JPS6336116B2 - - Google Patents

Info

Publication number
JPS6336116B2
JPS6336116B2 JP167981A JP167981A JPS6336116B2 JP S6336116 B2 JPS6336116 B2 JP S6336116B2 JP 167981 A JP167981 A JP 167981A JP 167981 A JP167981 A JP 167981A JP S6336116 B2 JPS6336116 B2 JP S6336116B2
Authority
JP
Japan
Prior art keywords
voltage
transistor
capacitor
heating element
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP167981A
Other languages
Japanese (ja)
Other versions
JPS57115791A (en
Inventor
Terumi Endo
Hiroshi Manabe
Daisuke Tawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP167981A priority Critical patent/JPS57115791A/en
Publication of JPS57115791A publication Critical patent/JPS57115791A/en
Publication of JPS6336116B2 publication Critical patent/JPS6336116B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は発熱体の温度制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for a heating element.

面発熱体は、通常第1図に示すように、発熱電
極1aを絶縁フイルム1bで覆つた発熱体1に、
ナイロン等の抵抗温度特性を有するプラスチツク
フイルム2aを2枚のアルミ電極2b,2cで挾
着した感熱素子2を貼合わせ、発熱体1の温度を
感熱素子2で直接検出できるようになつている。
As shown in FIG. 1, a surface heating element usually includes a heating element 1 in which a heating electrode 1a is covered with an insulating film 1b.
A thermosensitive element 2 made by sandwiching a plastic film 2a made of nylon or the like having resistance-temperature characteristics between two aluminum electrodes 2b and 2c is attached so that the temperature of the heating element 1 can be directly detected by the thermosensitive element 2.

このような面発熱体の温度制御を行なう従来の
面発熱体の温度制御装置を第2図に示す。図にお
いて、TRは電源トランスである。C1およびC2
それぞれコンデンサからなる定インピーダンス素
子、R1およびR2はそれぞれ抵抗、TC1および
TC2はそれぞれ発熱体の温度の高低に対応してイ
ンピーダンスを変化する感熱素子、D1およびD2
はそれぞれダイオードで、これらは信号検出段3
を構成している。Ra,Rb,RcおよびRdはそれぞ
れ抵抗、Q4はトランジスタで、これらはインピ
ーダンス変換用のエミツタフオロワ段4を構成し
ている。C4はエミツタフオロワ段4の出力を平
滑するコンンデンサである。SWはスイツチング
回路、RY1は負荷への電源供給用のリレー、S1
よびS2はそれぞれ電源供給用のリレーRY1のリレ
ー接点、D3はダイオードで、これらはスイツチ
ング回路段5を構成している。R15およびR16
それぞれ抵抗、Q3はトランジスタ、RY2は保護
用のリレー、S3は保護用のリレーRY2のリレー接
点、D4はダイオードで、これらはコンデンサC4
の両端電圧を異常上昇させる故障に対して動作す
る過昇防止回路段6を構成している。7は面発熱
体のヒーターである。TFは温度ヒユーズ、Rは
発熱抵抗で、これらは遮断手段8を構成し、過昇
防止回路段6の動作により抵抗Rが発熱して温度
ヒユーズTFを溶断することにより、ヒータ7へ
の通電を遮断する。
A conventional temperature control device for a surface heating element that controls the temperature of such a surface heating element is shown in FIG. In the figure, TR is a power transformer. C 1 and C 2 are constant impedance elements each consisting of a capacitor, R 1 and R 2 are resistors, respectively, and TC 1 and
TC 2 is a thermal element whose impedance changes depending on the temperature of the heating element, D 1 and D 2
are diodes, and these are the signal detection stage 3.
It consists of R a , R b , R c and R d are each a resistor, Q 4 is a transistor, and these constitute an emitter follower stage 4 for impedance conversion. C4 is a capacitor that smoothes the output of the emitter follower stage 4. SW is a switching circuit, RY 1 is a relay for supplying power to the load, S 1 and S 2 are relay contacts of relay RY 1 for power supply, and D 3 is a diode, which constitute switching circuit stage 5. ing. R 15 and R 16 are each a resistor, Q 3 is a transistor, RY 2 is a protection relay, S 3 is a relay contact of protection relay RY 2 , D 4 is a diode, these are capacitors C 4
This constitutes an over-rise prevention circuit stage 6 that operates in response to a failure that abnormally increases the voltage across the terminal. 7 is a heater of a surface heating element. TF is a temperature fuse, R is a heating resistor, and these constitute the cut-off means 8. When the overheat prevention circuit stage 6 operates, the resistor R generates heat and blows out the temperature fuse TF, thereby stopping power supply to the heater 7. Cut off.

