JPS6336203B2 - - Google Patents

Info

Publication number
JPS6336203B2
JPS6336203B2 JP55070845A JP7084580A JPS6336203B2 JP S6336203 B2 JPS6336203 B2 JP S6336203B2 JP 55070845 A JP55070845 A JP 55070845A JP 7084580 A JP7084580 A JP 7084580A JP S6336203 B2 JPS6336203 B2 JP S6336203B2
Authority
JP
Japan
Prior art keywords
circuit
reclosing
relay
transmission
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55070845A
Other languages
Japanese (ja)
Other versions
JPS5715A (en
Inventor
Shigeru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7084580A priority Critical patent/JPS5715A/en
Publication of JPS5715A publication Critical patent/JPS5715A/en
Publication of JPS6336203B2 publication Critical patent/JPS6336203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は電力系統における保護継電装置の再閉
路投入制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to reclosing control of a protective relay device in a power system.

電力系統の保護継電装置には、電力供給の安定
化と電力系統の安定度対策のため、重要系統にお
いては「再閉路」機能を有するものが一般的であ
る。
Protection relay devices for power systems generally have a "reclosing" function in important power systems in order to stabilize the power supply and take measures to stabilize the power system.

「再閉路」の概念については、極めて一般化し
ているため、ここではその内容の詳細を述べるこ
とは省略するが、3相再閉路、単相再閉路、多相
再閉路等と呼ばれる種々の方式が実用化されてい
る。
The concept of "reclosing" is extremely generalized, so we will not discuss its details here, but there are various methods called three-phase reclosing, single-phase reclosing, polyphase reclosing, etc. has been put into practical use.

再閉路させるための条件は、次のようなものが
一般に用いられる。
The following conditions are generally used for reclosing the circuit.

(1) しや断した相が再閉路するための条件に合つ
ている。例えば単相再閉路においては、1相の
みしや断されたこと、多相再閉路では2回線合
計で2相以上残つている等のしや断相の条件で
ある。
(1) The conditions for the torn phase to reclose are met. For example, in a single-phase reclosing circuit, only one phase is disconnected, and in a multi-phase reclosing circuit, two or more phases in total remain in two circuits.

(2) しや断器の気圧条件が成立していること。こ
れは投入した時、まだ事故が残つている場合、
しや断器で確実にしや断できることを保証する
ためのものである。
(2) The air pressure conditions for the breaker must be met. This means that if there is still an accident when you put it in,
This is to ensure that the sheath can be cut reliably with the shear cutter.

(3) しや断してから事故が無くなるまでの一定時
間経過したこと。
(3) A certain amount of time has elapsed from the time of failure until the accident no longer occurs.

(4) 投入する時、系統に事故が発生していないこ
と。
(4) There must be no accidents in the system when the power is turned on.

以上の(1)〜(4)の条件において(4)の条件は使用さ
れる場合と使用されない場合とがあるが、(1)〜(3)
の条件は必ず使用される。即ちしや断した相がそ
の再閉路方式で定められた条件に合つているかど
うかを検出するしや断相検出回路、しや断器の気
圧条件が成立しているかどうかを検出する回路、
系統に事故が無いことを検出する回路などから構
成される。保護継電装置からのしや断指令により
再閉回路は起動され、しや断相検出回路でしや断
相が条件に合つていることおよびしや断器気圧条
件が成立していることの条件にて遅延回路が駆動
され、一定時限後に系統事故が無いとの条件のも
とでしや断器が投入される。
In the above conditions (1) to (4), condition (4) may or may not be used, but (1) to (3)
The conditions are always used. In other words, a phase break detection circuit detects whether the phase that has been broken satisfies the conditions determined by the re-closing method, a circuit detects whether the air pressure conditions of the break breaker are satisfied,
It consists of circuits that detect that there are no accidents in the system. The re-closing circuit is activated by the shield disconnection command from the protective relay device, and the shield phase disconnection detection circuit detects that the shield phase disconnection meets the conditions and that the shield disconnection pressure condition is established. The delay circuit is activated under certain conditions, and the circuit breaker is turned on after a certain period of time under the condition that there is no system failure.

