JPS6336268Y2 - - Google Patents

Info

Publication number
JPS6336268Y2
JPS6336268Y2 JP1982168257U JP16825782U JPS6336268Y2 JP S6336268 Y2 JPS6336268 Y2 JP S6336268Y2 JP 1982168257 U JP1982168257 U JP 1982168257U JP 16825782 U JP16825782 U JP 16825782U JP S6336268 Y2 JPS6336268 Y2 JP S6336268Y2
Authority
JP
Japan
Prior art keywords
inspected
coil
cylindrical
magnetic
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982168257U
Other languages
Japanese (ja)
Other versions
JPS5972552U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16825782U priority Critical patent/JPS5972552U/en
Publication of JPS5972552U publication Critical patent/JPS5972552U/en
Application granted granted Critical
Publication of JPS6336268Y2 publication Critical patent/JPS6336268Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

この考案は、主として貫通コイルを用いた渦流
探傷法における磁気飽和装置に係り、低電力で被
検査材料を効率的に磁化することが可能な渦流探
傷用磁気飽和装置に関する。
This invention mainly relates to a magnetic saturation device for eddy current flaw detection using a through coil, and relates to a magnetic saturation device for eddy current flaw detection that can efficiently magnetize a material to be inspected with low power.

【従来の技術】[Conventional technology]

渦流探傷法は、現在各方面において種々の方式
が適用されているが、被検査材料を磁気飽和させ
て検査を実施するものの中で貫通コイルを用いた
渦流探傷法がある。 渦流探傷法は、検出コイルのインピーダンスに
着目した疵検査法であり、高周波電圧を印加した
検出コイルにより、被検査材料の表面に渦電流を
生じさせ、疵部分での渦電流の乱れを検出コイル
のインピーダンス変化として検出するものであ
る。 しかし、検出コイルのインピーダンスを変化さ
せる要因としては、疵の他に被検査材料の透磁率
がある。通常、炭素鋼、合金鋼では、検出しよう
とする疵によるインピーダンス変化よりも透磁率
変化によるインピーダンス変化がはるかに大きく
検査上最も有害な外的要因である。 貫通コイル探傷法では被検査材料中における透
磁率変化を減少させるために、大きな直流磁場を
加え磁気飽和することでこの外的要因を消去して
いる。一般に高周波渦電流の侵透深さは下記(1)式
で示される。 ここで、δ:侵透深さ :周波数 σ:導電率 μ:透磁率 上記(1)式に示すように、透磁率が大きいと侵透
深さが小さくなるため、表面下の疵に対する検出
性能が失われることになる。従つて、透磁率の値
を減少する手段としても先の透磁率変化を減少す
る事と同時に磁気飽和装置が使用されるものであ
る。 被検査材料に直流磁場を加える手段としては多
層巻き構造を有する円筒形コイルの内部に被検査
材料を内挿し、直流電流を加える方法が一般に使
用されている方法である。 第1図は従来の磁気飽和装置の一例を示す縦断
面図である。1は被検査材料、2は円筒形コイル
である。 すなわち、円筒形コイル2に直流電流を加え、
そのコイル内に被検査材料1を内挿し磁気飽和を
行なつている。なお、3は冷却用油、4は冷却油
供給口、5は冷却油排出口である。
Currently, various methods of eddy current flaw detection are applied in various fields, and among those methods in which inspection is carried out by magnetically saturating the material to be inspected, there is an eddy current flaw detection method using a through coil. Eddy current flaw detection is a flaw inspection method that focuses on the impedance of a detection coil. Eddy current is generated on the surface of the material to be inspected using a detection coil to which a high frequency voltage is applied, and the disturbance of the eddy current at the flaw is detected by the detection coil. It is detected as a change in impedance. However, factors that change the impedance of the detection coil include, in addition to flaws, the magnetic permeability of the material to be inspected. Normally, in carbon steel and alloy steel, the impedance change due to magnetic permeability change is much larger than the impedance change due to the flaw to be detected, and is the most harmful external factor for inspection. In the through-coil flaw detection method, in order to reduce changes in magnetic permeability in the material to be inspected, this external factor is eliminated by applying a large DC magnetic field to achieve magnetic saturation. Generally, the penetration depth of high-frequency eddy current is expressed by the following equation (1). Here, δ: Penetration depth: Frequency σ: Electrical conductivity μ: Magnetic permeability As shown in equation (1) above, the higher the magnetic permeability, the smaller the penetration depth, so the detection performance for subsurface flaws is will be lost. Therefore, a magnetic saturation device is used as a means to reduce the magnetic permeability value as well as to reduce the previous change in magnetic permeability. A commonly used method for applying a direct current magnetic field to a material to be inspected is to insert the material to be inspected inside a cylindrical coil having a multilayered winding structure and apply a direct current. FIG. 1 is a longitudinal sectional view showing an example of a conventional magnetic saturation device. 1 is a material to be inspected, and 2 is a cylindrical coil. That is, applying a direct current to the cylindrical coil 2,
The material to be inspected 1 is inserted into the coil to perform magnetic saturation. Note that 3 is a cooling oil, 4 is a cooling oil supply port, and 5 is a cooling oil discharge port.