この面発熱体の温度制御装置は、電源トランス
TRの2次側交流印加電圧を定インピーダンス素
子C1,C2と感熱素子TC1,TC2とで各々分割して
いる。但し、この時の感熱素子TC1,TC2は温度
に対応してインピーダンスが変化するため、温度
によつて分割電圧が変化する。
The temperature control device of this surface heating element is a power transformer.
The AC applied voltage on the secondary side of the TR is divided between constant impedance elements C 1 and C 2 and heat-sensitive elements TC 1 and TC 2 , respectively. However, since the impedance of the heat-sensitive elements TC 1 and TC 2 at this time changes depending on the temperature, the divided voltage changes depending on the temperature.

この分割電圧は、ダイオードD1,D2によつて
整流され、高入力インピーダンス・低出力インピ
ーダンスを持つエミツタフオロワ段4で受けられ
る。ここで、エミツタフオロワ段4は定インピー
ダンス素子C1,C2と感熱素子TC1,TC2で構成さ
れる信号分割系に大きなインピーダンスの変動が
あつても、その影響を少なくする機能があり、ま
たスイツチング回路段5への影響をも少なくして
いる。
This divided voltage is rectified by diodes D 1 and D 2 and received by the emitter follower stage 4 having high input impedance and low output impedance. Here, the emitter follower stage 4 has a function of reducing the influence of large impedance fluctuations in the signal division system composed of constant impedance elements C 1 and C 2 and thermal elements TC 1 and TC 2 , and also The influence on the switching circuit stage 5 is also reduced.

エミツタフオロワ段4で受けた信号は、コンデ
ンサC4で平滑されてスイツチング回路SWに加え
られる。このスイツチング回路SWは、信号に応
じてヒータ7へ供給するAC100V電源をリレー
RY1のリレー接点S1,S2で制御してヒータ7の温
度を一定に保持する。
The signal received by emitter follower stage 4 is smoothed by capacitor C4 and applied to switching circuit SW. This switching circuit SW relays the AC100V power supply to the heater 7 according to the signal.
The temperature of the heater 7 is maintained constant by controlling the relay contacts S 1 and S 2 of RY 1 .

また、過昇防止回路段6は、何らかの原因(例
えばリレー接点S1,S2の溶着等)で、面発熱体の
温度が異常上昇してコンデンサC4の両端電圧が
ある一定の電圧以上になつた時に動作して発熱抵
抗Rに電源を供給し、発熱抵抗Rの温度上昇によ
つてAC100V電源の途中に介挿した温度ヒユーズ
TFを溶断してヒータ7への通電を停止し、それ
により被加熱体を保護する。
In addition, the overheat prevention circuit stage 6 detects that due to some reason (for example, welding of relay contacts S 1 and S 2 ), the temperature of the surface heating element rises abnormally and the voltage across the capacitor C 4 exceeds a certain voltage. A temperature fuse inserted in the middle of the AC100V power supply operates when the temperature rises to supply power to the heat generating resistor R, and the temperature of the heat generating resistor R rises.
The TF is fused to stop the power supply to the heater 7, thereby protecting the heated object.

しかし、このような従来の面発熱体の温度制御
装置は、入力信号が異常により正常時と比べて大
きく増加しなければ、過昇防止回路段6が動作し
ないという欠点があつた。すなわち、異常により
入力信号すなわち、コンデンサC4の両端電圧が
極端に低くなつても、過昇防止回路段6が動作せ
ずまたスイツチング回路段5による制御も行なわ
れず、ヒータ7へ連続通電されるということであ
る。
However, such a conventional temperature control device for a surface heating element has a drawback that the overheat prevention circuit stage 6 does not operate unless the input signal significantly increases due to an abnormality compared to a normal state. That is, even if the input signal, that is, the voltage across the capacitor C4 becomes extremely low due to an abnormality, the overheat prevention circuit stage 6 will not operate, nor will the switching circuit stage 5 perform control, and the heater 7 will be continuously energized. That's what it means.

そこで、発熱体の温度過昇を確実に防止して被
加熱体の保護を行なうことができる面発熱体の温
度制御装置が提案された。
Therefore, a temperature control device for a surface heating element has been proposed which can reliably prevent the temperature of the heating element from rising excessively and protect the heated object.

