obtained by finding each element as follows. It is. The relationship between the charge q(t) that has passed through the parallel tuned circuit shown in FIG. 3 up to time t and the terminal voltage V(t) of the parallel tuned circuit is given by the following equation.

q(t)=CβV(t)+1/L1〓V(t)dt (7) Qs(S)=(Cβ+1/S2L1)Vs(S) (8) Qs,VsはそれぞれS平面での並列同調回路の電
荷と端子電圧である。さらにZ平面で考えると次
式が成立つ。
q(t)=CβV(t)+1/L 1 〓V(t)dt (7) Qs(S)=(Cβ+1/S 2 L 1 )Vs(S) (8) Qs and Vs are each on the S plane are the charge and terminal voltage of the parallel tuned circuit. Furthermore, when considering on the Z plane, the following equation holds true.

Q(Z)={Cβ+T2/4L1(1+Z-1/1−Z-12}V(Z
)(9) ある時刻t=toにおいて並列同調回路を通る電荷
量ΔQ(Z)は、 ΔQ(Z)=(1−Z-1)Q(Z)=V(Z){Cβ(1−Z-1)+T
2/4L1 (1+Z-12/1−Z-1}(10) となる。ここでT2/4L1=Cxとおいて(10)式を変
形すると次の式が成り立つ。
Q(Z)={Cβ+T 2 /4L 1 (1+Z -1 /1-Z -1 ) 2 }V(Z
)(9) The amount of charge ΔQ(Z) passing through the parallel tuned circuit at a certain time t=t o is ΔQ(Z)=(1-Z -1 )Q(Z)=V(Z){Cβ(1- Z -1 ) + T
2 /4L 1 (1 + Z -1 ) 2 /1 - Z -1 }(10). Here, when formula (10) is transformed by setting T 2 /4L 1 =Cx, the following formula holds true.

ΔQ(Z)=V(Z){Cβ+Cx+(3Cx−Cβ)Z-1/1−Z-1
+(Cβ+Cx)Z-2/1−Z-1}(11) 式(4)と式(11)とがZに無関係に等しくなるには 式(12)からC0,C1,Caおよび積分係数C0/Caを求
める。
ΔQ(Z)=V(Z) {Cβ+Cx+(3Cx−Cβ)Z -1 /1−Z -1
+(Cβ+Cx)Z -2 /1-Z -1 }(11) For equation (4) and equation (11) to be equal regardless of Z Calculate C 0 , C 1 , Ca and integral coefficient C 0 /Ca from equation (12).

C0/Ca=4Cx/Cx+Cβ (13) C0=(3Cx−Cβ)(Cx+Cβ)/4Cx (14) C1=(Cx+C)2/4Cx (15) Ca=(Cx+Cβ)2(3Cx−Cβ)/16Cx2 (16) 式(13)より3Cx−Cβ>0の範囲において次
式がなり立つ。
C 0 /Ca = 4Cx / Cx + Cβ (13) C 0 = (3Cx - Cβ) (Cx + Cβ) / 4Cx (14) C 1 = (Cx + C) 2 /4Cx (15) Ca = (Cx + Cβ) 2 (3Cx - Cβ) /16Cx 2 (16) From equation (13), the following equation holds true in the range of 3Cx−Cβ>0.

C0/Ca<4 例えばCx=2730pF,Cβ=3780pFのときC0
Ca≒1.68になり、演算増幅器の出力電圧レベル
は、同調回路をスイツチトキヤパシタ構成の第1
図のインダクタとキヤパシタCβとの組合せとし
て実現したときに比べて約1/2.4倍となる。
C 0 /Ca<4 For example, when Cx = 2730pF, Cβ = 3780pF, C 0 /
Ca≒1.68, and the output voltage level of the operational amplifier is as follows:
This is approximately 1/2.4 times as large as when realized as a combination of the inductor and capacitor Cβ shown in the figure.

ここで、もし3Cx<Cβまたは3Cx≒Cβのよう
に、Ca,C0が負または小さくなりすぎる場合は
第4図の回路でCβの一部を残してスイツチトキ
ヤパシタ構成のインダクタに含ませれば良いこと
はいうまでもない。
If Ca, C 0 becomes too negative or too small, such as 3Cx<Cβ or 3Cx≒Cβ, use the circuit shown in Figure 4 to leave a part of Cβ and include it in the inductor of the switch capacitor configuration. Needless to say, it's a good thing.

以上述べたように本発明に従つて第1図の回路
はC0/Ca<4となるようC0とCaとの値を選定す
ることにより、インダクタンスL1とコンデンサ
Cβの並列共振回路を実現することが可能となる。
As described above, in accordance with the present invention, the circuit of FIG .
It becomes possible to realize a Cβ parallel resonant circuit.

次に本発明によるスイツチトキヤパシタ構成の
LC並列共振回路を用いて、有限周波数に減衰極
をもつ低域通過フイルタを実現した実施例につい
て説明する。
Next, the switch capacitor configuration according to the present invention will be described.
An example will be described in which a low-pass filter having an attenuation pole at a finite frequency is realized using an LC parallel resonant circuit.

