JPS6336130B2 - - Google Patents

Info

Publication number
JPS6336130B2
JPS6336130B2 JP56095030A JP9503081A JPS6336130B2 JP S6336130 B2 JPS6336130 B2 JP S6336130B2 JP 56095030 A JP56095030 A JP 56095030A JP 9503081 A JP9503081 A JP 9503081A JP S6336130 B2 JPS6336130 B2 JP S6336130B2
Authority
JP
Japan
Prior art keywords
cut surface
multilayer capacitor
dielectric layer
voltage
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56095030A
Other languages
Japanese (ja)
Other versions
JPS57210616A (en
Inventor
Mikio Naruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9503081A priority Critical patent/JPS57210616A/en
Publication of JPS57210616A publication Critical patent/JPS57210616A/en
Publication of JPS6336130B2 publication Critical patent/JPS6336130B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、積層型コンデンサに関する。[Detailed description of the invention] The present invention relates to a multilayer capacitor.

積層型コンデンサは、従来の巻回型コンデンサ
に比べて高い生産性と性能の均一化が得られると
ころから、近年特に電子通信器用のコンデンサと
して広く生産されるようになつてきている。とこ
ろが、例えば、低圧進相用のコンデンサといつ
た、電位傾度の高い設計となつているコンデンサ
においては依然として巻回型コンデンサが主流で
ある。これは主として積層型コンデンサの切断面
における電気絶縁耐圧が誘電体層間の電気絶縁耐
圧に比べてかなり低く、しかも不安定であること
による。
Multilayer capacitors have become widely produced in recent years, especially as capacitors for electronic communications devices, because they offer higher productivity and uniform performance than conventional wound capacitors. However, wound type capacitors are still the mainstream among capacitors designed to have a high potential gradient, such as capacitors for low-voltage phase advancement. This is mainly due to the fact that the electrical insulation voltage at the cut surface of the multilayer capacitor is considerably lower than the electrical insulation voltage between the dielectric layers, and is unstable.

この切断面の電気絶縁耐圧が切断条件によつて
変化することは知られており、なかでも切断する
際の摩擦熱で誘電体層上の金属薄膜を島状にする
ことによつて切断面の電気絶縁耐圧を向上させる
方法が一般的である。しかし、この方法には欠点
が2つある。1つは摩擦熱によつて切断面近傍の
誘電体層が引き伸ばされるようにして切断される
結果として特に商用周波数でのtanδが上昇してし
まう。もう1つは、摩擦熱の制御は困難なので切
断条件の範囲が狭く、切断速度も遅くなるという
欠点である。
It is known that the electrical withstand voltage of the cut surface changes depending on the cutting conditions.In particular, the electrical insulation voltage of the cut surface changes depending on the cutting conditions. A common method is to improve electrical insulation breakdown voltage. However, this method has two drawbacks. One is that the dielectric layer near the cut surface is stretched and cut due to frictional heat, resulting in an increase in tan δ especially at commercial frequencies. Another drawback is that it is difficult to control frictional heat, so the range of cutting conditions is narrow and the cutting speed is slow.

本発明は、以上の欠点がなく、すなわち商用周
波数のtanδが上昇せず、切断速度が早く、しかも
切断面の電気絶縁耐圧が高い積層型コンデンサを
提供することを目的とするものである。以下、図
面を用いて本発明の詳細を述べる。
It is an object of the present invention to provide a multilayer capacitor that does not have the above-mentioned drawbacks, that is, does not increase tan δ at commercial frequencies, has a fast cutting speed, and has a high electrical insulation breakdown voltage at the cut surface. Hereinafter, details of the present invention will be described using the drawings.