この面発熱体の温度制御装置は、第3図に示す
ように、コンデンサC4の両端電圧を異常降下さ
せる故障に対して動作して過昇防止回路段6を強
制作動させる保護回路段9を第2図の回路に付加
し、かつエミツタフオロワ段4に代えてエミツタ
フオロワ段4′を用いている。保護回路段9は、
抵抗Re,Rj,Rg,RhおよびトランジスタQ5で構
成している。また、エミツタフオロワ段4′はエ
ミツタフオロワ段4の抵抗Raを除去し、ダイオ
ードD1,D2のカソードとコンデンサC4の正側す
なわち、抵抗Rc側との間に抵抗Rkを接続してい
る。但し、第2図のヒータ7は2つのヒータ7
A,7Bとヒータ7A,7Bの切換手段スイツチ
S4,S′4,S5,S′5に代えている。また電源トラン
スTRの1次側に電源スイツチS6を設けている。
As shown in FIG. 3, this surface heating element temperature control device includes a protection circuit stage 9 that operates in response to a failure that causes the voltage across the capacitor C4 to drop abnormally and forcibly activates the overrise prevention circuit stage 6. In addition to the circuit of FIG. 2, an emitter follower stage 4' is used in place of the emitter follower stage 4. The protection circuit stage 9 is
It consists of resistors R e , R j , R g , Rh and transistor Q 5 . In addition, the emitter follower stage 4' removes the resistor R a of the emitter follower stage 4, and connects a resistor R k between the cathodes of diodes D 1 and D 2 and the positive side of the capacitor C 4 , that is, the resistor R c side. There is. However, the heater 7 in FIG.
A, 7B and heater 7A, 7B switching means switch
They are replaced by S 4 , S′ 4 , S 5 , and S′ 5 . A power switch S6 is also provided on the primary side of the power transformer TR.

つぎに、この面発熱体の温度制御装置について
詳しく説明する。この面発熱体の温度制御装置
は、従来例と同様に電源トランスTRの2次側交
流印加電圧を、コンデンサからなる定インピーダ
ンス素子C1,C2と感熱素子TC1,TC2とで各々分
割している。この時の感熱素子TC1,TC2は面発
熱体のヒータ7A,7Bの数に応じて増減でき、
また温度に応じてインピーダンスを変化するため
温度によつて分割電圧が変化する。
Next, the temperature control device for this surface heating element will be explained in detail. Similar to the conventional example, this surface heating element temperature control device divides the AC applied voltage on the secondary side of the power transformer TR between constant impedance elements C 1 and C 2 consisting of capacitors and heat sensitive elements TC 1 and TC 2 . are doing. At this time, the heat-sensitive elements TC 1 and TC 2 can be increased or decreased according to the number of heaters 7A and 7B of the surface heating elements.
Furthermore, since the impedance changes depending on the temperature, the divided voltage changes depending on the temperature.

分割電圧は、定インピーダンス素子C1,C2
同じ値に選んであるため、感熱素子TC1,TC2
もつインピーダンスにより決まり、両感熱素子
TC1,TC2の特性がほぼ同じ値であれば、温度に
対応する出力電圧V1,V2は同じ値となる。そし
て、この分割電圧はダイオードD1,D2によつて
整流され、高入力インピーダンス・低出力インピ
ーダンスのエミツタフオロワ段4′で受けられる。
このエミツタフオロワ段4′は感熱素子TC1
TC2のどちらか一方、例えば感熱素子TC1が室温
のままで一定となり(例えば、感熱素子TC1を温
度上昇させるヒータ7AのスイツチS4,S′4をオ
フとした場合等)、他方の感熱素子TC2の温度が
上昇しても、分割出力電圧は高入力インピーダン
スで受けられるため、両方の感熱素子TC1,TC2
が同じ温度の時に得る出力電圧とほとんど差がな
いようにし、かつ低出力インピーダンスであるた
め、次段への影響も少なくする。また、エミツタ
フオロワ段4′を構成する抵抗RkをコンデンサC4
の正側に接続することにより、高入力インピーダ
ンス・低出力インピーダンス特性を損うことな
く、感熱素子TC1,TC2が短絡または開放した場
合におけるトランジスタQ4への過電圧印加を防
止してトランジスタQ4の破壊を防止する。
Since the constant impedance elements C 1 and C 2 are selected to have the same value, the divided voltage is determined by the impedance of the heat-sensitive elements TC 1 and TC 2 .
If the characteristics of TC 1 and TC 2 have approximately the same value, the output voltages V 1 and V 2 corresponding to temperature will have the same value. This divided voltage is then rectified by diodes D 1 and D 2 and received by the emitter follower stage 4' having high input impedance and low output impedance.
This emitter follower stage 4' has a heat sensitive element TC 1 ,
One of the thermosensitive elements TC 2 , for example the thermosensitive element TC 1 , remains at a constant room temperature (for example, when switches S 4 and S' 4 of the heater 7A that raise the temperature of the thermosensitive element TC 1 are turned off), and the other Even if the temperature of heat-sensitive element TC 2 increases, the divided output voltage can be received with high input impedance, so both heat-sensitive elements TC 1 and TC 2
Since the output voltage is almost the same as that obtained when the output voltage is at the same temperature, and the output impedance is low, the influence on the next stage is also reduced. In addition, the resistor R k constituting the emitter follower stage 4' is replaced by the capacitor C 4
By connecting to the positive side of transistor Q, it is possible to prevent overvoltage from being applied to transistor Q4 in the event that heat sensitive elements TC1 and TC2 are short-circuited or open, without impairing the high input impedance/low output impedance characteristics. Prevent the destruction of 4 .

