JPS6336003A - Turbine controller - Google Patents

Turbine controller

Info

Publication number
JPS6336003A
JPS6336003A JP61180503A JP18050386A JPS6336003A JP S6336003 A JPS6336003 A JP S6336003A JP 61180503 A JP61180503 A JP 61180503A JP 18050386 A JP18050386 A JP 18050386A JP S6336003 A JPS6336003 A JP S6336003A
Authority
JP
Japan
Prior art keywords
signal
turbine
load
steam
priority circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61180503A
Other languages
Japanese (ja)
Inventor
Minoru Wake
和気 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61180503A priority Critical patent/JPS6336003A/en
Publication of JPS6336003A publication Critical patent/JPS6336003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent a steam regulating valve from being throttled into at most steam flow flowing into a turbine and main steam pressure from excessive increase by controlling a load controlling signal with a high value priority circuit to prevent the turbine output from increase due to the load on a generator. CONSTITUTION:The rotational frequency signal 1 of a steam turbine is compared with the rotational frequency set value 2 by a substractor 3, and after the deviation signal is multiplied by a predetermined gain A through a speed set rate setter 4, a signal is added 5 from a load setter 6 to provide a load controlling signal applied to a high value priority circuit 23, where a generator output signal 20 is multiplied by gain C (<gain A) from a safety factor setter 21 to be compared with said load controlling signal and the signal having higher value is output to a low value priority circuit 7 as the load controlling signal. And in this low value priority circuit 7 said output is compared with main steam pressure deviation signal generated from a substractor 13 through a pressure regulation rate setter 14 to give a lower valve signal to a steam regulating valve as an opening commanding signal.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は蒸気タービンの回転数を蒸気加減弁で制御する
発電プラントにおいて、負荷喪失時などにおける蒸気加
減弁の閉動作による主蒸気圧力の過度の上昇を防止でき
るようにしたタービン制御装置に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention is directed to a power generation plant in which the rotational speed of a steam turbine is controlled by a steam control valve. The present invention relates to a turbine control device that can prevent excessive increases in main steam pressure.

(従来の技術〉 火力または原子力発電プラント・において、発電機の出
力は蒸気タービンへの流入蒸気量を蒸気加減弁で調節す
ることにより制御される。
(Prior Art) In a thermal or nuclear power plant, the output of a generator is controlled by adjusting the amount of steam flowing into a steam turbine using a steam control valve.

第3図は従来から多用されている面圧制御方式の制御ブ
ロック図を例示するもので、蒸気タービンの回転数信号
1と回転数設定値2は減算器3にd3いて比較演算され
、得られたタービン回転数偏差信号は速度調定率設定器
4により所定のゲインAを乗口された後、加算器5にお
いてぬM設定器6からの信号を加算され、負荷制御信号
として低値優先回路7に入力される。
FIG. 3 illustrates a control block diagram of the surface pressure control method that has been widely used in the past. The rotation speed signal 1 and the rotation speed setting value 2 of the steam turbine are sent to a subtracter 3 d3, and are compared and calculated. The turbine rotational speed deviation signal is multiplied by a predetermined gain A by the speed regulation rate setting device 4, and then added with the signal from the M setting device 6 in the adder 5, and then sent to the low value priority circuit 7 as a load control signal. is input.

一方、主蒸気圧力信@11と主蒸気圧力設定値12は減
算器」3において減算され、得られた偏差信号は圧力調
定率設定器14ににり所定のゲインBを乗口された後、
低値優先回路7に入力され、前記負荷制御信号と比較さ
れていずれか低い方の信号が開度指令信号として蒸気加
減弁に与えられる。
On the other hand, the main steam pressure signal @11 and the main steam pressure set value 12 are subtracted by a subtractor 3, and the obtained deviation signal is sent to a pressure adjustment rate setting device 14 and multiplied by a predetermined gain B.
The signal is input to a low value priority circuit 7 and compared with the load control signal, and the lower signal is given to the steam control valve as an opening command signal.