第1図、第2図に本発明の一実施例による積層
型コンデンサの平面図と一部断面正面図を示す。
すなわち両面金属化誘電体層1と誘電体層2とを
交互に積み重ね、上表面に各々保護フイルム3を
設け、図面でみて左右に端面電極4を形成した積
層型コンデンサにおいて、切断面(図の正面)の
上下に緩衝材5をはさんで押え板6が設けられ、
上下の押え板6はボルト7を回すことによりその
間隔を縮め、切断面の各誘電体層を圧縮する構造
である。押え板6は切断面を圧縮することによ
り、本発明の目的を達することができるが、全面
を圧縮することもできる。また第1図、第2図で
は切断面を圧縮する手法として押え板6とボルト
7とを用いたが、本発明では従来により圧縮に用
いられる種々の手法、例えばバネ、空気圧、ゴ
ム、熱収縮材料等を用いることもできる。
FIGS. 1 and 2 show a plan view and a partially sectional front view of a multilayer capacitor according to an embodiment of the present invention.
In other words, in a multilayer capacitor in which double-sided metallized dielectric layers 1 and dielectric layers 2 are alternately stacked, a protective film 3 is provided on each upper surface, and end face electrodes 4 are formed on the left and right sides as seen in the drawing, the cross section (as shown in the figure) A press plate 6 is provided on the top and bottom of the front) with a cushioning material 5 in between.
The upper and lower presser plates 6 have a structure in which the distance between the upper and lower presser plates 6 is reduced by turning a bolt 7, thereby compressing each dielectric layer at the cut surface. The object of the present invention can be achieved by compressing the cut surface of the presser plate 6, but it is also possible to compress the entire surface. In addition, in FIGS. 1 and 2, the presser plate 6 and the bolt 7 are used as a method for compressing the cut surface, but in the present invention, various methods conventionally used for compression, such as springs, air pressure, rubber, and heat shrinkage, are used. Materials etc. can also be used.

以下に実施例を示す。 Examples are shown below.

実施例 厚さ5μmの両面金属化ポリエステルフイルム
と厚さ5μmのポリプロピレンフイルムとを重ね
合わせて直径200mmφのドラムに1000回巻回し、
両端にメタリコンにより端面電極を設けた後に、
ドラムより取り外し、メタルソーにより切断して
積層型コンデンサを製作した。なお、保護フイル
ムとして厚さ100μmのポリエステルフイルムを
上下各々7層用いている。この時に使用したメタ
ルソーは直径が100mmφで厚さが0.5mm、刃数は72
の超硬刃を用いた。また切断条件は、メタルソー
の回転数が1000rpmで、切り込み速度は3m/
minを用いた。積層型コンデンサの切断面を圧縮
しないものをAとし、第1図、第2図に示したと
同様にして、積層型コンデンサの切断面を5Kg/
cm2の圧力で圧縮したものをBとして、交流電圧を
30秒間印加した後の静電容量の変化率(Δc/c)
を比較した。なお、交流電圧は、200Vから始め
て50Vステツプで上昇させた。試料数は各5台
で、グラフには平均値を示した。この結果を第3
図に示す。第3図から明らかなように、切断面を
圧縮しない従来の積層型コンデンサ(破線A)で
は250Vの印加で静電容量の減少が1%を超えて
しまうのに対して、本発明により切断面を圧縮し
た積層型コンデンサ(実線B)では、450Vの印
加によつても静電容量の減少は1%以内であり、
切断面の電気絶縁耐圧の差は顕著である。
Example A double-sided metallized polyester film with a thickness of 5 μm and a polypropylene film with a thickness of 5 μm were overlapped and wound 1000 times around a drum with a diameter of 200 mmφ.
After providing end face electrodes with metallicon on both ends,
It was removed from the drum and cut with a metal saw to produce a multilayer capacitor. As the protective film, seven layers of polyester film each having a thickness of 100 μm were used on the upper and lower sides. The metal saw used at this time had a diameter of 100mmφ, a thickness of 0.5mm, and a number of teeth of 72.
A carbide blade was used. The cutting conditions were a metal saw rotation speed of 1000 rpm and a cutting speed of 3 m/min.
min was used. The cut surface of the multilayer capacitor that is not compressed is designated as A, and the cut surface of the multilayer capacitor is 5 kg /
Let B be the compressed material with a pressure of cm 2 , and the AC voltage is
Rate of change in capacitance after applying for 30 seconds (Δc/c)
compared. Note that the AC voltage was started at 200V and increased in 50V steps. The number of samples was 5 for each, and the average value is shown in the graph. This result is the third
As shown in the figure. As is clear from Fig. 3, in the conventional multilayer capacitor that does not compress the cut surface (dashed line A), the capacitance decreases by more than 1% when 250V is applied, but with the present invention, the capacitance decreases by more than 1% when the cut surface is compressed. In the case of a multilayer capacitor (solid line B) that is compressed, the capacitance decreases within 1% even when 450V is applied.
The difference in electrical insulation breakdown voltage between the cut surfaces is significant.