エミツタフオロワ段4′で受けた信号は、コン
デンサC4で平滑される。このコンデンサC4の両
端電圧は保護回路段9のトランジスタQ5のベー
ス側へ抵抗Reを介して加えられ、かつ過昇防止
回路段6およびスイツチング回路SWへも、従来
と同様に加えられる。
The signal received by emitter follower stage 4' is smoothed by capacitor C4 . The voltage across the capacitor C4 is applied to the base side of the transistor Q5 of the protection circuit stage 9 via the resistor Re , and is also applied to the overheat prevention circuit stage 6 and the switching circuit SW in the same manner as in the conventional case.

正常時は、コンデンサC4の両端電圧に応じて、
スイツチング回路SWがヒータ7A,7Bへ供給
するAC100V電源をリレーRY1のリレー接点S1
S2で制御して面発熱体の温度を一定に保持する。
Under normal conditions, depending on the voltage across capacitor C4 ,
Switching circuit SW supplies AC100V power to heaters 7A and 7B to relay contact S 1 of relay RY 1 ,
Control with S 2 to keep the temperature of the surface heating element constant.

つぎに、コンデンサC4の出力電圧が上昇する
異常状態(例えば、リレー接点S1,S2の溶着)が
生じた時は、その電圧がある一定の電圧以上にな
れば過昇防止回路段6が動作してリレー接点S3
閉成し、発熱抵抗RにAC100V電源を供給して発
熱抵抗Rを温度上昇させ、その温度により
AC100V電源に直列接続された温度ヒユーズTF
を溶断してヒータ7A,7Bへの電源供給を停止
する。
Next, when an abnormal condition occurs in which the output voltage of capacitor C 4 increases (for example, welding of relay contacts S 1 and S 2 ), if the voltage exceeds a certain voltage, overrise prevention circuit stage 6 operates to close relay contact S3 , supply AC100V power to the heating resistor R, raise the temperature of the heating resistor R, and depending on the temperature
Temperature fuse TF connected in series to AC100V power supply
is fused to stop power supply to heaters 7A and 7B.

つぎに、コンデンサC4の両端電圧が降下する
異常状態(例えば、コンデンサC4の短絡)が生
じた時は、その電圧がある一定の電圧以下になれ
ば、保護回路段9のトランジスタQ5がオン状態
からオフ状態へ移行し、過昇防止回路段6のトラ
ンジスタQ3のベースに電圧VDDを抵抗Rg,Rh
R16で分割した電圧が印加され(この電圧は、ト
ランジスタQ3を充分オンできるように抵抗値を
決めている)、その結果、過昇防止回路段6が強
制的に動作し、直ちにリレーRY2を駆動して温度
ヒユーズTFを溶断し、ヒータ7A,7Bへの電
源供給を停止する。この場合、面発熱体の温度制
御装置の異常故障はコンデンサC4の両端電圧の
上昇または降下に限られるため保護回路段9を付
加することにより、すべて異常故障モードをカバ
ーすることが可能である。
Next, when an abnormal condition occurs in which the voltage across the capacitor C4 drops (for example, a short circuit of the capacitor C4 ), if the voltage falls below a certain voltage, the transistor Q5 of the protection circuit stage 9 is activated. Transitioning from the on state to the off state, the voltage V DD is applied to the base of the transistor Q 3 of the overheat prevention circuit stage 6 through the resistors R g , Rh ,
A voltage divided by R16 is applied (the resistance value of this voltage is determined so as to turn on transistor Q3 sufficiently), and as a result, overheat prevention circuit stage 6 is forced to operate, and relay RY is immediately turned on. 2 to blow out the temperature fuse TF and stop the power supply to the heaters 7A and 7B. In this case, the abnormal failure of the temperature control device of the surface heating element is limited to the rise or fall of the voltage across the capacitor C4 , so by adding the protection circuit stage 9, it is possible to cover all abnormal failure modes. .

