JPS6336246Y2 - - Google Patents

Info

Publication number
JPS6336246Y2
JPS6336246Y2 JP1987062014U JP6201487U JPS6336246Y2 JP S6336246 Y2 JPS6336246 Y2 JP S6336246Y2 JP 1987062014 U JP1987062014 U JP 1987062014U JP 6201487 U JP6201487 U JP 6201487U JP S6336246 Y2 JPS6336246 Y2 JP S6336246Y2
Authority
JP
Japan
Prior art keywords
circuit
output
capacitance
variable
variable delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987062014U
Other languages
Japanese (ja)
Other versions
JPS62180715U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987062014U priority Critical patent/JPS6336246Y2/ja
Publication of JPS62180715U publication Critical patent/JPS62180715U/ja
Application granted granted Critical
Publication of JPS6336246Y2 publication Critical patent/JPS6336246Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は容量変化形変換器を用いて液面レベル
等の各種情報の検出を行なう静電容量形センサの
改良に関するものである。 〔従来の技術〕 物理量若しくは化学量を静電容量の大きさに変
換する一種のコンデンサである容量変化形変換器
(以下単に変換器と称す)を用いて、例えば点滴
液容器の薬液面が或るレベルに達したことを容器
外部から非接触で検出しようとする場合、従来
は、例えば第1図に示すように、点滴液容器10
の外壁面の適当な位置に変換器を構成する2個の
電極11,12を互いに対向させて装着し、薬液
14の液面の下降に伴う電極間容量の変化を容量
変化検出回路15で検出することにより行なつて
いる。液面レベルの降下に伴う変換器の静電容量
の変化は、模式的に第2図の実線20に示すもの
となり、その静電容量は電極間が薬液で満たされ
ているとき最大Cnax、空気に置換されたとき最小
Cnioとなる。従つて、容量変化検出回路15の検
出閾値レベルを同図の直線21に示すように最小
値Cnioより若干高めに設定しておけば、実線20
に示す場合はもとより、薬液14の種類が変わつ
てその誘電率εが変化し容量変化が例えば第2図
の破線22,23に示すものとなつても、同一検
出閾値レベルで正しくレベル検出を行なうことが
できる。 〔考案が解決しようとする問題点〕 しかしながら、電極間静電容量の最小値Cnio
は、容器の種類,温度変化等計測環境条件の変化
によつて変動するものであるから、あまり検出閾
値レベルを低く設定するとその閾値レベルより最
小値Cnioの方が大きくなり、動作しないことがあ
る。そこで、従来においては、点滴液容器が変わ
る毎に閾値レベルを新たに設定し直すことが行な
われており、装置の取扱いが非常に煩しいという
欠点があつた。 また、静電容量の変化を検出する容量変化検出
回路15としては、従来より交流容量ブリツジ法
やLC共振法を採用したものが一般に知られてい
るが、前者は構成が複雑であり、後者は安定な発
振器及び検波回路を必要とすることから共に装置
が大型になり且つ高価になるという欠点があつ
た。そこで、変換器の静電容量を帰還用コンデン
サとして発振回路を構成し、その発振出力の変化
により容量変化を検出する比較的構成簡易な容量
変化検出回路が提案されているが、微小な容量変
化によつて発振出力を制御することが困難なた
め、静電容量変化の大きな対象に使用が制限され
る欠点がある。従つて、この種のものを点滴液容
器液面レベル検出に適用する場合には、電極を第
1図のように容器本体に取付けたのでは電極間隔
が広すぎて容量変化が小さいので、例えば点滴液
容器と連通する径の小さい細管を設け、これに変
換器を取付けなければならないという問題点があ
つた。 〔問題点を解決するための手段〕 本考案はこのような従来の欠点を改善したもの
であり、1個のパルス発生回路と、該パルス発生
回路の出力を複数に分岐し、各々別々の容量変化
形変換器を構成要素に含み該容量変化形変換器の
静電容量の値に応じた量だけ前記パルス発生回路
のパルスを遅延させて出力する複数個の系列より
なる可変遅延回路と、該複数個の系列の可変遅延
回路から出力されるパルスの位相差を弁別して計
測情報を出力する位相弁別回路とを具備し、前記
可変遅延回路は、前記容量変化形変換器を積分用
コンデンサとする積分回路と該積分回路出力を2
値化する2値化回路とで構成され、前記位相弁別
回路は、前記可変遅延回路の出力パルスをデータ
入力及びクロツク入力とするエツジクロツクドD
形フリツプフロツプと、該フリツプフロツプ出力
の加わるローパスフイルタと、該ローパスフイル
タ出力を2値化する2値化回路とを含むことを特
徴とする静電容量形センサを提供することにあ
る。以下これについて詳細に説明する。 第3図は本考案の基本的な構成を表わすブロツ
ク図であり、30はパルス発生回路、31,32
は変換器、33,34は可変遅延回路、35は位
相弁別回路、36は出力端子、37,38は遅延
調整回路である。 本考案の静電容量形センサは、同図に示すよう
に、パルス発生回路30と、各々別々の変換器3
1,32を構成要素に含みその変換器31,32
の静電容量の値に応じた量だけパルス発生回路3
0の出力パルスを遅延させて出力する複数個の可
変遅延回路33,34と、この複数個の可変遅延
回路33,34から出力されるパルス信号の位相
差を弁別して計測情報を出力端子36に出力する
位相弁別回路35とから構成される。 上記複数個の変換器31,32は、計測すべき
物理的、化学的変化が両変換器31,32の静電
容量の相対的な変化に変換されるように、計測環
境下において、計測目的に応じた一定の位置関係
で配置される。可変遅延回路33,34は、各変
換器31,32の静電容量の大きさに応じた遅延
量を有するものであるから、各可変遅延回路3
3,34への入力パルスは変換器31,32の静
電容量の大きさに応じた量だけ遅延されて出力さ
れることになる。そこで、可変遅延回路33,3
4の出力パルスの位相差を位相弁別回路35にお
いて検出すれば、変換器31,32の静電容量の
相対的な変化が検出でき、これにより物理的,化
学的変化の検出が可能となるものである。 即ち、本考案の静電容量形センサは、計測すべ
き物理的,化学的変化を先ず変換器31,32の
静電容量の相対的変化に変換し、次にこれをパル
スの位相差即ち時間差に変換し、そしてその時間
差を検出することで各種情報の検出を行なうもの
であり、温度変化等の不要変動分は複数個の変換
器に同一の影響を与え互いに打ち消し合うから、
計測単位毎に検出閾値レベルを再設定する必要は
なくなる。また、容量変化を時間差に変換して検
出するから高精度な検出が可能となるものであ
り、更にパルス発生回路30の発振精度が検出精
度に与える影響は全くなく従つて安価な発振回路
を使用でき、且つパルスの位相差検出も安価な回
路で実現できることから、装置の小型化,低廉化
が図れるものとなる。 上記変換器31,32としては、物理的変化に
応じて電極間隔の変化する電極間隔変化形、物理
的変化に応じて電極対向面積の変化する面積変化
形及び物理的,化学的変化に応じて電極間物質の
誘電率を変化せしめる誘電率変化形のいずれの形
式のものをも採用することができる。可変遅延回
路33,34は、例えばR−C積分回路,L−C
積分回路,ローパスフイルタ等公知の遅延回路に
おけるキヤパシタを変換器で置換したものと、シ
ユミツト回路などの従来公知の2値化回路とを組
合せて構成される。また、位相弁別回路35は、
パルスの位相差を検出し得るものであればどのよ
うな構成のものでも良く、その出力形態もアナロ
グ,デイジタルのいずれでも良い。 なお、第3図における遅延調整回路37,38
は、可変遅延回路33の出力パルスを任意の量だ
け遅延させて出力するオフセツト調整用のもので
あり、例えばワンシヨツトマルチバイブレータ等
で構成される。図示例では各可変遅延回路33,
34に対応して設けてあるが、いずれか一方を省
略する構成としても良い。また、オフセツト調整
は上記以外の他の箇所たとえば可変遅延回路3
3,34で行なつても良い。更に、クロツクパル
ス,プリセツタブルカウンタ,ゲート,フリツプ
フロツプ等の組合せによる精密デイジタル遅延調
整によつてリモートオフセツト調整を行なうこと
も可能である。 〔実施例〕 第4図は本考案を点滴液液面検出センサに適用
した実施例の電気回路図であり、第3図と同一符
号は同一部分を示し、40は反転形のシユミツト
回路、41〜43は正転形のシユミツト回路、4
4,45はコンデンサ、46〜52は抵抗、53
は可変抵抗、54は遅延調整回路、55はエツジ
クロツクドD形フリツプフロツプ、C,D,Q,
Qはそのクロツク入力端子,データ入力端子,出
力端子,反転出力端子、56,57はトランジス
タ、58は発光ダイオードである。なお、シユミ
ツト回路41〜43は反転形のものを使用するこ
とも可能である。 同図において、シユミツト回路40,コンデン
サ44及び抵抗46は方形波のパルス発生回路3
0を構成し、ここで発生したパルスはオフセツト
調整用の可変抵抗53を介して可変遅延回路3
3,34に入力される。可変遅延回路33は抵抗
47,変換器31から成る積分回路とシユミツト
回路41で構成され、パルス発生回路30からの
パルスを変換器31の静電容量の大きさに応じた
量だけ遅延させてD形フリツプフロツプ55のデ