なお、切断面を圧縮する圧力については、誘電
体材質、厚さにより少し変化させるが、3〜15
Kg/cm2の圧力が良好である。これは圧力が低いと
十分に層問の密着をさせることができないし、圧
力が高すぎると誘電体層自体の電気絶縁耐圧を低
下させるからである。
Note that the pressure to compress the cut surface varies slightly depending on the dielectric material and thickness, but it is 3 to 15
Kg/cm 2 pressure is good. This is because if the pressure is low, sufficient adhesion between the layers cannot be achieved, and if the pressure is too high, the electrical insulation breakdown voltage of the dielectric layer itself will be reduced.

以上の実施例による積層型コンデンサの商用周
波数のtanδは0.10〜0.15%であり、巻回型コンデ
ンサのtanδ値とほとんど同じであるのに対して、
切断面を加熱して、誘電体層上の金属薄膜を島状
にする切断方法では、このtanδが0.25〜0.35%と
高くなる欠点がある。また、摩擦熱を安定に発生
させる必要上、鋸刃の切り込み速度は1m/min
以下が用いられることが普通である。
The commercial frequency tan δ of the multilayer capacitor according to the above embodiment is 0.10 to 0.15%, which is almost the same as the tan δ value of the wound type capacitor.
A cutting method in which the thin metal film on the dielectric layer is made into an island shape by heating the cut surface has the disadvantage that the tan δ is as high as 0.25 to 0.35%. In addition, in order to stably generate frictional heat, the cutting speed of the saw blade is 1m/min.
The following are commonly used:

なお、切断面を圧縮する効果は、切断面で隣り
合う誘電体層上の金属薄膜間の放電を、切断面近
傍の金属薄膜の飛散のみで終了させ、誘電体層内
部にまで及ぼさないことであり、この効果は第3
図によつても、電圧印加後の積層型コンデンサの
肉眼観察によつても明らかなものである。
The effect of compressing the cut surface is that the discharge between the metal thin films on the dielectric layers adjacent to each other at the cut surface is terminated only by scattering of the metal thin film near the cut surface, and does not extend to the inside of the dielectric layer. Yes, this effect is the third
This is obvious both from the diagram and from visual observation of the multilayer capacitor after voltage application.

本発明は、第1図、第2図に示したような裸素
子状態だけでなく、樹脂中、油中等で用いても同
様な効果を期待できるものである。
The present invention can be expected to produce similar effects not only when used in the bare element state as shown in FIGS. 1 and 2, but also when used in resin, oil, or the like.