このように、この提案例は、保護回路段9を付
加したため、異常故障によつて生じるコンデンサ
C4の両端電圧の上昇または降下という現象に対
して、充分安全に面発熱体のヒータ7A,7Bへ
の連続通電を停止でき、したがつて面発熱体の温
度過昇を確実に防止して被加熱体の保護を行なう
ことができる。また、エミツタフオロワ段4′を
構成する抵抗Rkを従来の抵抗Raのようなコンデ
ンサC4の負側でなくコンデンサC4の正側に接続
したため、エミツタフオロワ段4′の高入力イン
ピーダンス・低出力インピーダンス特性を損うこ
となく、感熱素子TC1,TC2が短絡または開放し
た場合におけるトランジスタQ4への過電圧印加
を防止してトランジスタQ4の破壊を防止できる。
In this way, in this proposed example, since the protection circuit stage 9 is added, the capacitor caused by abnormal failure
Continuous energization to heaters 7A and 7B of the surface heating element can be stopped in a sufficiently safe manner against the phenomenon of increase or drop in the voltage across C4 , and therefore, an excessive rise in temperature of the surface heating element can be reliably prevented. The object to be heated can be protected. In addition, because the resistor R k that makes up the emitter follower stage 4' is connected to the positive side of the capacitor C4 instead of the negative side of the capacitor C4 like the conventional resistor R a , the emitter follower stage 4' has a high input impedance and low output. Without impairing impedance characteristics, it is possible to prevent overvoltage from being applied to transistor Q 4 in the event that heat sensitive elements TC 1 and TC 2 are short-circuited or open, thereby preventing destruction of transistor Q 4 .

このような提案例は、コンデンサC4の両端電
圧の異常降下でトランジスタQ5が遮断してトラ
ンジスタQ5の両端電圧が上昇してトランジスタ
Q3を導通させるだけでなく、電源電圧VDDの極端
な降下時にトランジスタQ5が導通状態から能動
状態へ移行することによつてもトランジスタQ5
の両端電圧が上昇してトランジスタQ3を導通さ
せて温度ヒユーズTFを溶断させることになる。
An example of such a proposal is that due to an abnormal drop in the voltage across capacitor C 4 , transistor Q 5 is shut off, and the voltage across transistor Q 5 increases, causing the transistor to shut off.
Transistor Q 5 not only conducts through Q 3 but also by causing transistor Q 5 to transition from the conducting state to the active state during extreme drops in the supply voltage V DD
The voltage across the transistor Q3 increases, causing the transistor Q3 to conduct and blowing the temperature fuse TF.

ところが、電源電圧VDDの降下は、危険ではな
く、この場合、無駄に温度ヒユーズTFを溶断さ
せることになる(誤動作)。
However, a drop in the power supply voltage V DD is not dangerous, and in this case, it will unnecessarily blow out the temperature fuse TF (malfunction).

したがつて、この発明の目的は、電源電圧の降
下時の遮断手段の誤動作を防止することができ、
しかも発熱体の温度過昇を確実に防止することが
できる発熱体の温度制御装置を提供することであ
る。
Therefore, an object of the present invention is to prevent malfunction of the cut-off means when the power supply voltage drops;
Moreover, it is an object of the present invention to provide a temperature control device for a heating element that can reliably prevent an excessive rise in temperature of the heating element.

この発明の一実施例を第4図に示す。すなわ
ち、この面発熱体の温度制御装置は、保護回路段
9のトランジスタQ5のコレクタ・エミツタ間に
抵抗Riを並列接続したもので、その他の構成は第
3図のものと同様である。
An embodiment of this invention is shown in FIG. That is, this temperature control device for a surface heating element has a resistor R i connected in parallel between the collector and emitter of the transistor Q 5 of the protection circuit stage 9, and the other configuration is the same as that shown in FIG.