上述のように構成したタービン制御装置において、発電
機負荷が何等かの原因により喪失した時には、タービン
負荷が発電機負荷よりも大ぎくなるため、蒸気タービン
と発電機は加速され、回転数が上昇する。これにより回
転数偏差信号は負側に増大し、負荷制御信号は減少して
蒸気加減弁は絞り込まれ、タービン出力を低下させる。
In the turbine control device configured as described above, when the generator load is lost for some reason, the turbine load becomes larger than the generator load, so the steam turbine and generator are accelerated and the rotation speed increases. do. As a result, the rotational speed deviation signal increases to the negative side, the load control signal decreases, the steam control valve is throttled, and the turbine output is reduced.

このようにしてタービン出力が発電機負荷とバランスす
るよう新たな蒸気加減弁開度が決定される。
In this way, a new steam control valve opening degree is determined so that the turbine output is balanced with the generator load.

このように、発電機の負荷喪失時等にはタービン制御装
置の作用によりタービンへの流入蒸気量が調節され、最
終的には発電機負荷とバランスのとれた整定状態で安定
するが、その過程においてはA−バーシュートなどによ
り主蒸気圧力が上昇し、主蒸気逃し弁や安全弁が作動す
ることがある。
In this way, when the generator load is lost, the amount of steam flowing into the turbine is adjusted by the action of the turbine control device, and eventually it stabilizes in a stable state that is balanced with the generator load, but the process In some cases, the main steam pressure increases due to an A-bar chute, etc., and the main steam relief valve or safety valve may operate.

第4図は発電プラントの定格運転時(100%)に発電
機負荷がスデップ状に半減した場合における主蒸気圧力
、タービン回転数および蒸気加減弁開度の変化の様子を
示すもので、蒸気加減弁は蒸気タービンへの流入蒸気量
が半減したところでバランスすぺぎところ、閉速度か相
ズ・1的に遅いため、一旦仝閉した後で開き始め、再び
オーバーシュートシて全開した後、開方向の動作を繰返
すことになる。
Figure 4 shows the changes in main steam pressure, turbine rotational speed, and steam control valve opening when the generator load is reduced by half in a stepwise manner during rated operation (100%) of the power plant. The valve reaches balance when the amount of steam flowing into the steam turbine is halved, but since the closing speed is slow by one phase, the valve starts to open after it closes, and after overshooting and fully opening again, it opens again. The movement in the direction will be repeated.

その間、タービン回転数や主蒸気圧力も大きく変動し、
主蒸気逃し弁や安全弁が作動して余剰の蒸気を大気中へ
放出することになる。
During that time, the turbine speed and main steam pressure fluctuate greatly.
The main steam relief valve and safety valve operate to release excess steam into the atmosphere.

タービンバイパス弁の容量を蒸気タービンとほぼ等しい
容量とすれば、上述のごとき不都合を避けることができ
るか、これは設備費を著しく増大させることになるため
現実には不可能である。
It would be possible to avoid the above-mentioned disadvantages by making the capacity of the turbine bypass valve approximately equal to that of the steam turbine, but this is actually impossible as it would significantly increase equipment costs.

(発明が解決しようとする問題点) 上述の如〈従来のタービン制御装置に45いては発電プ
ラン1−の負荷急変時に蒸気加減弁の絞り込みがオーバ
ーシュートとなり、主蒸気圧力が上昇して主蒸気逃し弁
や安全弁か作動し、エネルキーを無駄に消費する上、負
荷に対応した安定状態に整定するまでに時間がかかると
いう問題点があった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional turbine control device, when the load of power generation plan 1- suddenly changes, the throttle valve of the steam control valve overshoots, the main steam pressure increases, and the main steam pressure increases. There were problems in that the relief valve or safety valve would operate, wasting energy, and it would take time to reach a stable state that corresponds to the load.