当然のことながら再閉路回路によりしや断器が
投入された時内部に事故が発生していれば、高速
度に再しや断してからなければ系統全体に与える
衝撃は極めて大きくなり、系統の安定度を害う可
能性がある。このため、前述した如く再しや断が
確実に行なわれるようしや断器の気圧条件を再閉
路条件の中に必ず入れておくわけであるが、しや
断器が正常であつても、そのしや断器にしや断指
令を与える保護継電装置が何らかの原因で不良に
なつていれば、再投入時の事故を再しや断できな
い。従来は、再閉路を起動するためには、必ず保
護継電装置が動作しているため、再閉路投入時も
保護継電装置のしや断回路は正常であるとの前提
条件のもとで、再閉路の投入条件には、保護継電
装置のしや断回路が正常かどうかは用いていな
い。
Naturally, if an accident occurs internally when the circuit breaker is closed due to the reclosing circuit, the shock to the entire system will be extremely large unless it is disconnected again at high speed. may impair the stability of For this reason, as mentioned above, the pressure conditions of the disconnector must be included in the reclosing conditions to ensure that the disconnector is re-opened, but even if the disconnector is normal, If the protective relay device that gives the disconnection command to the disconnector becomes defective for some reason, it will not be possible to disconnect the circuit again in the event of an accident when the circuit is turned on again. Conventionally, in order to start re-closing, the protective relay device must be activated, so even when the re-closing is started, the protection relay device is operated under the premise that the short circuit or disconnection of the protective relay device is normal. , whether the protective relay device is closed or the disconnection circuit is normal is not used as the closing condition for re-closing.

これは、無電圧時間の間に保護継電装置のしや
断回路が正常であるか否かを検出することがかな
り難かしいことと、たかだか数秒の間に保護継電
装置のしや断回路が突然不良になる確率が極めて
少ないであろうことより割り切つているためであ
る。
This is due to the fact that it is quite difficult to detect whether or not the protective relay circuit is normal during the no-voltage period, and the fact that it is quite difficult to detect whether the protective relay circuit is normal or not during the no-voltage period, and that This is because the probability of the product suddenly becoming defective is extremely low.

しかし、近年再閉路回路を用いるような重要な
系統では、その系統の保護のほとんどは広い意味
での搬送継電方式を用いていると言つて良い。搬
送継電方式には、電力線搬送方向比較搬送方式、
位相比較搬送方式、周波数変調(以下FMと言
う)電流差動方式、パルス数変調(以下PCMと
言う)電流差動方式等があるが、これらの特徴
は、相手端との信号の受渡しに何らかの形で伝送
路を使用することにある。
However, in recent years, in important systems that use reclosing circuits, it can be said that most of the protection of the system uses the carrier relay method in a broad sense. The conveyance relay method includes a power line conveyance direction comparison conveyance method,
There are phase comparison carrier methods, frequency modulation (hereinafter referred to as FM) current differential methods, pulse number modulation (hereinafter referred to as PCM) current differential methods, etc., but the characteristics of these methods are that some type of signal transfer with the other end is required. The purpose is to use the transmission line in a certain way.

従つてこれらの搬送継電方式においてはその伝
送系自体もある意味では保護継電装置の一部であ
り、この伝送系に不良又は異常があれば、広い意
味で保護継電装置に異常があると考えられる。伝
送系での伝送信号に対する外乱はさまざまな原因
があるが、これらは、いつ何時発生するか予想が
つかず、今正常であつても数秒後正常であるかど
うかわからない。更に気象条件、大陽の活動状況
等により時々刻々と変化する。
Therefore, in these carrier relay systems, the transmission system itself is in a sense a part of the protective relay device, and if there is a defect or abnormality in this transmission system, it means that there is an abnormality in the protective relay device in a broader sense. it is conceivable that. There are various causes of disturbances to the transmitted signal in the transmission system, but it is impossible to predict when they will occur, and even if things are normal now, we do not know whether they will be normal a few seconds later. Furthermore, it changes from moment to moment depending on weather conditions, Taiyo activity, etc.

このため、伝送系において、伝送信号が外乱を
受けて異常をきたせば、再閉路回路により再投入
して内部に系統事故が残つていても搬送継電装置
により高速度に再しや断させることができず、伝
送系の外乱が除去されるか又は後備保護装置での
しや断にたよらざるを得ない。故に、再しや断の
時間が大巾に遅れ、系統に与える衝撃が極めて大
きくなる。
Therefore, in the transmission system, if the transmission signal is disturbed due to disturbance, the reclosing circuit can be used to re-energize the signal, and even if there is an internal system fault, the transfer relay device can be used to quickly disconnect the signal again. Therefore, the disturbance in the transmission system must be removed or the back-up protection device must be used to disconnect it. Therefore, the time for re-rupture will be delayed by a considerable amount, and the impact on the system will be extremely large.

