JPS6335849B2 - - Google Patents

Info

Publication number
JPS6335849B2
JPS6335849B2 JP14737282A JP14737282A JPS6335849B2 JP S6335849 B2 JPS6335849 B2 JP S6335849B2 JP 14737282 A JP14737282 A JP 14737282A JP 14737282 A JP14737282 A JP 14737282A JP S6335849 B2 JPS6335849 B2 JP S6335849B2
Authority
JP
Japan
Prior art keywords
rotating shaft
angular position
displacement
value
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14737282A
Other languages
Japanese (ja)
Other versions
JPS5937322A (en
Inventor
Kyoshi Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP14737282A priority Critical patent/JPS5937322A/en
Publication of JPS5937322A publication Critical patent/JPS5937322A/en
Publication of JPS6335849B2 publication Critical patent/JPS6335849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気軸受装置における電磁石の励磁
を調整するための制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for adjusting the excitation of an electromagnet in a magnetic bearing device.

[従来の技術] 磁気軸受装置は第3図に示すように、回転軸1
の外周面に空〓を介して磁極面を対向させた2対
の電磁石2a,2b,2c,2dを設け、その1
対の電磁石2a,2bを回転軸心に直角なX軸上
に対称的に配置し、他の1対の電磁石2c,2d
を前記X軸と90゜異なるY軸上に同様に配置する
とともに、前記電磁石の各対に対応して電磁石に
近接させ中心をそれぞれX軸とY軸上に設けた変
位検出器3x,3yをそなえている。
[Prior art] As shown in Fig. 3, a magnetic bearing device has a rotating shaft 1.
Two pairs of electromagnets 2a, 2b, 2c, and 2d are provided on the outer peripheral surface of the
A pair of electromagnets 2a and 2b are arranged symmetrically on the X axis perpendicular to the rotation axis, and another pair of electromagnets 2c and 2d
are similarly arranged on the Y-axis different from the X-axis by 90 degrees, and displacement detectors 3x and 3y are arranged close to the electromagnets corresponding to each pair of the electromagnets and whose centers are on the X-axis and the Y-axis, respectively. Prepared.

この2個の変位検出器の検出値a,a′は、第4
図に示すように、それぞれ変位基準設定器4の変
位基準値Sと比較器5,5′で比較され、比較器
5,5′の出力値b,b′を位相制御装置6,6′に
変位修正指令値として与え、励磁装置7a,7
b、および7c,7dを介して前記各対の電磁石
2a,2b,2c,2dのコイルを、各対ごとに
一方側の励磁を強め、他方側の励磁を弱めて回転
軸の保持位置を修正し、変位検出器の検出値a,
a′が変位基準値Sと等しくなるように制御させて
いる。
The detected values a and a' of these two displacement detectors are
As shown in the figure, the displacement reference value S of the displacement reference setter 4 is compared with the comparators 5 and 5', and the output values b and b' of the comparators 5 and 5' are sent to the phase control devices 6 and 6'. It is given as a displacement correction command value, and the excitation devices 7a, 7
The coils of the electromagnets 2a, 2b, 2c, and 2d of each pair are strengthened on one side and weakened on the other side for each pair through b, 7c, and 7d to correct the holding position of the rotating shaft. Then, the detection value a of the displacement detector is
Control is performed so that a' becomes equal to the displacement reference value S.

なお、変位基準値Sは、変位検出器3x,3y
と回転軸1との基準空〓に対応するものである。
Note that the displacement reference value S is determined by the displacement detectors 3x and 3y.
This corresponds to the reference sky of the rotation axis 1 and the rotation axis 1.