この面発熱体の温度制御装置は、正常時は提案
例と同様にコンデンサC4の両端電圧に応じて、
スイツチング回路SWがヒータ7A,7Bへ供給
するAC100V電源をリレーRY1のリレー接点S1
S2で制御して面発熱体の温度を一定に保持し、こ
の場合トランジスタQ5が完全な導通状態であつ
て抵抗RiがトランジスタQ5により短絡されてお
り、抵抗Riは無いのに等しい。また、異常でない
電源電圧VDDの極端な降下に対しては、トランジ
スタQ5は正常時の完全導通状態から能動状態に
移行し、トランジスタQ5のコレクタ電圧VQ5
0Vから上昇する。これに伴ない、抵抗Riが抵抗
Rgと直列に接続され、コレクタ電圧VQ5の上昇を
制限するように働き、ある電源電圧VDDの所定の
降下まではコレクタ電圧VQ5の値を抑え、トラン
ジスタQ3を導通させない。なお、抵抗Riは上記
動作をするように抵抗値が設定される。
During normal operation, this surface heating element temperature control device responds to the voltage across the capacitor C4 as in the proposed example.
Switching circuit SW supplies AC100V power to heaters 7A and 7B to relay contact S 1 of relay RY 1 ,
The temperature of the surface heating element is kept constant by controlling S 2 , and in this case, transistor Q 5 is completely conductive and resistor R i is short-circuited by transistor Q 5 , even though there is no resistor R i . equal. In addition, for an extreme drop in the power supply voltage V DD that is not abnormal, transistor Q 5 shifts from the normal fully conductive state to the active state, and the collector voltage V Q5 of transistor Q 5 changes to
Increases from 0V. Along with this, the resistance R i becomes the resistance
It is connected in series with R g and works to limit the rise in collector voltage V Q5 , suppressing the value of collector voltage V Q5 and not making transistor Q 3 conductive until a certain drop in power supply voltage V DD is reached. Note that the resistance value of the resistor R i is set so as to perform the above operation.

その他の動作は提案例と同様である。 Other operations are similar to the proposed example.

この実施例の面発熱体の温度制御装置は、提案
例の効果に加え、温度ヒユーズTFを溶断する必
要のない電源電圧VDDの極端な降下に対する保護
回路段9の誤動作を防止できるという効果を有す
る。
In addition to the effects of the proposed example, the surface heating element temperature control device of this embodiment has the effect of preventing malfunction of the protection circuit stage 9 in response to an extreme drop in the power supply voltage V DD , which does not require blowing out the temperature fuse TF. have

