JPS6335952B2 - - Google Patents

Info

Publication number
JPS6335952B2
JPS6335952B2 JP58126203A JP12620383A JPS6335952B2 JP S6335952 B2 JPS6335952 B2 JP S6335952B2 JP 58126203 A JP58126203 A JP 58126203A JP 12620383 A JP12620383 A JP 12620383A JP S6335952 B2 JPS6335952 B2 JP S6335952B2
Authority
JP
Japan
Prior art keywords
fuel
blanket
pellet
pellets
fissile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58126203A
Other languages
Japanese (ja)
Other versions
JPS6018792A (en
Inventor
Kotaro Inoe
Ken Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58126203A priority Critical patent/JPS6018792A/en
Publication of JPS6018792A publication Critical patent/JPS6018792A/en
Publication of JPS6335952B2 publication Critical patent/JPS6335952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高速炉用燃料要素に係り、特に高速
炉の核分裂反応の進行の過程で生ずる燃料被覆管
の破損を防止しうる高速炉用燃料要素に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a fuel element for a fast reactor, and in particular to a fuel for a fast reactor that can prevent damage to a fuel cladding tube that occurs during the progress of a nuclear fission reaction in a fast reactor. Regarding elements.

〔発明の背景〕[Background of the invention]

高速炉に使用される燃料要素は、第1図に示さ
れるように、ステンレス製の燃料被覆管1内に、
核分裂性物質を富化した核燃料からなる燃料ペレ
ツト2、および、核分裂親物質を主とする核燃料
からなる燃料ペレツト3を、充てんしてなる。核
分裂性物質を富化した核燃料からなる燃料ペレツ
ト2を炉心燃料ペレツト、核分裂親物質を主とす
る核燃料からなる燃料ペレツト3をブランケツト
燃料ペレツトと呼ぶ。燃料ペレツトは両者とも第
1図bに示すように、長さ約1cm程度の円柱形を
している。ペレツトの直径は、燃料被覆管1の内
径よりも、わずかに小さく、そのため、燃料ペレ
ツトと、燃料被覆管の間には、ギヤツプ4が生じ
ている。
As shown in FIG. 1, the fuel element used in a fast reactor is a fuel cladding tube 1 made of stainless steel.
It is filled with fuel pellets 2 made of nuclear fuel enriched with fissile material, and fuel pellets 3 made of nuclear fuel mainly made of fissile parent material. The fuel pellets 2 made of nuclear fuel enriched with fissile material are called core fuel pellets, and the fuel pellets 3 made of nuclear fuel mainly containing fissile parent material are called blanket fuel pellets. Both fuel pellets have a cylindrical shape with a length of about 1 cm, as shown in Figure 1b. The diameter of the pellet is slightly smaller than the inner diameter of the fuel cladding tube 1, so that a gap 4 is created between the fuel pellet and the fuel cladding tube.

現在、ブランケツト燃料ペレツトは、核分裂親
物質である 238U, 240Pu等の酸化物焼結体が主
に用いられ、炉心燃料ペレツトは核分裂親物質
238U, 240Puと共に約15%の重量比で核分裂性物
241Pu, 239Pu, 235Uを含む酸化物焼結体が
用いられている。ブランケツト燃料ペレツトは、
炉心燃料ペレツト部分の上下に配置されるのが普
通である。炉心燃料ペレツト部分では、核分裂性
物質が核分裂を起し、大きな熱エネルギーと、数
個の中性子を放出する。ブランケツト燃料ペレツ
ト部分では、核分裂を起す確率は小さいが、核分
裂親物質である 238U, 240Puが、炉心燃料部分
から放出される中性子を吸収し、核分裂性物質
241Puに変化する反応が起る。発生した熱エネル
ギーは、燃料被覆管の外側を流れる冷却材ナトリ
ウムによつて除熱される。
Currently, sintered oxides such as 238 U and 240 Pu, which are fission-friendly materials, are mainly used for blanket fuel pellets, and core fuel pellets are made from fission-friendly materials such as 238 U and 240 Pu.
Along with 238 U and 240 Pu, an oxide sintered body containing fissile materials 241 Pu, 239 Pu, and 235 U at a weight ratio of approximately 15% is used. Blanket fuel pellets are
They are usually placed above and below the core fuel pellet section. In the core fuel pellet section, fissile material undergoes nuclear fission, releasing large amounts of thermal energy and several neutrons. Although the probability of nuclear fission occurring in the blanket fuel pellet portion is small, the fission parent materials 238 U and 240 Pu absorb the neutrons released from the core fuel portion, causing fissile material to form.
A reaction occurs that changes it to 241 Pu. The heat energy generated is removed by sodium coolant flowing outside the fuel cladding.