本発明は以上の点に鑑み保護継電方式として搬
送継電方式を用いている保護継電装置において、
伝送路不良又は異常時には再閉路の投入を制御す
ることを目的とするものである。
In view of the above points, the present invention provides a protective relay device that uses a carrier relay method as a protective relay method.
The purpose of this is to control re-closing in the event of a transmission line failure or abnormality.

本発明の構成を第1図に示す。図に於て1は再
閉路起動出力回路、2はしや断器の気圧条件検出
回路、3はアンド回路、4は遅延回路、5は系統
事故検出回路、6は伝送系の不良を検出する伝送
路不良検出回路、7は否定回路である。
The configuration of the present invention is shown in FIG. In the figure, 1 is a reclosing circuit start output circuit, 2 is a bridge or disconnection pressure condition detection circuit, 3 is an AND circuit, 4 is a delay circuit, 5 is a system failure detection circuit, and 6 is a transmission system failure detection circuit. The transmission line defect detection circuit 7 is a negative circuit.

即ち、再閉路で投入する時に伝送路不良検出回
路6にて不良を検出していれば否定回路7を通し
てアンド回路3aを不成立にさせ、しや断器の投
入指令3bを阻止する。
That is, if a failure is detected in the transmission line failure detection circuit 6 when the circuit is turned on by re-closing, the AND circuit 3a is made to fail through the negation circuit 7, and the closing command 3b of the breaker is blocked.

伝送路に不良が無く伝送不良検出回路6の出力
が“0”の時には投入できる。
When there is no defect in the transmission line and the output of the transmission defect detection circuit 6 is "0", it can be turned on.

伝送不良検出はFM継電器やPCM継電器のよ
うに、自分の保護継電装置の中で伝送路の不良を
検出できるものと、位相比較継電器、方向比較継
電器のように保護継電装置自身では検出できない
ものとがあるが、後者のように保護継電装置では
検出できない場合には、信号伝送装置での伝送不
良検出条件をもらえば良い。
There are two types of transmission failure detection, such as FM relays and PCM relays, which can detect transmission path failures within their own protective relay devices, and those that cannot be detected by the protective relay device itself, such as phase comparison relays and direction comparison relays. However, in the latter case, which cannot be detected by the protective relay device, it is sufficient to receive the conditions for detecting a transmission failure in the signal transmission device.

更にFM搬送継電装置のように、FM変復調を
保護継電装置の中で行なうものは、周知のように
種々の伝送信号異常検出(ノイズ検出と言う)を
行なつており、その不良が継電器にとつて許容で
きない場合には、自分自身で継電器の出力を阻止
する方式をとつている。この場合には、伝送路不
良検出回路6を特に設けることは無く、FM継電
器のノイズ検出回路を共用すれば良い。
Furthermore, as is well known, devices such as FM carrier relay devices that perform FM modulation and demodulation within protective relay devices detect various transmission signal abnormalities (referred to as noise detection), and detect defects in the relay. If this is not acceptable, the system uses a method to block the output of the relay itself. In this case, there is no particular provision of the transmission path failure detection circuit 6, and the noise detection circuit of the FM relay may be shared.

FM搬送継電器の場合、ノイズ検出してから、
ノイズが回復しても周波数/電圧変調回路などの
過渡現象を考慮し、T2秒(数ms〜数十ms)の間
FM継電器出力を阻止している。従つてこの場合
には、第1図のように伝送路不良が無いという条
件だけだとこの数ms〜数十msの間は、保護機能
が盲の状態となるため、第2図のように投入指令
を出す前の一定時間(T3秒)伝送路不良検出が
無かつたことを確認することも本発明の構成から
容易に推測される。
For FM carrier relays, after detecting noise,
Even if the noise recovers, taking into account transient phenomena such as frequency / voltage modulation circuits, the
FM relay output is blocked. Therefore, in this case, if the only condition is that there is no transmission line failure as shown in Figure 1, the protection function will be in a blind state for several milliseconds to several tens of milliseconds, so the protection function will be in a blind state as shown in Figure 2. It is also easily inferred from the configuration of the present invention that it is confirmed that no transmission path failure has been detected for a certain period of time (T 3 seconds) before issuing the input command.