ータ入力端子Dに入力する。また抵抗48,変換
器32から成る積分回路とシユミツト回路42で
可変遅延回路34が構成され、ここでパルス発生
回路30からのパルスが変換器32の静電容量の
大きさに応じた量だけ遅延されてD形フリツプフ
ロツプ55のクロツク入力端子Cに入力される。 上記変換器31,32は、非接触液面検出の場
合誘電率変化形とし、例えば第5図に示すよう
に、櫛形状の共通アース電極60と2個の電極6
1,62とを電極支持部材63の一側面に図示の
如く貼着して電極61とアース電極60とで一方
の変換器31を構成し、電極62とアース電極6
0とで他方の変換器32を構成したもの等を使用
する。なお、電極60〜63の容器に対する密着
性を良好なものとするために、電極60〜63を
金属薄膜,導電性ゴム或は導電性ビニール等可撓
性の電極材料で構成し、また電極支持部材63も
ポリウレタンホーム等クツシヨン性の良好な材料
で構成するのが好ましい。 このような構造の変換器31,32の点滴液容
器への取付けは、例えば第6図に示すように、検
出しようとする液面レベル64を境として上側に
変換器31,下側に変換器32が位置するよう
に、例えば板バネ状の電極部抑え金具65によつ
て電極60〜62を点滴液容器66の側壁に密着
させるようにして行なう。なお、電極部抑え金具
65は容器66の口金67を挾み込むグリツパ6
8の一端に上下方向に移動可能に取付けられ、セ
ンサのワンタツチ装着と、センサ取付け位置の自
由な調整が可能になつている。 また、第4図におけるD形フリツプフロツプ5
5は位相弁別回路35を構成するものであり、ク
ロツク端子Cに加わるパルスの立上りのタイミン
グでデータ入力端子Dのデータをセツトし、その
セツト出力をQ端子、その反転出力を端子に出
力する。次表はD形フリツプフロツプ55の真理
値表である。
[Industrial Field of Application] The present invention relates to an improvement of a capacitive sensor that detects various information such as liquid level using a variable capacitive transducer. [Prior art] A variable capacitance converter (hereinafter simply referred to as a converter), which is a type of capacitor that converts a physical quantity or a chemical quantity into a capacitance, is used to When trying to detect from outside the container that the level has reached a certain level in a non-contact manner, conventionally, as shown in FIG.
Two electrodes 11 and 12 constituting the transducer are mounted facing each other at appropriate positions on the outer wall surface of the converter, and a capacitance change detection circuit 15 detects changes in the interelectrode capacitance as the liquid level of the chemical solution 14 falls. It is done by doing. The change in capacitance of the converter as the liquid level drops is schematically shown by the solid line 20 in Figure 2, and the capacitance reaches its maximum when the space between the electrodes is filled with the chemical solution, C nax , Minimum when replaced by air
It becomes C nio . Therefore, if the detection threshold level of the capacitance change detection circuit 15 is set slightly higher than the minimum value C nio as shown by the straight line 21 in the figure, the solid line 20
In addition to the case shown in Figure 2, even if the type of chemical liquid 14 changes and its dielectric constant ε changes, resulting in a change in capacitance as shown, for example, in broken lines 22 and 23 in Figure 2, level detection can be performed correctly at the same detection threshold level. be able to. [Problem that the invention attempts to solve] However, the minimum value of interelectrode capacitance C nio
changes depending on changes in measurement environmental conditions such as the type of container and temperature changes, so if the detection threshold level is set too low, the minimum value C nio will be larger than the threshold level and the detection may not work. be. Therefore, in the past, the threshold level was newly set every time the intravenous fluid container was changed, which had the disadvantage that the device was very cumbersome to handle. In addition, as the capacitance change detection circuit 15 for detecting a change in capacitance, circuits that employ the AC capacitance bridge method or the LC resonance method are generally known, but the former has a complicated configuration, and the latter Since a stable oscillator and a detection circuit are required, both devices have the disadvantage of becoming large and expensive. Therefore, a relatively simple capacitance change detection circuit has been proposed in which an oscillation circuit is configured using the capacitance of the converter as a feedback capacitor, and capacitance changes are detected based on changes in the oscillation output. Since it is difficult to control the oscillation output according to Therefore, when applying this type of device to detect the liquid level of an intravenous drip container, if the electrodes are attached to the container body as shown in Figure 1, the electrode spacing is too wide and the capacitance change is small, so for example, There was a problem in that a thin tube with a small diameter communicating with the drip container had to be provided and a converter had to be attached to the tube. [Means for Solving the Problems] The present invention improves on these conventional drawbacks by providing one pulse generation circuit, branching the output of the pulse generation circuit into multiple parts, and each having a separate capacitance. a variable delay circuit including a variable capacitance converter as a component and delaying and outputting the pulses of the pulse generating circuit by an amount corresponding to the capacitance value of the capacitance variable converter; and a phase discrimination circuit that discriminates phase differences between pulses output from a plurality of series of variable delay circuits and outputs measurement information, and the variable delay circuit uses the capacitance variable converter as an integrating capacitor. The integration circuit and the output of the integration circuit are