核分裂反応に伴つて、高い放射能を有する核分
裂性生成物(FP)が生ずる。FPのうち揮発性を
有するものは、ガスとなつて、第1図aのガスプ
レナム5に蓄積される。
Nuclear fission reactions produce fissile products (FP) with high radioactivity. Volatile FP becomes gas and accumulates in the gas plenum 5 shown in FIG. 1a.

燃料被覆管1の役割は、燃料ペレツトと冷却材
ナトリウムとの接触を防止し、FPガスを燃料要
素中に留めて、外部へ放出しないようにすること
である。燃料被覆管1が破損すると、FPガスの
放出が起り、燃料ペレツトとナトリウムの接触が
起る。核分裂にあずかる燃料ペレツトの表面は約
900℃以上の高温となるので、ナトリウムの沸と
うを招き、原子炉の事故に致る危険性がある。
The role of the fuel cladding tube 1 is to prevent contact between the fuel pellets and the coolant sodium, and to keep the FP gas within the fuel element and prevent it from being released to the outside. If the fuel cladding tube 1 breaks, FP gas will be released and the fuel pellets will come into contact with sodium. The surface of the fuel pellets that undergo nuclear fission is approximately
The high temperature is over 900℃, which could lead to boiling of the sodium, which could lead to a nuclear reactor accident.

核分裂生成物のうちセシウム(Cs)は、比較
的高い揮発性を有し、移動度が大きいために次の
ような問題を起すことが知られている。核分裂反
応は、炉心燃料ペレツト部分で多く起るので、
Gsの生成量も主に炉心燃料ペレツト部分で大き
い。加えて、炉心燃料ペレツト部分が核分裂によ
る放出エネルギーが大きいため、非常に高温であ
り、生成したCsは、気化して、燃料要素の被覆
管内に放出される。放出されたCsは、第1図a
のギヤツプ4を通つて、上下のブランケツト燃料
部分へ拡散を始める。ブランケツト燃料ペレツト
部分では、核分裂反応の割合は小さいので、ペレ
ツト温度は、炉心燃料ペレツトに比べてかなり低
い。そのため、拡散してきたCsガスは、ブラン
ケツト燃料ペレツト部分で、固体の金属Csとな
り、ブランケツト燃料ペレツト表面に凝着する。
ここで、Csと、ブランケツト燃料ペレツトの
UO4との間で、 2Cs+UO4→Cs2UO4(セシウムウランタイト) で表わされる反応が起ることが知られている。こ
の反応で生成した、Cs2UO4の結晶密度が小さい
ために、Cs2UO4の凝着部分の体積が大きくなり、
第2図に概念的に示すような盛り上りが生ずる。
Among nuclear fission products, cesium (Cs) has relatively high volatility and high mobility, which is known to cause the following problems. Nuclear fission reactions occur mostly in the core fuel pellets, so
The amount of Gs produced is also large mainly in the core fuel pellets. In addition, the core fuel pellets are extremely hot due to the large amount of energy released by nuclear fission, and the generated Cs is vaporized and released into the cladding tubes of the fuel elements. The released Cs is shown in Figure 1a.
The fuel begins to diffuse into the upper and lower blanket fuel sections through gap 4 of the fuel tank. In the blanket fuel pellet portion, the rate of nuclear fission reactions is small, so the pellet temperature is much lower than in the core fuel pellet. Therefore, the diffused Cs gas becomes solid metal Cs in the blanket fuel pellet portion and adheres to the surface of the blanket fuel pellet.
Here, Cs and blanket fuel pellets are
It is known that the reaction expressed as 2Cs + UO 4 →Cs 2 UO 4 (cesium uranite) occurs with UO 4 . Because the crystal density of Cs 2 UO 4 produced in this reaction is small, the volume of the cohesive part of Cs 2 UO 4 becomes large,
A rise as conceptually shown in FIG. 2 occurs.