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかし、多層巻き構造を有する円筒形コイルの
内部に被検査材料を内挿し、直流電流を加える方
法の場合は、大きな磁化能力を得るために、数万
回にもおよぶ巻線を有するコイルを使用し、数ア
ンペアーの電流を加えるため、大きな電力を消費
することとなり、必要な磁化能力を得られる半
面、コイル部での電力消費に伴う発熱が最も大き
な悪要素となつている。 このため、従来の磁気飽和装置は、長時間にわ
たつて連続運転された場合のコイルの発熱による
絶縁体の破損防止のため、冷却用油3、冷却油供
給口4、冷却油出口5からなる冷却装置が設けら
れ、油等の冷却媒体を用いて強制冷却されるよう
になつている。 この考案は、従来の技術のこのような欠点を除
くためになされたものであり、その目的とすると
ころは低電力で被検査材料の磁気飽和を行なうこ
とができ、かつ発熱等がなく冷却装置を必要とし
ない磁気飽和装置を提供しようとするものであ
る。
However, in the case of a method in which the material to be inspected is inserted inside a cylindrical coil with a multi-layered winding structure and a direct current is applied, a coil with tens of thousands of windings is used to obtain a large magnetization ability. However, since a current of several amperes is applied, a large amount of power is consumed, and while the necessary magnetization ability can be obtained, the heat generated by the power consumption in the coil section is the biggest negative factor. For this reason, the conventional magnetic saturation device consists of a cooling oil 3, a cooling oil supply port 4, and a cooling oil outlet 5 in order to prevent damage to the insulator due to heat generation of the coil when operated continuously for a long time. A cooling device is provided to perform forced cooling using a cooling medium such as oil. This invention was made to eliminate these drawbacks of the conventional technology, and its purpose is to create a cooling device that can magnetically saturate the material to be inspected with low power and does not generate heat. The purpose is to provide a magnetic saturation device that does not require.

【課題を解決するための手段】[Means to solve the problem]

この考案の要旨は、多層巻き構造をもつた円筒
形コイルに直流電流を加え、前記円筒形コイルに
内挿された被検査材料を磁化する磁気飽和装置の
前記問題点を解決する手段として、 円筒形コイルの内周に、被検査材料の外径より
大きい内径の軟質磁性材料からなる1対の円筒形
の内面ヨークを、その軸長方向対向端面間間隔を
前記内面ヨークの内周面被検査材料の外周面との
間隔より大きくして同一軸線上に設けるととも
に、この1対の内面ヨークそれぞれの他端と、円
筒状コイル外周を軸長方向全長にわたり囲繞する
軟質磁性材料からなる筒状の外面ヨークの両端と
の間に、コイル側面を覆う軟質磁性材料からなる
1対の環状の側面ヨークを一体に設けた構成した
ことを特徴とするものである。 すなわち、この考案では多層構造を有する円筒
形コイルを外面ヨーク、1対の側面ヨーク、1対
の内面ヨークで覆い、磁気抵抗を減ずる手段とし
て前記各ヨークを軟質磁性材料例えば低炭素鋼材
を用いていることが第1の特徴である。 また、装置の内部では内挿された被検査材料を
磁化するために一対の内面ヨークの対向する端面
間に、内面ヨークの内面と被検査材料の外面との
間隔より大きい間隔(以下磁気ギヤツプと呼ぶ)
を設けてあり、被検査材料が内挿された場合は効
率よく被検査材料を透過する構造であることが第
2の特徴である。
The gist of this invention is to apply direct current to a cylindrical coil with a multi-layered winding structure to magnetize a material to be inspected inserted into the cylindrical coil. A pair of cylindrical inner yokes made of a soft magnetic material with an inner diameter larger than the outer diameter of the material to be inspected is placed on the inner periphery of the shaped coil. A cylindrical material made of a soft magnetic material is provided on the same axis with a distance larger than the distance from the outer peripheral surface of the material, and surrounds the other end of each of the pair of inner yokes and the outer periphery of the cylindrical coil over the entire length in the axial direction. The device is characterized in that a pair of annular side yokes made of a soft magnetic material are integrally provided between both ends of the outer yoke to cover the side surfaces of the coil. That is, in this invention, a cylindrical coil having a multilayer structure is covered with an outer surface yoke, a pair of side yokes, and a pair of inner yokes, and each of the yokes is made of a soft magnetic material, such as low carbon steel, as a means of reducing magnetic resistance. The first characteristic is that In addition, inside the device, in order to magnetize the inserted material to be inspected, a gap (hereinafter referred to as a magnetic gap) is created between the opposing end surfaces of a pair of inner yokes that is larger than the distance between the inner surface of the inner yokes and the outer surface of the material to be inspected. call)
The second feature is that it has a structure that efficiently transmits through the material to be inspected when the material to be inspected is interpolated.