The phase discrimination circuit includes an edge clock D which uses the output pulses of the variable delay circuit as data input and clock input.
An object of the present invention is to provide a capacitance type sensor characterized by including a flip-flop, a low-pass filter to which the output of the flip-flop is applied, and a binarization circuit that binarizes the output of the low-pass filter. This will be explained in detail below. FIG. 3 is a block diagram showing the basic configuration of the present invention, in which 30 is a pulse generation circuit, 31, 32
3 is a converter, 33 and 34 are variable delay circuits, 35 is a phase discrimination circuit, 36 is an output terminal, and 37 and 38 are delay adjustment circuits. As shown in the figure, the capacitive sensor of the present invention includes a pulse generation circuit 30 and separate converters 3 and 3.
1 and 32 as components, and their converters 31 and 32
The pulse generation circuit 3
A plurality of variable delay circuits 33 and 34 delay and output a zero output pulse, and the phase difference between the pulse signals output from the plurality of variable delay circuits 33 and 34 is discriminated and measurement information is sent to an output terminal 36. It is composed of a phase discrimination circuit 35 that outputs. The plurality of transducers 31 and 32 are configured to perform measurement purposes under the measurement environment so that physical and chemical changes to be measured are converted into relative changes in the capacitance of both transducers 31 and 32. They are arranged in a certain positional relationship according to the Since the variable delay circuits 33 and 34 have a delay amount depending on the capacitance of each converter 31 and 32, each variable delay circuit 3
The input pulses to the converters 3 and 34 are delayed by an amount corresponding to the capacitance of the converters 31 and 32 and output. Therefore, the variable delay circuits 33, 3
If the phase difference between the output pulses 4 and 4 is detected by the phase discrimination circuit 35, a relative change in the capacitance of the converters 31 and 32 can be detected, thereby making it possible to detect physical and chemical changes. It is. That is, the capacitive sensor of the present invention first converts the physical and chemical change to be measured into a relative change in the capacitance of the transducers 31 and 32, and then converts this into a pulse phase difference, that is, a time difference. It detects various types of information by converting it to
There is no need to reset the detection threshold level for each measurement unit. In addition, since capacitance changes are detected by converting them into time differences, highly accurate detection is possible.Furthermore, the oscillation accuracy of the pulse generation circuit 30 has no effect on detection accuracy, and therefore an inexpensive oscillation circuit is used. In addition, since the phase difference detection of the pulses can be realized with an inexpensive circuit, the device can be made smaller and less expensive. The transducers 31 and 32 include a variable electrode spacing type in which the electrode spacing changes in response to physical changes, an area variable type in which the electrode facing area changes in response to physical changes, and a variable electrode type in which the electrode spacing changes in response to physical changes, and converters in which the electrode spacing changes in response to physical changes. Any type of dielectric constant variation type that changes the dielectric constant of the interelectrode material can be adopted. The variable delay circuits 33 and 34 are, for example, R-C integration circuits, L-C