[本発明が解決しようとする問題点] しかし、回転軸1は工作上の精度や傷などによ
り真円になつておらず、周方向の位置によつて半
径に誤差があるため、回転軸1の軸心が軸受中心
位置に保持されている状態であつても、変位検出
器3x,3yの検出値a,a′は一定でなく、たと
えば、第5図aの特性曲線で示すように1回転を
周期として同一形状の波形で変動し、前記半径の
誤差に応じて変位基準値Sとの差Bを生じ、この
差により比較器5,5′から出力b,b′が変位修
正指令値として出力され、励磁装置により電磁石
に励磁修正指令を出力して回転軸の保持位置を変
動させることになり、真の軸中心位置を定周期で
振動させる。
[Problems to be Solved by the Invention] However, the rotating shaft 1 is not a perfect circle due to manufacturing precision or scratches, and there are errors in the radius depending on the position in the circumferential direction. Even when the shaft center of the bearing is held at the center position of the bearing, the detected values a and a' of the displacement detectors 3x and 3y are not constant, and for example, as shown in the characteristic curve of FIG. It fluctuates in the same waveform with rotation as a period, and a difference B from the displacement reference value S occurs depending on the error in the radius, and this difference causes the outputs b and b' from the comparators 5 and 5' to become the displacement correction command value. The excitation device outputs an excitation correction command to the electromagnet to change the holding position of the rotating shaft, causing the true shaft center position to vibrate at regular intervals.

また、傷などにより比較器出力にピークpがあ
ると、急激な修正指令が出力されるため軸に衝撃
を与えることになる。
Furthermore, if there is a peak p in the comparator output due to a scratch or the like, a sudden correction command will be output, which will cause a shock to the shaft.

このような不必要な修正は、位相制御装置6,
6′のゲインを上げるほど増幅され、磁気軸受装
置の運転の安定性を害する。なお、このような1
回転ごとに繰り返される定常的な励磁電流の変動
を抑えるため、ローパスフイルターを挿入してノ
イズを除く方法もあるが、フイルターの通過帯域
を大きくする必要があり、応答性を低下させる欠
点がある。
Such unnecessary corrections are caused by the phase control device 6,
The higher the gain of 6', the more amplified it becomes, impairing the stability of the operation of the magnetic bearing device. In addition, such 1
In order to suppress the constant fluctuation of the excitation current that repeats with each rotation, there is a method to remove noise by inserting a low-pass filter, but this requires the passband of the filter to be widened, which has the disadvantage of reducing responsiveness.

[問題点を解決するための手段] 本発明はこのような欠点をなくすようにしたも
ので、あらかじめ変位基準値と回転軸自身が有し
ている半径誤差を含めた検出値を、軸の回転角位
置に関連して記憶させ、運転時は基準位置からの
回転角位置を検出する角位置検出器の位置信号に
対応して、変位検出器の検出値を前記記憶された
データと比較し、その比較値を変位修正指令値と
して位相制御装置に与え、電磁石の励磁装置を調
整するようにしてある。
[Means for Solving the Problems] The present invention is designed to eliminate such drawbacks, and uses detected values including the displacement reference value and the radius error of the rotating shaft itself in advance to determine the rotation of the shaft. Comparing the detected value of the displacement detector with the stored data in response to the position signal of the angular position detector which is stored in relation to the angular position and detects the rotational angular position from the reference position during operation; The comparison value is given to the phase control device as a displacement correction command value to adjust the electromagnet excitation device.

[実施例] これを第1図に示す実施例について説明する。[Example] This will be explained with reference to the embodiment shown in FIG.

1は回転軸、2a,2b,2c,2dは回転軸
1の外周面に対向させて直交位置に配置した各対
の電磁石、3x,3yは各対の軸心に対応して設
けた変位検出器、5,5′は比較器、6,6′は位
相制御装置、7a,7b,7c,7dは各電磁石
の励磁装置、8はマグネツト式、静電容量式ある
いは光学式などによつて回転軸1の周方向の位置
を検出する角位置検出器で、この実施例では、突
起8aにより回転軸1の回転中の周方向位置を示
すパルス信号C(第2図)をカウンタ9に出力し、
カウンタ9は基準点からの回転軸1の回転角位置
をカウントし、8個の角位置区分信号を出力する
ものを示している。
1 is a rotating shaft; 2a, 2b, 2c, and 2d are pairs of electromagnets disposed orthogonally to the outer peripheral surface of the rotating shaft 1; 3x and 3y are displacement detectors provided corresponding to the axes of each pair; 5 and 5' are comparators, 6 and 6' are phase control devices, 7a, 7b, 7c, and 7d are excitation devices for each electromagnet, and 8 is rotated by a magnetic type, capacitance type, or optical type. This is an angular position detector that detects the circumferential position of the shaft 1. In this embodiment, the protrusion 8a outputs a pulse signal C (FIG. 2) indicating the circumferential position of the rotating shaft 1 to the counter 9. ,
The counter 9 counts the rotational angular position of the rotary shaft 1 from the reference point and outputs eight angular position classification signals.