以上のように、この発明の発熱体の温度制御装
置は、発熱体の温度の高低に対応してインピーダ
ンスを変化する感熱素子TC1,TC2と定インピー
ダンス素子C1,C2とで交流電圧を分割するとと
もに得られた分割電圧を整流する信号検出段3
と、この信号検出段3の出力電圧を平滑するコン
デンサC4と、このコンデンサC4の両端電圧の高
低に応じて前記発熱体への通電を断続することに
より前記発熱体の温度を一定に制御するスイツチ
ング回路段5と、前記発熱体への通電路中に前記
スイツチング回路段5と直列に介挿した遮断手段
8と、前記コンデンサC4の両端電圧を分圧した
電圧がベース・エミツタ間に印加され前記コンデ
ンサC4の両端電圧の異常上昇に応答して導通す
ることにより前記遮断手段8を作動させる第1の
トランジスタQ3とこの第1のトランジスタQ3
ベース・エミツタ間にコレクタ・エミツタ間が第
1の抵抗Rhを介して並列に接続されて前記コン
デンサC4の両端電圧を分圧した電圧がベース・
エミツタ間に印加され前記コンデンサC4の両端
電圧の異常降下に応答して遮断する第2のトラン
ジスタQ5と前記第2のトランジスタQ5のコレク
タ・エミツタ間に電源電圧VDDを分圧した電圧を
加える第2の抵抗Rgと、前記第2のトランジス
タQ5に並列接続されて前記電源電圧VDDの降下に
よる前記第2のトランジスタQ5の導通状態から
能動状態への移行に伴う前記第2のトランジスタ
Q5の両端電圧の上昇を制限する第3の抵抗Ri
を備えているので、つぎのような作用効果を奏す
る。すなわち、コンデンサC4の両端電圧の異常
上昇および異常降下に応じて遮断手段8が作動す
ることになり、発熱体の温度過昇を確実に防止し
て被加熱体の保護を行うことができる。しかも、
第2のトランジスタQ5に第3の抵抗Riを並列接
続して電源電圧VDDの降下による第2のトランジ
スタQ5の導通状態から能動状態への移行に伴う
第2のトランジスタQ5の両端電圧の上昇を制限
するようにしているので、電源電圧VDDが降下し
ても第1のトランジスタQ3のベース・エミツタ
間電圧が導通電圧に達しないようにすることがで
き、この結果、電源電圧VDDが降下したときの遮
断手段8の誤作動を防止することができる。
As described above, the temperature control device for a heating element according to the present invention uses the heat-sensitive elements TC 1 and TC 2 whose impedances change depending on the temperature of the heating element and the constant impedance elements C 1 and C 2 to control the AC voltage. A signal detection stage 3 that divides the voltage and rectifies the divided voltage obtained.
A capacitor C4 smoothes the output voltage of the signal detection stage 3, and the temperature of the heat generating element is controlled to be constant by intermittent energization to the heat generating element depending on the level of the voltage across the capacitor C4 . a switching circuit stage 5 to conduct the switching circuit, a cutoff means 8 inserted in series with the switching circuit stage 5 in the current conduction path to the heating element, and a voltage obtained by dividing the voltage across the capacitor C4 between the base and emitter. A collector-emitter is connected between the base and emitter of the first transistor Q3 and the first transistor Q3 , which activates the cutoff means 8 by becoming conductive in response to an abnormal increase in the applied voltage across the capacitor C4 . are connected in parallel through the first resistor Rh , and the voltage obtained by dividing the voltage across the capacitor C4 is the base voltage.
A voltage obtained by dividing the power supply voltage VDD is applied between the collector and emitter of the second transistor Q5 and the second transistor Q5 , which is applied between the emitter and shuts off in response to an abnormal drop in the voltage across the capacitor C4 . A second resistor R g is connected in parallel to the second transistor Q 5 and is connected in parallel to the second transistor Q 5 to cause the second transistor Q 5 to change from a conductive state to an active state due to a drop in the power supply voltage V DD . 2 transistors
Since it is provided with the third resistor R i that limits the rise in the voltage across Q5 , the following effects are achieved. That is, the cutoff means 8 is activated in response to an abnormal rise or fall in the voltage across the capacitor C4 , and it is possible to reliably prevent an excessive rise in temperature of the heating element and protect the heated object. Moreover,
A third resistor R i is connected in parallel to the second transistor Q 5 and both ends of the second transistor Q 5 are connected as the second transistor Q 5 transitions from a conductive state to an active state due to a drop in the power supply voltage V DD. Since the voltage rise is limited, even if the power supply voltage V DD drops, the voltage between the base and emitter of the first transistor Q 3 can be prevented from reaching the conduction voltage. Malfunction of the cutoff means 8 when the voltage V DD drops can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は面発熱体の断面図、第2図は従来の面
発熱体の温度制御装置の回路図、第3図は提案例
の回路図、第4図はこの発明の一実施例の回路図
である。 3…信号検出段、5…スイツチング回路段、7
A,7B…ヒータ、8…遮断手段、C1,C2…定
インピーダンス素子、C4…コンデンサ、TC1
TC2…感熱素子、Q3,Q5…トランジスタ、Rg
抵抗、Rh…抵抗、Ri…抵抗。
Fig. 1 is a sectional view of a surface heating element, Fig. 2 is a circuit diagram of a conventional temperature control device for a surface heating element, Fig. 3 is a circuit diagram of a proposed example, and Fig. 4 is a circuit diagram of an embodiment of the present invention. It is a diagram. 3...Signal detection stage, 5...Switching circuit stage, 7
A, 7B...Heater, 8...Shutoff means, C1 , C2 ...Constant impedance element, C4 ...Capacitor, TC1 ,
TC 2 ...thermal element, Q 3 , Q 5 ...transistor, R g ...
Resistance, R h ...resistance, R i ...resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 発熱体の温度の高低に対応してインピーダン
スを変化する感熱素子TC1,TC2と定インピーダ
ンス素子C1,C2とで交流電圧を分割するととも
に得られた分割電圧を整流する信号検出段3と、
この信号検出段3の出力電圧を平滑するコンデン
サC4と、このコンデンサC4の両端電圧の高底に
応じて前記発熱体への通電を断続することにより
前記発熱体の温度を一定に制御するスイツチング
回路段5と、前記発熱体への通電路中に前記スイ
ツチング回路段5と直列に介挿した遮断手段8
と、前記コンデンサC4の両端電圧を分圧した電
圧がベース・エミツタ間に印加され前記コンデン
サC4の両端電圧の異常上昇に応答して導通する
ことにより前記遮断手段8を作動させる第1のト
ランジスタQ3と、この第1のトランジスタQ3
ベース・エミツタ間にコレクタ・エミツタ間が第
1の抵抗Rhを介して並列に接続されて前記コン
デンサC4の両端電圧を分圧した電圧がベース・
エミツタ間に印加され前記コンデンサC4の両端
電圧の異常降下に応答して遮断する第2のトラン
ジスタQ5と前記第2のトランジスタQ5のコレク
タ・エミツタ間に電源電圧VDDを分圧した電圧を
加える第2の抵抗Rgと、前記第2のトランジス
タQ5に並列接続されて前記電源電圧VDDの降下に
よる前記第2のトランジスタQ5の導通状態から
能動状態への移行に伴う前記第2のトランジスタ
Q5の両端電圧の上昇を制限する第3の抵抗Ri
を備えた発熱体の温度制御装置。
1. A signal detection stage that divides the AC voltage between heat-sensitive elements TC 1 and TC 2 and constant impedance elements C 1 and C 2 that change impedance according to the temperature of the heating element and rectifies the obtained divided voltage. 3 and
A capacitor C 4 smooths the output voltage of the signal detection stage 3, and the temperature of the heating element is controlled to be constant by intermittent energization to the heating element depending on the high bottom of the voltage across the capacitor C 4 . a switching circuit stage 5; and a cutoff means 8 inserted in series with the switching circuit stage 5 in the energizing path to the heating element.
and a voltage obtained by dividing the voltage across the capacitor C4 is applied between the base and the emitter, and conduction occurs in response to an abnormal increase in the voltage across the capacitor C4 , thereby operating the cutoff means 8. The collector and emitter of the transistor Q 3 and the base and emitter of the first transistor Q 3 are connected in parallel through a first resistor R h , and a voltage obtained by dividing the voltage across the capacitor C 4 is generated. base·
A voltage obtained by dividing the power supply voltage VDD is applied between the collector and emitter of the second transistor Q5 and the second transistor Q5 , which is applied between the emitter and shuts off in response to an abnormal drop in the voltage across the capacitor C4 . A second resistor R g is connected in parallel to the second transistor Q 5 and is connected in parallel to the second transistor Q 5 to cause the second transistor Q 5 to change from a conductive state to an active state due to a drop in the power supply voltage V DD . 2 transistors
A temperature control device for a heating element, comprising a third resistor R i that limits the rise in voltage across Q5 .
JP167981A 1981-01-08 1981-01-08 Temperature control device for heater Granted JPS57115791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP167981A JPS57115791A (en) 1981-01-08 1981-01-08 Temperature control device for heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP167981A JPS57115791A (en) 1981-01-08 1981-01-08 Temperature control device for heater