[弁明の構成] (問題点を解決するための手段〉 本発明は背景技術にお(ブる上述のごとき欠点を除去す
べくなされたもので、発電プラントのタービンiIf贈
11装置において、発電機出力に応じた信号と、負荷設
定器からの信号に回転数偏差信号を加えた信号とを高値
優先回路に入力し、この高値優先回路からの出力を負荷
制御信号として、主蒸気圧力偏差信号と共に低値優先回
路に尊き、この低値優先回路から出力される開度指令信
号で蒸気加減弁の開度を1制御するよう構成したことを
特徴とする。
[Structure of Defense] (Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks in the background art. A signal corresponding to the output and a signal obtained by adding the rotation speed deviation signal to the signal from the load setting device are input to the high value priority circuit, and the output from this high value priority circuit is used as a load control signal and is output along with the main steam pressure deviation signal. The present invention is characterized by being configured such that the opening degree of the steam control valve is controlled by 1 with the opening command signal outputted from the low value priority circuit.

(作 用) 上述のように構成した本発明のタービン制御装置におい
Cは、発電機負荷によりタービン出力か増大しないよう
高値優先回路によって負荷制御fij号が制tal+さ
れるので、蒸気加減弁が発電機負荷に相当するタービン
流入蒸気流量以下に絞り込まれることがなく、従って、
主蒸気圧力の過度の上昇は防止される。
(Function) In the turbine control device of the present invention configured as described above, the load control fij is controlled by the high value priority circuit so that the turbine output does not increase due to the generator load. The turbine inflow steam flow rate is not reduced below the amount corresponding to the machine load, and therefore,
Excessive rise in main steam pressure is prevented.

(実施例) 以F、図面を参照して本発明の実施1シリを説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

なお、第1図中、第3図にお()ると同一部分には同一
の73号を付し、相違点のみを説明する。
In addition, in FIG. 1, the same parts as in FIG. 3 are given the same number 73, and only the differences will be explained.

第1図に(υいて、発電機出力信号20は、速度調定率
設定器4のゲイン1よりも若干低いゲインの安全系数設
定器21を通して所定のゲインCを東緯された後、高値
優先回路22に(13いて加算器5からの信号と比較さ
れ、いずれか高値が負荷制御信号として高値優先回路2
2から低値優先回路7に向りて出力される。
In Fig. 1 (υ), the generator output signal 20 is given a predetermined gain C through the safety factor setter 21 with a gain slightly lower than the gain 1 of the speed regulation rate setter 4, and then is passed through the high value priority circuit. 22 (13) is compared with the signal from the adder 5, and the higher value is sent to the higher value priority circuit 2 as a load control signal.
2 to the low value priority circuit 7.

上述のように構成した本発明装置においては、発電機出
力が大きな場合には、蒸気加減弁tよ発電機負荷に相当
する蒸気流量より若干少ない程度までしか絞り込まれな
いため、第2図に示すようにタービン負荷か急激に半減
した場合においても蒸気加減か開度は直ちに50%開度
に達し、オーバーシュー1〜はほとんど生じないので、
タービン回転数と主蒸気圧力は当初に作かなリップル分
を持つだけて変動は少なく、過渡変動は大幅に低下する
In the device of the present invention configured as described above, when the generator output is large, the steam regulating valve t will only reduce the steam flow rate to a level slightly smaller than the steam flow rate corresponding to the generator load, as shown in FIG. Even if the turbine load is suddenly halved, the steam control or opening will immediately reach 50% opening, and overshoe 1~ will hardly occur.
Turbine rotation speed and main steam pressure have little fluctuation due to the initial ripple, and transient fluctuations are significantly reduced.