このCs2UO4による盛り上り部分7は、ブラン
ケツト燃料ペレツトと、炉心燃料ペレツトの境界
付近が大きく、燃料要素の炉内滞在時間が長くな
ると、被覆管へ応力が働き、この応力による被覆
管の歪によつて、ついには、燃料被覆管の破損に
致る可能性がある。
This raised portion 7 due to Cs 2 UO 4 is large near the boundary between the blanket fuel pellet and the core fuel pellet, and as the stay time of the fuel element in the reactor becomes longer, stress acts on the cladding tube, and this stress causes the cladding tube to deteriorate. The strain may eventually lead to damage to the fuel cladding.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、核反応によつて発生する
Cs2UO4生成に伴う燃料被覆管の破損を防止しう
る高速炉用燃料要素を提供するにある。
The object of the present invention is to
An object of the present invention is to provide a fuel element for a fast reactor that can prevent damage to fuel cladding due to Cs 2 UO 4 production.

〔発明の概要〕[Summary of the invention]

Csの凝着および、Cs2UO4の生成しやすい部分
が、炉心燃料ペレツトとブランケツト燃料ペレツ
トの境界、および、ブランケツト燃料ペレツト同
志の間隙部分であることが実験的に明らかにされ
ている。この点に着目して、本発明では、
Cs2UO4が生成しやすく、したがつて燃料被覆管
の破損の発生しやすい部分で、ブランケツト燃料
ペレツトの径を小さくし、燃料被覆管とのギヤツ
プを広くとることにより、Cs2UO4の生成による、
体積膨張を吸収するようにした。以下実施例を用
いて本発明を詳細に説明する。
It has been experimentally revealed that the areas where Cs adhesion and Cs 2 UO 4 are likely to be formed are the boundaries between the core fuel pellets and the blanket fuel pellets, and the gaps between the blanket fuel pellets. Focusing on this point, in the present invention,
By reducing the diameter of the blanket fuel pellet and widening the gap between it and the fuel cladding tube, Cs 2 UO 4 can be reduced in areas where Cs 2 UO 4 is likely to be generated, and therefore the fuel cladding is likely to be damaged. By generation,
Made to absorb volumetric expansion. The present invention will be explained in detail below using Examples.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の実施例を示す。第3図aは本
発明のブランケツト燃料ペレツトであつて、従来
のブランケツト燃料ペレツトに対し、円周に沿う
角部を落したものである。第3図bは、本発明の
ペレツトを被覆管内に充てんした状態を示す。炉
心燃料ペレツトは従来と同じものとする。第4図
は、燃料要素の長手方向のCs濃度の実験結果を
示している。局所的に見られるピークは、ブラン
ケツト燃料ペレツト間の間隙部分で発生してい
る。これを、モデル化したグラフが、第5図であ
つて、ペレツト間隙でのCs濃度が高いことを示
している。したがつて、Cs2CO4の生成による被
覆管破損が起りやすいのは、ブランケツト燃料ペ
レツト同志の間隙部分と考えられる。第3図の実
施例によれば、ブランケツト燃料同志の間隙部分
での被覆管とのギヤツプが大きくなる結果、この
部分でのCs2UO4の生成に基づく被覆管の破損は
防止される。
FIG. 3 shows an embodiment of the present invention. FIG. 3a shows a blanket fuel pellet of the present invention, in which the corners along the circumference have been removed from the conventional blanket fuel pellet. FIG. 3b shows a cladding tube filled with pellets of the present invention. The core fuel pellets will be the same as before. FIG. 4 shows the experimental results of Cs concentration in the longitudinal direction of the fuel element. The locally observed peaks occur in the gaps between the blanket fuel pellets. A graph modeling this is shown in FIG. 5, and shows that the Cs concentration in the pellet gaps is high. Therefore, it is considered that cladding tube failure due to the formation of Cs 2 CO 4 is likely to occur in the gaps between the blanket fuel pellets. According to the embodiment shown in FIG. 3, the gap between the blanket fuel and the cladding increases in the gap between the fuel and the cladding, thereby preventing damage to the cladding due to the formation of Cs 2 UO 4 in this area.