It is constructed by combining a known delay circuit such as an integrating circuit or a low-pass filter in which the capacitor is replaced with a converter, and a conventionally known binarization circuit such as a Schmitt circuit. Further, the phase discrimination circuit 35 is
It may have any configuration as long as it can detect the phase difference between pulses, and its output form may be either analog or digital. Note that the delay adjustment circuits 37 and 38 in FIG.
is for offset adjustment which delays the output pulse of the variable delay circuit 33 by an arbitrary amount and outputs the delayed pulse, and is composed of, for example, a one-shot multivibrator. In the illustrated example, each variable delay circuit 33,
34, but it is also possible to omit one of them. Also, the offset adjustment may be performed at other locations other than the above, such as the variable delay circuit 3.
You may also do this with 3 or 34. Additionally, remote offset adjustment can be accomplished by precision digital delay adjustment using a combination of clock pulses, presettable counters, gates, flip-flops, and the like. [Embodiment] Fig. 4 is an electrical circuit diagram of an embodiment in which the present invention is applied to an intravenous liquid level detection sensor, in which the same reference numerals as in Fig. 3 indicate the same parts, 40 is an inverted Schmitt circuit, 41 ~43 is a forward-rotating Schmitt circuit, 4
4, 45 are capacitors, 46 to 52 are resistors, 53
is a variable resistor, 54 is a delay adjustment circuit, 55 is an edge-clocked D-type flip-flop, C, D, Q,
Q is its clock input terminal, data input terminal, output terminal, and inverted output terminal, 56 and 57 are transistors, and 58 is a light emitting diode. Incidentally, it is also possible to use inverted types of Schmitt circuits 41 to 43. In the figure, a Schmitt circuit 40, a capacitor 44, and a resistor 46 are connected to a square wave pulse generation circuit 3.
0, and the pulses generated here are sent to the variable delay circuit 3 via a variable resistor 53 for offset adjustment.
3 and 34. The variable delay circuit 33 is composed of an integrating circuit consisting of a resistor 47 and a converter 31, and a Schmitt circuit 41, and delays the pulse from the pulse generating circuit 30 by an amount corresponding to the capacitance of the converter 31 and converts it to D. It is input to the data input terminal D of the flip-flop 55. Further, a variable delay circuit 34 is constituted by an integrating circuit consisting of a resistor 48 and a converter 32, and a Schmitt circuit 42, in which a pulse from the pulse generating circuit 30 is delayed by an amount corresponding to the capacitance of the converter 32. and is input to the clock input terminal C of the D-type flip-flop 55. In the case of non-contact liquid level detection, the transducers 31 and 32 are of a dielectric constant variable type, for example, as shown in FIG.
1 and 62 are attached to one side of the electrode support member 63 as shown in the figure, the electrode 61 and the ground electrode 60 constitute one converter 31, and the electrode 62 and the ground electrode 6
0 and the other converter 32 is used. In order to ensure good adhesion of the electrodes 60 to 63 to the container, the electrodes 60 to 63 are made of a flexible electrode material such as a thin metal film, conductive rubber, or conductive vinyl, and electrode supports are also used. The member 63 is also preferably made of a material with good cushioning properties, such as polyurethane foam. The transducers 31 and 32 having such a structure are attached to the drip liquid container, for example, as shown in FIG. 32, the electrodes 60 to 62 are brought into close contact with the side wall of the drip container 66 using, for example, a plate spring-shaped electrode holding fitting 65. Note that the electrode holding fitting 65 is a gripper 6 that holds the cap 67 of the container 66.
It is attached to one end of the sensor 8 so as to be movable in the vertical direction, allowing one-touch mounting of the sensor and free adjustment of the sensor mounting position. Furthermore, the D-type flip-flop 5 in FIG.
Reference numeral 5 constitutes a phase discrimination circuit 35, which sets the data at the data input terminal D at the timing of the rise of the pulse applied to the clock terminal C, outputs the set output to the Q terminal, and outputs its inverted output to the terminal. The following table is a truth table for the D-type flip-flop 55.