[発明の効果1 上述の如く、本発明によれば負荷喪失時においても蒸気
加減弁の必要以上の絞り込みを防止できるので、主蒸気
圧力等の過渡変化は穏やかなものとなり、機器の健全性
が保たれると共に、タービンバイパス弁の容量を極小化
しても余剰蒸気を大気中に放出する必要がなく、信頼性
および経済性が向−ヒするという効果が11られる。
[Effect of the invention 1 As described above, according to the present invention, it is possible to prevent the steam regulating valve from being throttled down more than necessary even in the event of load loss, so transient changes in the main steam pressure, etc. become gentle, and the health of the equipment is improved. In addition, even if the capacity of the turbine bypass valve is minimized, there is no need to release excess steam to the atmosphere, which has the effect of improving reliability and economy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のターごン制御J装置の実施例を示すブ
ロック図、第2図はその作動を示すグラフ、第3図は従
来のタービン制御装置を例示するブロック図、第4図は
その作動を示すグラフでおる。 3.13・・・減筒器 5・・・加算器 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 第2図
Fig. 1 is a block diagram showing an embodiment of the turbine control J device of the present invention, Fig. 2 is a graph showing its operation, Fig. 3 is a block diagram illustrating a conventional turbine control device, and Fig. 4 is a block diagram showing an example of the turbine control device of the present invention. This is a graph showing its operation. 3.13...Cylinder reducer 5...Adder Applicant: Toshiba Corporation Patent attorney Sasa Suyama - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 発電プラントのタービン制御装置において、発電機出力
信号に応じた信号と、負荷設定器からの信号に回転数偏
差信号を加えた信号とを高値優先回路に入力し、この高
値優先回路からの出力を負荷制御信号として、主蒸気圧
力偏差信号と共に低値優先回路に導き、この低値優先回
路から出力される開度指令信号で蒸気加減弁の開度を制
御するよう構成したことを特徴とするタービン制御装置
In the turbine control device of a power generation plant, a signal corresponding to the generator output signal and a signal obtained by adding the rotation speed deviation signal to the signal from the load setting device are input to a high value priority circuit, and the output from this high value priority circuit is A turbine characterized in that the load control signal is guided along with a main steam pressure deviation signal to a low value priority circuit, and the opening degree of the steam control valve is controlled by an opening command signal outputted from the low value priority circuit. Control device.
JP61180503A 1986-07-31 1986-07-31 Turbine controller Pending JPS6336003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180503A JPS6336003A (en) 1986-07-31 1986-07-31 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180503A JPS6336003A (en) 1986-07-31 1986-07-31 Turbine controller

Publications (1)

Publication Number Publication Date
JPS6336003A true JPS6336003A (en) 1988-02-16

Family

ID=16084380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180503A Pending JPS6336003A (en) 1986-07-31 1986-07-31 Turbine controller

Country Status (1)

Country Link
JP (1) JPS6336003A (en)

Similar Documents

Publication Publication Date Title
JPS6336003A (en) Turbine controller
JPS5946373A (en) Controller for speed of water wheel
JPH02192501A (en) Water feed control device during fcb of drum boiler
JPH03267512A (en) Steam turbine controller
JP2686336B2 (en) Plant load controller
JPH0450602B2 (en)
JP2642999B2 (en) Load control device for combined cycle plant
JPS5820362B2 (en) load control device
JPH0339165B2 (en)
JPH039004A (en) Control method and device for power generating plant
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPS6253798B2 (en)
JPS59145309A (en) Afc controller of turbine bypass thermal power plant
JPS60198310A (en) Controller for turbine
JPS60209670A (en) Control device for variable head hydraulic electric power plant
JPH0345638B2 (en)
JPH01257704A (en) Load controller for single shaft type compound cycle generating plant and method therefor
JPS6176029A (en) Generalized load controller
JPH04159401A (en) Turbine control method
JPS61134699A (en) Load follow-up controller for boiling water type nuclear power plant
JPS63129104A (en) Steam turbine governor control switching
JPS63279199A (en) Load follow-up control of boiling water type nuclear power generation plant
JPS6032002B2 (en) Turbine control device
JPH01269093A (en) Feed water controller for nuclear reactor
JPS639602A (en) Inlet steam pressure control method for geothermal turbine