第2図は本発明の変形例であり、再閉路投入前
一定時間伝送路不良が無かつたことを条件に入れ
た場合である。8は遅延回路でありその時間を
T3秒とすれば、FM継電器のノイズ検出の阻止時
間T2秒との関係はT3T2とすれば良い。
FIG. 2 shows a modification of the present invention, in which the condition is that there is no transmission line failure for a certain period of time before re-closing. 8 is a delay circuit and its time is
If T is 3 seconds, the relationship with the FM relay noise detection blocking time T 2 seconds may be T 3 T 2 .

第3図に第2図の場合の時間経過(以下タイム
チヤートと言う)を示す。
FIG. 3 shows the passage of time (hereinafter referred to as a time chart) in the case of FIG. 2.

またFM継電器のような差動原理のものについ
ては、内部事故時片端子のみに何らかの原因で正
常にしや断できない場合、正常にしや断した端子
から再閉路投入を行なうことになり、この場合も
系統に与える衝撃が極めて大きい。
In addition, with respect to differential principle relays such as FM relays, if only one terminal cannot be disconnected normally for some reason in the event of an internal fault, the circuit will be reclosed from the terminal that was normally disconnected. The impact on the system is extremely large.

尚、第3図aは出力3c、第3図bは出力4
a、第3図eは出力5a、第3図dは出力6a、
第3図eは出力7a、第3図fはFM継電器阻
止、第3図gは出力8a、第3図hは出力3bを
示す。
In addition, Fig. 3a shows output 3c, and Fig. 3b shows output 4.
a, Figure 3e is output 5a, Figure 3d is output 6a,
FIG. 3e shows output 7a, FIG. 3f shows FM relay blocking, FIG. 3g shows output 8a, and FIG. 3h shows output 3b.

第4図に内部事故時片端のみしや断した場合の
系統を示す。9,9aは母線、10,10aは変
流器11,11aはしや断器、12は送電線、1
3,13aは各端子の差動継電器である。第4図
で内部F1点で事故が発生すると差動継電器13,
13aが動作し、しや断器11,11aにしや断
指令を与えて事故を除去するが、今何らかの原因
により差動継電器13が動作できず、差動継電器
13aのみ動作したとすると、しや断器11aは
正常にしや断するが、しや断器11はしや断でき
ない。
Figure 4 shows the system when only one end is broken due to an internal accident. 9, 9a are busbars, 10, 10a are current transformers 11, 11a are wires and disconnectors, 12 is power transmission line, 1
3 and 13a are differential relays for each terminal. In Fig. 4, if an accident occurs at internal point F1 , differential relay 13,
13a operates and issues a shear disconnection command to the shear disconnectors 11 and 11a to eliminate the accident. However, if for some reason the differential relay 13 is unable to operate and only the differential relay 13a operates, then Although the disconnector 11a is normally disconnected, the disconnector 11 cannot be disconnected.

第4図のような状態では、事故F1は除去され
ず残つているため、正常にしや断した端子から再
閉路回路による再投入は行なつてはならない。こ
のような時の再閉路を防止するものも、第4図の
ような状態では両端の差動継電器13,13aが
動作継続していることを利用すれば、差動継電器
動作時は再閉路の再投入を阻止することが本発明
より容易に推測できる。
In the state shown in Fig. 4, the fault F1 remains unremoved, and therefore the normally shriveled terminal must not be re-closed using the re-closing circuit. In order to prevent re-closing in such a case, if you take advantage of the fact that the differential relays 13 and 13a at both ends continue to operate in the state shown in Figure 4, it is possible to prevent re-closing when the differential relays are operating. It can be easily inferred from the present invention that re-injection can be prevented.

この場合の構成例を第5図に示す。第5図で1
4は差動継電器、15はオア回路である。差動継
電器14は第4図のように一端子のみしや断した
時はその出力は常に“1”(動作)であるので、
オア回路15否定回路17を送電線12より再閉
路の再投入を防止することができる。
An example of the configuration in this case is shown in FIG. 1 in Figure 5
4 is a differential relay, and 15 is an OR circuit. As shown in Fig. 4, the output of the differential relay 14 is always "1" (operating) when only one terminal is disconnected.
It is possible to prevent the OR circuit 15 and the negative circuit 17 from being re-closed from the power transmission line 12.