【作用】[Effect]

多層構造を有する円筒形コイルを、所定の軸長
方向対向面間間隔を有する内面ヨーク、外面ヨー
クおよび一対の側面ヨークで覆い、かつ各ヨーク
を連結した構造としたことにより、円筒形コイル
で生じた磁束は各ヨーク中を一方方向に透過し、
磁気抵抗が減少する。 また、円筒形コイル内に被検査材料が挿入され
ると、磁束の大部分は磁気キヤツプより小さい間
隔の内面ヨークと被検査材料との空間を介して被
検査材料中を透過するので、高い磁化能力が得ら
れる。
A cylindrical coil with a multilayer structure is covered with an inner yoke, an outer yoke, and a pair of side yokes that have a predetermined distance between opposing surfaces in the axial direction, and the yokes are connected. The magnetic flux transmitted through each yoke in one direction,
Magnetic resistance decreases. In addition, when the material to be inspected is inserted into the cylindrical coil, most of the magnetic flux passes through the material through the space between the inner yoke and the material to be inspected, which is smaller than the magnetic cap, resulting in high magnetization. ability is obtained.

【実施例】【Example】

第2図はこの考案の一実施例装置を示す縦断面
図である。 この考案は、多層巻き構造を有する円筒形コイ
ルは軸長方向に離間した2,2′の2個からなつ
ている。この円筒形コイル2,2′に直流電流を
流すことで磁場が生じる。 円筒形コイル2,2′は軟質磁性材料からなる
外面ヨーク6、1対の側面ヨーク7,7′、1対
の内面ヨーク8,8′で前記磁気ギヤツプを除き
連続して覆われている。 円筒形コイル2,2′で生じた磁束φは、これ
らの軟質磁性材料からなる各ヨーク中を一方方向
に透過するので、磁気抵抗は著しく小さくなるも
のである。そのため、各ヨークは磁気抵抗が大き
くならないよう十分な断面積を持つものを使用す
べきである。 また、2個の円筒形コイル2,2′は非磁性材
料からなるスペーサー9,9′、中間スペーサー
10により間隔を置いて配置されており、内面ヨ
ーク8,8′には内面ヨーク8,8′の内面と被検
査材料1の外面との間隔より大きい間隔の磁気ギ
ヤツプが設けられ、内挿される被検査材料1に磁
化を与えるようになつている。 各ヨーク中を一方方向に透過する磁束は被検査
材料が内挿されない場合は、磁気ギヤツプをほぼ
直進透過するが、被検査材料1が内挿されると磁
束の大部分は磁気ギヤツプより小さい間隔の内面
ヨーク8,8′と被検査材料1との空間を介して
被検査材料中を透過するので高い磁化能力を有す
るものである。 また、被検査材料1を内挿することにより磁束
は、各ヨーク及び被検査材料1内を第2図点線矢
印で示すループ状に透過するため磁気抵抗が減少
し、さらに有効な磁化を与える事ができるのであ
る。 なお、中間スペーサー10の内径を内面ヨーク
の内径より大きくしているのは、この部分に検出
コイルを挿入するためのスペースを確保するめで
ある。 第1表はこの考案の実施結果を従来装置と比較
して示したものである。 第1表より、この考案は従来装置に比べ著しく
低電力で被検査材料の磁気飽和が可能であり、電
力消費量が大幅に節減されることがわかる。
FIG. 2 is a longitudinal sectional view showing an embodiment of the device of this invention. In this invention, a cylindrical coil having a multi-layered winding structure consists of two coils 2 and 2' spaced apart in the axial direction. A magnetic field is generated by passing a direct current through the cylindrical coils 2, 2'. The cylindrical coils 2, 2' are continuously covered with an outer yoke 6, a pair of side yokes 7, 7', and a pair of inner yokes 8, 8' made of a soft magnetic material, except for the magnetic gap. Since the magnetic flux φ generated by the cylindrical coils 2 and 2' passes in one direction through each yoke made of these soft magnetic materials, the magnetic resistance is significantly reduced. Therefore, each yoke should have a sufficient cross-sectional area so that the magnetic resistance does not become large. The two cylindrical coils 2, 2' are spaced apart by spacers 9, 9' made of non-magnetic material and an intermediate spacer 10. A magnetic gap is provided with a distance greater than the distance between the inner surface of the test material 1 and the outer surface of the material 1 to be inspected. If the material to be inspected is not inserted, the magnetic flux passing in one direction through each yoke will pass almost straight through