第4図によれば、Csの濃度は、燃料被覆管の
内面1mm2当り最大3×10-4g/mm2である。ここ
で、 Cs原子量 M(Cs) 133 Cs2UO4原子量 M(Cs2UO4) 568 Cs2UO4密度 ρ 6.6g/cm3 とすれば、蓄積するCs2UO4の厚さsは s=568 133×2×3×10-4 6.6×10-3=0.097mm である。したがつて、ブランケツト燃料ペレツト
の角を約100μm以上削り落すこととすれば、被
覆管の破損防止対策として十分である。燃料ペレ
ツトの角を削り落したことによる燃料ペレツトと
被覆管の間のギヤツプの増大は小さいので、ギヤ
ツプによる熱伝達率の減少は、わずかであり、燃
料ペレツト温度にあたえる影響は小さい。したが
つて、炉心燃料ペレツトとブランケツト燃料ペレ
ツトの境界において、炉心燃料ペレツトの角も削
り落とすことにしても、炉心燃料ペレツトの温度
に重大な変化は与えず、被覆管破損の防止効果を
さらに高めることができる。
According to FIG. 4, the concentration of Cs is at most 3×10 -4 g/mm 2 per 1 mm 2 of the inner surface of the fuel cladding tube. Here, if Cs atomic weight M (Cs) 133 Cs 2 UO 4 atomic weight M (Cs 2 UO 4 ) 568 Cs 2 UO 4 density ρ 6.6 g/cm 3 , the thickness s of accumulated Cs 2 UO 4 is s =568 133×2×3×10 -4 6.6×10 -3 =0.097mm. Therefore, if the corners of the blanket fuel pellets are shaved off by approximately 100 μm or more, this is sufficient as a measure to prevent damage to the cladding tube. Since the increase in the gap between the fuel pellet and the cladding tube due to cutting off the corners of the fuel pellet is small, the decrease in the heat transfer coefficient due to the gap is small, and the effect on the fuel pellet temperature is small. Therefore, even if the corners of the core fuel pellets are shaved off at the boundary between the core fuel pellets and the blanket fuel pellets, there will be no significant change in the temperature of the core fuel pellets, which will further enhance the effect of preventing cladding failure. be able to.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、高速炉用
燃料要素内のセシウムウランタイト生成による燃
料被覆管の破損を防止することができる。
As described above, according to the present invention, damage to the fuel cladding tube due to the formation of cesium uranite in the fuel element for a fast reactor can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは高速炉用燃料要素の断面図、第1図
bは燃形ペレツトの外観図、第2図はCs2UO4
成による被覆管のスウリングを示す概念図、第3
図aは、本発明の好適な一実施例である燃料要素
の局部縦断面図、第3図bは第3図aに示すブラ
ンケツト燃料ペレツトの形状を示す図、第4図
は、燃料要素内のCs濃度を示す実測結果の特性
図、第5図は第4図のグラフをモデル化した概念
図である。 1……燃料被覆管、2……炉心燃料ペレツト、
3……ブランケツト燃料ペレツト、4……ギヤツ
プ、5……ガスプレナム、6……スプリング、7
……Cs2UO4(セシウムウランタイト化物)。
Figure 1a is a cross-sectional view of a fuel element for a fast reactor, Figure 1b is an external view of a fuel pellet, Figure 2 is a conceptual diagram showing swelling of a cladding tube due to Cs 2 UO 4 production, and Figure 3
Figure a is a partial vertical sectional view of a fuel element according to a preferred embodiment of the present invention, Figure 3b is a diagram showing the shape of the blanket fuel pellet shown in Figure 3a, and Figure 4 is a diagram showing the inside of the fuel element. Figure 5 is a conceptual diagram that models the graph in Figure 4. 1... Fuel cladding tube, 2... Core fuel pellets,
3... Blanket fuel pellet, 4... Gap, 5... Gas plenum, 6... Spring, 7
...Cs 2 UO 4 (cesium urantite).