以上に明らかにされたように本発明によれば、
tanδが上昇せず、切断速度、すなわち鋸刃の切り
込み速度が早く、しかも切断面の電気絶縁耐圧が
高い積層型コンデンサを提供できるものであり、
その産業性は大である。
As clarified above, according to the present invention,
It is possible to provide a multilayer capacitor that does not increase tanδ, has a fast cutting speed, that is, a cutting speed of a saw blade, and has a high electric withstand voltage at the cut surface,
Its industrial potential is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による積層型コンデ
ンサの平面図、第2図はその一部断面正面図、第
3図は本発明による積層型コンデンサに電圧を印
加した時の静電容量の変化を従来の積層型コンデ
ンサのものと比較して示す図である。 1……金属化誘電体層、2……誘電体層、3…
…保護フイルム、4……端面電極、5……緩衝
材、6……押え板、7……ボルト。
FIG. 1 is a plan view of a multilayer capacitor according to an embodiment of the present invention, FIG. 2 is a partially sectional front view thereof, and FIG. 3 is a diagram showing the capacitance when a voltage is applied to the multilayer capacitor according to the present invention. FIG. 3 is a diagram illustrating changes in comparison with those of a conventional multilayer capacitor. 1...Metalized dielectric layer, 2...Dielectric layer, 3...
...Protective film, 4... End face electrode, 5... Cushioning material, 6... Holding plate, 7... Bolt.

Claims (1)

【特許請求の範囲】[Claims] 1 金属化誘電体層を複数枚または金属化誘電体
層と誘電体層とを積み重ねてなる積層型コンデン
サにおいて、その切断面の金属化誘電体層に対し
て該金属化誘電体層相互を圧縮する方向の圧力を
加える構造としたことを特徴とする積層型コンデ
ンサ。
1 In a multilayer capacitor formed by stacking a plurality of metallized dielectric layers or a metallized dielectric layer and a dielectric layer, the metallized dielectric layers are compressed against each other with respect to the metallized dielectric layer at the cut surface. A multilayer capacitor characterized by a structure that applies pressure in the direction of
JP9503081A 1981-06-18 1981-06-18 Laminated condenser Granted JPS57210616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9503081A JPS57210616A (en) 1981-06-18 1981-06-18 Laminated condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9503081A JPS57210616A (en) 1981-06-18 1981-06-18 Laminated condenser

Publications (2)

Publication Number Publication Date
JPS57210616A JPS57210616A (en) 1982-12-24
JPS6336130B2 true JPS6336130B2 (en) 1988-07-19

Family

ID=14126688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9503081A Granted JPS57210616A (en) 1981-06-18 1981-06-18 Laminated condenser

Country Status (1)

Country Link
JP (1) JPS57210616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104038U (en) * 1990-02-09 1991-10-29
WO2020153430A1 (en) 2019-01-25 2020-07-30 ファイバーテック株式会社 Optical probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136918A (en) * 1983-01-26 1984-08-06 マルコン電子株式会社 Laminated film condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104038U (en) * 1990-02-09 1991-10-29
WO2020153430A1 (en) 2019-01-25 2020-07-30 ファイバーテック株式会社 Optical probe
KR20210119967A (en) 2019-01-25 2021-10-06 산텐 세이야꾸 가부시키가이샤 optical probe

Also Published As

Publication number Publication date
JPS57210616A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
US4345298A (en) Modified round roll capacitor and method of making
GB1216946A (en) Improvements in or relating to methods of manufacturing electrical capacitors
US3012176A (en) Electrical capacitors
JPS6336130B2 (en)
JP5333746B2 (en) Film capacitor
US3248620A (en) Electrical capacitor with co-extensive foil layers
DE3463314D1 (en) Electrical capacitor consisting of an integral pile of stacked metallized dielectric sheets, and process for making it
US2673792A (en) Method of making condenser
US3211973A (en) Dielectric-coated foil capacitors
US5012565A (en) Method for the manufacture of layered capacitors having a thickness of inactive layers
US4110878A (en) Method for manufacturing an impregnated wound foil capacitor
JPH0533524B2 (en)
KR870003124Y1 (en) Condenser
JPH038091B2 (en)
JPH0143853Y2 (en)
JPS6354205B2 (en)
JPH0227551Y2 (en)
JPS592166B2 (en) plastic film capacitor
JPS637450B2 (en)
JPS596524A (en) Oil-immersed condenser
JPH02262317A (en) Metallized film capacitor
US3651387A (en) Stacked mica capacitors
JPS5843223Y2 (en) capacitor
JPH0334520A (en) Manufacture of film capacitor
JPH0230822Y2 (en)