Publications (2)

Publication Number Publication Date
JPS57115791A JPS57115791A (en) 1982-07-19
JPS6336116B2 true JPS6336116B2 (en) 1988-07-19

Family

ID=11508192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP167981A Granted JPS57115791A (en) 1981-01-08 1981-01-08 Temperature control device for heater

Country Status (1)

Country Link
JP (1) JPS57115791A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218625B2 (en) 2004-10-22 2009-02-04 株式会社デンソー LCD protective device

Also Published As

Publication number Publication date
JPS57115791A (en) 1982-07-19

Similar Documents

Publication Publication Date Title
JP2015010796A (en) Planar warmer
CA1077153A (en) Heater shutdown circuit
JPS6336116B2 (en)
JPH0832361A (en) Amplifier circuit provided with protection device
JPH10157446A (en) Protecting device for hot water device for electric vehicle
JPS6333516Y2 (en)
JP3545134B2 (en) Electric heating equipment security device
US4740723A (en) Semiconductor switch
JPS6333349Y2 (en)
US3549865A (en) Electric blanket average temperature and hot spot control
JP2766106B2 (en) Safety devices such as electric carpets
JPS643313B2 (en)
JPH0649113Y2 (en) Vehicle power supply
JP2015010795A (en) Planar warmer
JPH017986Y2 (en)
JPH0616540B2 (en) Thermal cutoff circuit of semiconductor integrated circuit
JPS6035184Y2 (en) Temperature control circuit for heat generating equipment
JP2659760B2 (en) Heater device
JPH042503Y2 (en)
JP2727561B2 (en) Temperature control device protection device
JPH09135156A (en) Electric load driving device
JPS592570Y2 (en) Seigiyosouchi
JPH0345877B2 (en)
JPH0328257Y2 (en)
JP3058734B2 (en) Heating device abnormal temperature control device