the magnetic gap, but if the material to be inspected 1 is inserted, most of the magnetic flux will pass through the magnetic gap at intervals smaller than the magnetic gap. Since the light passes through the material to be inspected through the space between the inner yokes 8, 8' and the material to be inspected 1, it has a high magnetization ability. In addition, by interpolating the material 1 to be inspected, the magnetic flux passes through each yoke and the material 1 to be inspected in a loop shape as shown by the dotted line arrow in Figure 2, reducing magnetic resistance and providing more effective magnetization. This is possible. The reason why the inner diameter of the intermediate spacer 10 is made larger than the inner diameter of the inner yoke is to ensure a space for inserting the detection coil into this portion. Table 1 shows the results of implementing this invention in comparison with the conventional device. From Table 1, it can be seen that this device can magnetically saturate the material to be inspected with significantly lower power than conventional devices, and power consumption is significantly reduced.

【表】【table】

【考案の効果】[Effect of the idea]

この考案は上記のごとく、所定の軸長方向対向
面間隔を有する一対の内面ヨークと一対の側面ヨ
ークおよび外面ヨークを円筒形コイルを囲繞する
ごとく一体に連結した構造となしたことにより、
低電力で被検査材料の磁気飽和が可能であり、電
力消費量の大幅節減がはかられるとともに、低電
力のため円筒形コイルの発熱がなく油等の媒体を
用いる冷却装置が全く不要となり、設備的簡素化
が可能となる等多大な効果を奏するものである。 なお、この考案は貫通コイル渦流探傷装置に限
らず、被検査材料を軸方向に磁化飽和することで
は、プロブ回転式渦流探傷装置にも用できること
はいうまでもないことである。
As mentioned above, this invention has a structure in which a pair of inner yokes, a pair of side yokes, and an outer yoke, which have a predetermined distance between opposing surfaces in the axial length direction, are integrally connected so as to surround a cylindrical coil.
It is possible to magnetically saturate the material being inspected with low power consumption, resulting in a significant reduction in power consumption.Due to the low power consumption, there is no heat generation from the cylindrical coil, and there is no need for a cooling device that uses media such as oil. This has great effects such as equipment simplification. It goes without saying that this invention is not limited to the through-coil eddy current flaw detection device, but can also be applied to a probe rotation type eddy current flaw detection device by saturating the magnetization of the material to be inspected in the axial direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気飽和装置の一例を示す縦断
面図、第2図はこの考案の装置構成例を示す縦断
面図である。 1……被検査材料、2……円筒形コイル、3…
…冷却用油、4……冷却油供給口、5……冷却油
排出口、6……外面ヨーク、7……側面ヨーク、
8……内面ヨーク、9……スペーサー、10……
中間スペーサー。
FIG. 1 is a vertical cross-sectional view showing an example of a conventional magnetic saturation device, and FIG. 2 is a vertical cross-sectional view showing an example of the configuration of the device of this invention. 1... Material to be inspected, 2... Cylindrical coil, 3...
...Cooling oil, 4...Cooling oil supply port, 5...Cooling oil discharge port, 6...External yoke, 7...Side yoke,
8...Inner yoke, 9...Spacer, 10...
intermediate spacer.