〔考案の効果〕[Effect of idea]

以上の説明から判るように、本考案の静電容量
形センサは、各々別々の変換器を構成要素に含み
該変換器の静電容量の値に応じた量だけ入力パル
スを遅延させて出力する複数個の可変遅延回路を
設け、これにより計測すべき物理的,化学的変化
を先ず複数個の変換器の静電容量の相対的な変化
に変換し、次にこれをパルスの位相差に変換し、
この位相差を位相弁別回路により検出して各種情
報の検出を行なうようにしたものであり、温度変
化等の不要変動分は互いに打消し合うため、計測
単位毎に検出閾値レベルを再設定する必要はな
い。また、容量変化を時間差に変換して検出する
から微小容量変化の検出が可能であり、更に構成
も簡単であるからセンサの小型化,低廉化が図れ
る利点がある。従つて、本考案を点滴液液面レベ
ル検出センサ等に適用すれば非常に有効である。
As can be seen from the above explanation, the capacitive sensor of the present invention includes separate converters as components, and outputs the delayed input pulse by an amount corresponding to the capacitance value of the converter. Multiple variable delay circuits are provided to convert the physical and chemical changes to be measured into relative changes in the capacitance of multiple transducers, which are then converted into phase differences between pulses. death,
This phase difference is detected by a phase discrimination circuit to detect various information, and unnecessary fluctuations such as temperature changes cancel each other out, so it is necessary to reset the detection threshold level for each measurement unit. There isn't. Further, since capacitance changes are detected by converting them into time differences, it is possible to detect minute capacitance changes, and since the structure is simple, there is an advantage that the sensor can be made smaller and less expensive. Therefore, if the present invention is applied to a sensor for detecting the level of an intravenous liquid, it will be very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静電容量形センサの構成説明
図、第2図はその動作説明図、第3図は本考案の
基本的な構成を表わすブロツク図、第4図は本考
案を点滴液液面検出センサに適用した実施例の電
気回路図、第5図は変換器の一実施例を表わす外
観図、第6図は変換器の取付け方法の説明図、第
7図及び第8図は第4図示回路を動作させた場合
における各部の信号波形の一例を示す線図、第9
図及び第10図は被覆電線の被覆偏心検出センサ
の構成説明図である。 40〜43……シユミツト回路、44,45…
…コンデンサ、46〜52……抵抗、53……可
変抵抗、54……遅延調整回路、55……エツジ
クロツクドD形フリツプフロツプである。
Fig. 1 is an explanatory diagram of the configuration of a conventional capacitive sensor, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is a block diagram showing the basic configuration of the present invention, and Fig. 4 is an illustration of the present invention as an infusion solution. An electrical circuit diagram of an embodiment applied to a liquid level detection sensor, FIG. 5 is an external view showing an embodiment of the converter, FIG. 6 is an explanatory diagram of how to install the converter, and FIGS. 7 and 8 are Diagram 4 showing an example of signal waveforms at each part when the illustrated circuit is operated, 9th
Figures 1 and 10 are explanatory diagrams of the structure of a sensor for detecting the eccentricity of a coated wire. 40-43... Schmitt circuit, 44, 45...
. . . Capacitors, 46 to 52 . . . Resistors, 53 . . . Variable resistors, 54 .