以上のように本発明によれば、伝送路異常時お
よび差動継電器方式時の片端のみ正常にしや断し
た時の再閉路の投入を阻止でき、再閉路投入時の
再しや断遅延による系統の衝撃および事故が残つ
ていることがわかつている系統への再投入を防止
することができる。
As described above, according to the present invention, it is possible to prevent re-closing when a transmission line is abnormal or when only one end of the differential relay system is normally ruptured, and the system is It is possible to prevent the system from being re-entered into a system where it is known that a shock or accident has occurred.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す再閉路投入回
路の構成説明図、第2図は他の実施例を示す説明
図、第3図は第2図のタイムチヤート説明図、第
4図は片端のみしや断した系統説明図、第5図は
本発明の他の実施例を示す構成説明図である。 6……伝送路不良検出回路、7……否定回路、
8……遅延回路、9……母線、10……変流器、
11……しや断器、13……差動継電器、14…
…差動継電器、15……選択回路。
FIG. 1 is an explanatory diagram of the configuration of a reclosing circuit showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing another embodiment, FIG. 3 is an explanatory diagram of the time chart of FIG. 2, and FIG. 5 is a system explanatory diagram with only one end cut away, and FIG. 5 is a configuration explanatory diagram showing another embodiment of the present invention. 6...Transmission line defect detection circuit, 7...Negation circuit,
8...Delay circuit, 9...Bus bar, 10...Current transformer,
11...Shipping breaker, 13...Differential relay, 14...
...Differential relay, 15...Selection circuit.

Claims (1)

【特許請求の範囲】 1 電力系統の保護継電装置で伝送系を用いて相
手電気所と信号の受渡しを行なう搬送継電器方式
において、内部事故時に片端のみしや断した場
合、当該しや断端子の再閉路投入指令は、伝送系
の不良・異常時または電流差動継電器の動作時に
阻止することを特徴とした再閉路制御装置。 2 伝送系での不良が、投入前一定時間無かつた
ことを条件として再閉路させることを特徴とした
特許請求の範囲第1項記載の再閉路制御装置。
[Scope of Claims] 1. In a protective relay system for a power system, in which a transmission system is used to exchange signals with a partner electrical station, if only one end is broken due to an internal accident, the said broken terminal The reclosing control device is characterized in that the reclosing command is blocked when there is a defect or abnormality in the transmission system or when a current differential relay operates. 2. The reclosing control device according to claim 1, wherein the reclosing is performed on the condition that there is no failure in the transmission system for a certain period of time before the power is turned on.
JP7084580A 1980-05-29 1980-05-29 Reclosing controller Granted JPS5715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084580A JPS5715A (en) 1980-05-29 1980-05-29 Reclosing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084580A JPS5715A (en) 1980-05-29 1980-05-29 Reclosing controller

Publications (2)

Publication Number Publication Date
JPS5715A JPS5715A (en) 1982-01-05
JPS6336203B2 true JPS6336203B2 (en) 1988-07-19

Family

ID=13443300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084580A Granted JPS5715A (en) 1980-05-29 1980-05-29 Reclosing controller

Country Status (1)

Country Link
JP (1) JPS5715A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449675B2 (en) 2007-09-21 2014-03-19 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151355A (en) * 1974-05-29 1975-12-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151355A (en) * 1974-05-29 1975-12-05

Also Published As

Publication number Publication date
JPS5715A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
JPS6336203B2 (en)
JP2883472B2 (en) Circuit breaker malfunction prevention device
JP3760759B2 (en) Overcurrent relay device
JP2799065B2 (en) Reclosing method of current differential protection relay
JPH09163591A (en) Bus protector
JPH0327716A (en) Method and apparatus for reclosing of transmission system
JPH0236727A (en) High speed separation/recovery system of distribution line fault
JPH04299016A (en) Reclosing system
JP2746951B2 (en) Protective relay
JPH0636648B2 (en) Protective relay
JPS60134723A (en) Protective relaying device
JPH04299019A (en) Circuit for reclosing pcm current differential relay device
JPH0112510Y2 (en)
JPS60121914A (en) Current difference protecting relaying unit
JPS61196713A (en) Protective relay
JPS63161810A (en) Protective relay
JPS6251053B2 (en)
JPH0833186A (en) Reclosing system
JPH09200946A (en) Blind spot fault detecting system
JPS6364134B2 (en)
JPS6318412B2 (en)
JPH0775244A (en) Bus protective apparatus
JPS58198113A (en) Reclosing device for protecting relaying equipment
JPS58157320A (en) Protecting relay unit
JPS6082018A (en) Protective relaying device