Claims (1)

【実用新案登録請求の範囲】 多層巻き構造をもつた円筒形コイルに直流電流
を加え、前記円筒形コイルに内挿された被検査材
料を磁化する磁気飽和装置において、 前記円筒形コイルの内周に、被検査材料の外径
より大きい内径の軟質磁性材料からなる1対の円
筒形の内面ヨークを、その軸長方向対向端面間間
隔を前記内面ヨークの内周面と被検査材料の外周
面との間隔より大きくして同一軸線上に設けると
ともに、この1対の内面ヨークそれぞれの他端
と、円筒形コイル外周を軸長方向全長にわたり囲
繞する軟質磁性材料からなる筒状の外面ヨークの
両端との間に、コイル側面を覆う軟質磁性材料か
らなる1対の環状の側面ヨークを一体に設けて構
成したことを特徴とする渦流探傷用磁気飽和装
置。
[Claims for Utility Model Registration] In a magnetic saturation device that applies a direct current to a cylindrical coil having a multilayered winding structure to magnetize a material to be inspected inserted into the cylindrical coil, the inner periphery of the cylindrical coil A pair of cylindrical inner yokes made of a soft magnetic material with an inner diameter larger than the outer diameter of the material to be inspected is arranged such that the distance between the opposing end surfaces in the axial direction is such that the inner circumferential surface of the inner yoke and the outer circumferential surface of the material to be inspected are and the other end of each of the pair of inner yokes, and both ends of a cylindrical outer yoke made of a soft magnetic material that surrounds the outer periphery of the cylindrical coil over the entire length in the axial direction. 1. A magnetic saturation device for eddy current flaw detection, characterized in that a pair of annular side yokes made of a soft magnetic material are integrally provided between the coil side surface and the coil side surface.
JP16825782U 1982-11-06 1982-11-06 Magnetic saturation device for eddy current flaw detection Granted JPS5972552U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16825782U JPS5972552U (en) 1982-11-06 1982-11-06 Magnetic saturation device for eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16825782U JPS5972552U (en) 1982-11-06 1982-11-06 Magnetic saturation device for eddy current flaw detection

Publications (2)

Publication Number Publication Date
JPS5972552U JPS5972552U (en) 1984-05-17
JPS6336268Y2 true JPS6336268Y2 (en) 1988-09-27

Family

ID=30367888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16825782U Granted JPS5972552U (en) 1982-11-06 1982-11-06 Magnetic saturation device for eddy current flaw detection

Country Status (1)

Country Link
JP (1) JPS5972552U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425653Y2 (en) * 1985-07-04 1992-06-19
JP2506579Y2 (en) * 1989-11-08 1996-08-14 大同特殊鋼株式会社 Eddy current flaw detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996785A (en) * 1973-01-16 1974-09-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996785A (en) * 1973-01-16 1974-09-12

Also Published As

Publication number Publication date
JPS5972552U (en) 1984-05-17

Similar Documents

Publication Publication Date Title
GB979938A (en) Methods and apparatus for the induction welding of tubing
JPWO2021125187A1 (en) Leakage magnetic inspection equipment and defect inspection method
TW359836B (en) Device and method for eddy current control of tubes
JPS6336268Y2 (en)
JPH07151732A (en) Steel tube end magnetization device
US3829762A (en) Method and device for magnetographic inspection
JPH0320078B2 (en)
JPS5891155U (en) Eddy current flaw detection probe
JP3443007B2 (en) Electromagnetic flow meter
JPS55152453A (en) Flaw detector with magnetic particle
JPH07183124A (en) Device for magnetizing permanent magnet and magnetization
JPS6350108B2 (en)
JPS60165543A (en) Magnetic powder flaw detecting method of steel tube
JPH0230050U (en)
JP2006135116A (en) Magnetic shield structure for ac power single wire cable
JP2017212424A (en) Magnetic core
JPH0338695Y2 (en)
JPH0729490Y2 (en) DC magnetizer for eddy current flaw detection
RU2243550C1 (en) Electromagnetic-acoustic transducer
JPH0425653Y2 (en)
JPS62126345A (en) Probe for eddy current flaw detection
CA1100186A (en) Needle type non-destructive metal inspection probe
JPH0211865B2 (en)
JPH019109Y2 (en)
JPS6124373Y2 (en)