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1個のパルス発生回路と、該パルス発生回路の
出力を複数に分岐し、各々別々の容量変化形変換
器を構成要素に含み該容量変化形変換器の静電容
量の値に応じた量だけ前記パルス発生回路のパル
スを遅延させて出力する複数個の系列よりなる可
変遅延回路と、該複数個の系列の可変遅延回路か
ら出力されるパルスの位相差を弁別して計測情報
を出力する位相弁別回路とを具備し、前記複数系
列の可変遅延回路は、夫々前記容量変化形変換器
を積分用コンデンサとする積分回路と該積分回路
出力を2値化する2値化回路とで構成され、前記
位相弁別回路は、前記複数個の系列の可変遅延回
路からの出力パルスをデータ入力及びクロツク入
力とするエツジクロツクドD形フリツプフロツプ
と、該フリツプフロツプ出力の加わるローパスフ
イルタと、該ローパスフイルタ出力を2値化する
2値化回路とを含むことを特徴とする静電容量形
センサ。
One pulse generation circuit, and the output of the pulse generation circuit is branched into a plurality of parts, each of which includes a separate variable capacitance converter as a component, and the amount of which corresponds to the value of the capacitance of the variable capacitance converter. A variable delay circuit comprising a plurality of series that delays and outputs the pulses of the pulse generation circuit; and a phase discrimination circuit that outputs measurement information by discriminating the phase difference between the pulses output from the variable delay circuits of the plurality of series. The plural series of variable delay circuits each include an integrating circuit using the variable capacitance converter as an integrating capacitor, and a binarization circuit that binarizes the output of the integrating circuit, The phase discrimination circuit includes an edge-clocked D-type flip-flop which receives output pulses from the plurality of series of variable delay circuits as data input and clock input, a low-pass filter to which the output of the flip-flop is applied, and binarizes the output of the low-pass filter. A capacitance type sensor comprising a binarization circuit.
JP1987062014U 1987-04-23 1987-04-23 Expired JPS6336246Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987062014U JPS6336246Y2 (en) 1987-04-23 1987-04-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987062014U JPS6336246Y2 (en) 1987-04-23 1987-04-23