Claims (1)

【特許請求の範囲】[Claims] 1 燃料被覆管内に、核分裂性物質を富化した核
分裂親物質を主原料とする核燃料を円柱形に成形
してなる核燃料ペレツトを充てんした炉心燃料部
分と、核分裂親物質を主原料とする核燃料を円柱
形に成形してなる核燃料ペレツトを充てんしたブ
ランケツト燃料部分とを有する高速炉用燃料要素
において、ブランケツト燃料部分の核燃料ペレツ
トの形状を、核燃料ペレツトの円周に沿う角部を
削り落した形状とすることを特徴とする、高速炉
用燃料要素。
1. A core fuel section filled with nuclear fuel pellets made by molding nuclear fuel whose main raw material is a fissile parent material enriched with fissile material into a cylindrical shape in a fuel cladding tube, and a nuclear fuel whose main raw material is a fissile parent material enriched with fissile material. In a fast reactor fuel element having a blanket fuel part filled with nuclear fuel pellets formed into a cylindrical shape, the shape of the nuclear fuel pellet in the blanket fuel part is a shape in which corners along the circumference of the nuclear fuel pellet are shaved off. A fuel element for fast reactors, characterized by:
JP58126203A 1983-07-13 1983-07-13 Fuel element for fast reactor Granted JPS6018792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126203A JPS6018792A (en) 1983-07-13 1983-07-13 Fuel element for fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126203A JPS6018792A (en) 1983-07-13 1983-07-13 Fuel element for fast reactor

Publications (2)

Publication Number Publication Date
JPS6018792A JPS6018792A (en) 1985-01-30
JPS6335952B2 true JPS6335952B2 (en) 1988-07-18

Family

ID=14929260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126203A Granted JPS6018792A (en) 1983-07-13 1983-07-13 Fuel element for fast reactor

Country Status (1)

Country Link
JP (1) JPS6018792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240832U (en) * 1988-09-13 1990-03-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240832U (en) * 1988-09-13 1990-03-20

Also Published As

Publication number Publication date
JPS6018792A (en) 1985-01-30

Similar Documents

Publication Publication Date Title
US4636352A (en) Nuclear fuel rod with burnable plate and pellet-clad interaction fix
US3826754A (en) Chemical immobilization of fission products reactive with nuclear reactor components
Vitanza et al. Fission gas release from UO 2 pellet fuel at high burn-up
US3022240A (en) Nuclear reactor fuel element
KR101218774B1 (en) Nuclear fuel rod for fast reactor
US4131511A (en) Nuclear fuel element
US3098024A (en) Composite fuel elements for nuclear reactors
JPH11202072A (en) Nuclear fuel particle for reactor, nuclear fuel pellet and element
US3215607A (en) Multi-region neutronic fuel element
US3619366A (en) Fuel subassembly for a nuclear reactor
JPS6335952B2 (en)
JPS58135989A (en) Fuel assembly for bwr type reactor
US3421979A (en) Nuclear reactor fuel elements
US3679596A (en) Nuclear reactor fuel composition
JPS61228382A (en) Nuclear fuel element
JPS62168091A (en) Nuclear reactor
JP2509625B2 (en) Core structure of fast breeder reactor
JP2000121766A (en) Nuclear fuel element for reactor
JPS6260038B2 (en)
JPH041593A (en) Fuel assembly
JPS58165085A (en) Nuclear fuel element
US3240679A (en) Fuel elements for nuclear reactors
JPS63159788A (en) Nuclear fuel element
JPH03267794A (en) Nuclear fuel
Childs et al. Neutronic calculations for the conceptual design of an in-reactor solid breeder experiment, triO-01