第4図がR,L,C素子による等価回路であ
り、第5図が対応するスイツチトキヤパシタによ
つて実現した低域通過フイルタである。第4図に
おける抵抗R1,R2はそれぞれコンデンサC1,ス
イツチS1,S2及びC2,S3,S4により実現され、
インダクタンスL1,コンデンサCβの並列共振回
路は回路21によつて実現されている。即ち回路
21は本発明のスイツチトキヤパシタ構成の並列
共振回路であり、第1図の回路において、C0
Ca<4の関係を有するものである。
FIG. 4 shows an equivalent circuit using R, L, and C elements, and FIG. 5 shows a low-pass filter realized using a corresponding switched capacitor. Resistors R 1 and R 2 in FIG. 4 are realized by capacitor C 1 , switches S 1 , S 2 and C 2 , S 3 , S 4 respectively,
A parallel resonant circuit including an inductance L 1 and a capacitor Cβ is realized by a circuit 21. That is, the circuit 21 is a parallel resonant circuit having a switched capacitor configuration according to the present invention, and in the circuit of FIG. 1, C 0 /
It has a relationship of Ca<4.

この場合には、本発明のスイツチトキヤパシタ
構成の並列同調回路21を使用することによつ
て、演算増幅器の出力レベルを下げることがで
き、ダイナミツクレンジの広いスイツチトキヤパ
シタフイルタを得ることができる。また、3Cx>
Cβのときはキヤパシタの数を少なくでき経済的
であるという利点を有するものである。
In this case, by using the parallel tuning circuit 21 having a switched capacitor configuration according to the present invention, the output level of the operational amplifier can be lowered, and a switched capacitor filter with a wide dynamic range can be obtained. . Also, 3Cx>
Cβ has the advantage that the number of capacitors can be reduced and is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスイツチトキヤパシタ構成のインダク
タンス、第2図は第1図の動作原理図、第3図は
本発明による並列共振回路説明図、第4図は有限
減衰極を有する低域通過波器の回路図、第5図
は第4図を本発明のスイツチトキヤパシタフイル
タによる並列共振回路を用いて実現した実施例を
示す。 図において、Cβは並列共振回路を構成するコ
ンデンサ、L1は第1図のスイツチトキヤパシタ
によるインダクタンス。
Fig. 1 shows the inductance of the switched capacitor configuration, Fig. 2 shows the principle of operation of Fig. 1, Fig. 3 shows an explanation of the parallel resonant circuit according to the present invention, and Fig. 4 shows the low-pass waveform with a finite attenuation pole. The circuit diagram of FIG. 5 shows an embodiment in which the circuit shown in FIG. 4 is realized using a parallel resonant circuit using a switched capacitor filter of the present invention. In the figure, Cβ is the capacitor that forms the parallel resonant circuit, and L1 is the inductance caused by the switch capacitor in Figure 1.

Claims (1)

【特許請求の範囲】[Claims] 1 入力にスイツチトキヤパシタ容量C0,帰還
回路に積分容量Caを有する演算増幅器よりなる
スイツチトキヤパシタ積分器とスイツチトキヤパ
シタ構成の1サンプル時間遅延回路とを縦続接続
し、該スイツチトキヤパシタ積分器の出力端およ
び該遅延回路の出力端から入力端にスイツチトキ
ヤパシタ回路を介して信号を帰還する構成で、積
分係数C0/CaがC0/Ca<4の関数を有すること
を特徴とするスイツチトキヤパシタ並列同調回
路。
1 A switched capacitor integrator consisting of an operational amplifier having a switched capacitor capacitance C 0 at the input and an integral capacitance Ca in the feedback circuit and a 1 sample time delay circuit having a switched capacitor configuration are connected in cascade, and the switched capacitor integrator It has a configuration in which a signal is fed back from the output end of the delay circuit and the output end of the delay circuit to the input end via a switched capacitor circuit, and is characterized in that the integral coefficient C 0 /Ca has a function of C 0 /Ca < 4. Switch capacitor parallel tuned circuit.
JP6138880A 1980-05-09 1980-05-09 Parallel tuning circuit for switched capacitor Granted JPS56158526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6138880A JPS56158526A (en) 1980-05-09 1980-05-09 Parallel tuning circuit for switched capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6138880A JPS56158526A (en) 1980-05-09 1980-05-09 Parallel tuning circuit for switched capacitor

Publications (2)

Publication Number Publication Date
JPS56158526A JPS56158526A (en) 1981-12-07
JPS6336581B2 true JPS6336581B2 (en) 1988-07-20

Family

ID=13169729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6138880A Granted JPS56158526A (en) 1980-05-09 1980-05-09 Parallel tuning circuit for switched capacitor

Country Status (1)

Country Link
JP (1) JPS56158526A (en)

Also Published As

Publication number Publication date
JPS56158526A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
CA1113553A (en) High pass switched capacitor filter section
Temes et al. Switched-capacitor filter design using the bilinear z-transform
JP3038236B2 (en) Balanced filter circuit
EP0435472B1 (en) Active filter
US4009400A (en) Digitally controlled variable conductance
GB1277614A (en) An electromechanical resonator
JPS6244443B2 (en)
JPS6410131B2 (en)
JPH0119650B2 (en)
US4988952A (en) High Q switched capacitor filter having internal thin-film resistors
KR840001017A (en) Impedance Conversion Network for SAW Filter
EP0270192A2 (en) Filter
JPS6336581B2 (en)
US4423394A (en) Multiple pole bandpass filter having monolithic crystal elements
CA1149478A (en) Bandstop filters
CA1162995A (en) Switched capacitor bilinear resistors
US5093642A (en) Solid state mutually coupled inductor
JP3404538B2 (en) Filter circuit for phase detection
JP2924039B2 (en) Filter device
Ono A new switched-capacitor inductance simulation circuit using unity gain buffers
Bruton Electronically tunable analog active filters
US4006424A (en) Wide bandwidth crystal frequency discriminator circuit
US3858127A (en) Stable and compact low frequency filter
JP3366483B2 (en) Filter circuit
RU2236081C2 (en) High-selectivity piezoelectric band filter