Publications (2)

Publication Number Publication Date
JPS62180715U JPS62180715U (en) 1987-11-17
JPS6336246Y2 true JPS6336246Y2 (en) 1988-09-27

Family

ID=30895881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987062014U Expired JPS6336246Y2 (en) 1987-04-23 1987-04-23

Country Status (1)

Country Link
JP (1) JPS6336246Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278968A (en) * 2006-04-11 2007-10-25 Yazaki Corp Liquid level detector
JP2008506119A (en) * 2004-07-09 2008-02-28 タッチセンサー テクノロジーズ,エルエルシー Proximity sensor for bilge level detection
JP2008216165A (en) * 2007-03-07 2008-09-18 Koyo Electronics Ind Co Ltd Liquid level sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064864A2 (en) * 2006-11-27 2008-06-05 Ident Technology Ag Arrangement for the detection of body parts by absorbing an electric near field
DE102009029021B4 (en) * 2009-08-31 2022-09-22 Robert Bosch Gmbh Sensor system for monitoring the surroundings of a mechanical component and a method for controlling and evaluating the sensor system
WO2018043664A1 (en) * 2016-09-05 2018-03-08 株式会社ヤマデン Sensor
JP6338800B1 (en) * 2018-03-05 2018-06-06 株式会社ヤマデン Sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383645A (en) * 1976-12-29 1978-07-24 Hokushin Electric Works Measuring apparatus for absolute position of displacement
JPS55122158A (en) * 1979-03-14 1980-09-19 Alps Electric Co Ltd Capacity type rotary detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383645A (en) * 1976-12-29 1978-07-24 Hokushin Electric Works Measuring apparatus for absolute position of displacement
JPS55122158A (en) * 1979-03-14 1980-09-19 Alps Electric Co Ltd Capacity type rotary detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506119A (en) * 2004-07-09 2008-02-28 タッチセンサー テクノロジーズ,エルエルシー Proximity sensor for bilge level detection
JP2007278968A (en) * 2006-04-11 2007-10-25 Yazaki Corp Liquid level detector
JP2008216165A (en) * 2007-03-07 2008-09-18 Koyo Electronics Ind Co Ltd Liquid level sensor

Also Published As

Publication number Publication date
JPS62180715U (en) 1987-11-17

Similar Documents

Publication Publication Date Title
US5172481A (en) Electronic inclinometer
US4470008A (en) Capacitance sensor
US4201085A (en) Apparatus for determining the liquid level in a tank
EP0136248B1 (en) Capacitive pressure transducer signal conditioning circuit
US4943889A (en) Electrostatic capacitor type sensing device
US3935739A (en) Liquid level gauging apparatus
US4628612A (en) Tilt angle detection device
US4422243A (en) Dual axis capacitive inclination sensor
JPH04230599A (en) Apparatus for detecting and transmitting measured value
US4176553A (en) Liquid level measuring system
JP2709230B2 (en) Circuit device for measuring the quotient of the capacitance values of two capacitors
JPS6336246Y2 (en)
Mochizuki et al. A high-accuracy high-speed signal processing circuit of differential-capacitance transducers
TW202107046A (en) Dual polarity mutual capacitive liquid sensing
JPH0476408B2 (en)
US5315884A (en) Capacitive proximity sensor
Milosavljević et al. Implementation of low cost liquid level sensor (LLS) using embedded system with integrated capacitive sensing module
SK280692B6 (en) Circuit for a transducer
JPS62121312A (en) Electrostatic capacity/voltage converting circuit
GB2040464A (en) Measuring Liquid Level
JP2807827B2 (en) Capacitance type distance meter
SU976300A1 (en) Discrete loose material level gauge transducer
GB1583536A (en) Electrostatic accelerometer
SU798491A1 (en) Liquid-level capacitive meter
SU1615558A1 (en) Capacitive level indicator