10,10′は記憶装置で、あらかじめ変位基
準置Sおよび軸の加工精度や傷などの回転軸自身
が有している半径誤差との合計値を記憶させてお
り、カウンタ9からの角位置区分信号に対応して
記憶内容のたとえば中央値をD/A変換器11,
11′を介してアナログに変換した出力eおよび
90゜位相を異にした出力e′をそれぞれ比較器5,
5′に与えている。
Reference numerals 10 and 10' denote storage devices, which store in advance the displacement reference position S and the total value of the radial error of the rotating shaft itself such as machining accuracy and scratches of the shaft, and store the angular position classification from the counter 9. For example, the median value of the stored contents is converted into a D/A converter 11 in response to the signal.
Output e converted to analog via 11' and
The outputs e′ with different phases by 90° are sent to comparators 5 and 5, respectively.
5'.

12,12′はローパスフイルタ、13はリフ
レツシユ指令gにより動作するリフレツシユコン
トローラ、14,14′はA/D変換器、15,
15′は切換装置である。
12 and 12' are low-pass filters, 13 is a refresh controller operated by the refresh command g, 14 and 14' are A/D converters, 15,
15' is a switching device.

なお、第2図および第5図は回転軸1に実際の
軸変位がなく、回転軸自身の半径誤差だけの場合
を示す特性曲線で、説明のため変位量を過大に示
してある。
Note that FIGS. 2 and 5 are characteristic curves showing a case where there is no actual axial displacement of the rotating shaft 1, but only a radius error of the rotating shaft itself, and the amount of displacement is exaggerated for the sake of explanation.

変位検出器3x,3yで検出された変位検出値
a,a′はD/A変換器11,11′からの出力e,
e′と比較器5,5′で比較される。出力e,e′は
記憶装置10,10′にあらかじめ書き込まれた
回転軸自身の半径誤差と変位基準値を含んだ合計
値であるから、実際の軸中心の変位がなければ、
比較器からは各角位置区分ごとに中央でゼロとな
る変位出力f(第2図)および90゜位相がずれ
たf′がそれぞれローパスフイルタ12,12′に
より高周波のこぎり状出力が除去されて位相制御
装置6,6′に変位修正指令入力として与えられ
る。このため、励磁装置7a,7bおよび7c,
7dにより電磁石2a,2bおよび2c,2dの
各コイルの励磁は修正されない。
The displacement detection values a, a' detected by the displacement detectors 3x, 3y are the outputs e, a' from the D/A converters 11, 11'.
It is compared with e' by comparators 5 and 5'. Since the outputs e and e' are the total value including the radius error and displacement reference value of the rotary shaft itself written in advance in the storage devices 10 and 10', if there is no actual displacement of the center of the shaft,
From the comparator, a displacement output f (Fig. 2) that becomes zero at the center for each angular position division and f' whose phase is shifted by 90 degrees are outputted by low-pass filters 12 and 12', after which the high-frequency sawtooth output is removed and the phase is changed. It is given as a displacement correction command input to the control devices 6, 6'. For this reason, the excitation devices 7a, 7b and 7c,
7d does not modify the excitation of the coils of electromagnets 2a, 2b and 2c, 2d.

なお、上記の例では各角位置区分の中央で出力
fをゼロにしてあるが、これに限らず、たとえば
パルス信号Cの立ち上がり時に出力がゼロになる
ようにしてもよい。
In the above example, the output f is set to zero at the center of each angular position division, but the invention is not limited to this, and the output may be set to zero at the rise of the pulse signal C, for example.

運転当初における記憶値の設定、あるいは軸の
運転によつて生じる熱や長期間の運転などにより
記憶値の校正、変更が必要になつたときは、リフ
レツシユコントローラ13にリフレツシユ指令g
を与えると、リフレツシユコントローラ13から
位相制御装置6,6′にゲイン下げ信号jが出力
され、位相制御装置のゲインを下限まで下げると
ともに、リフレツシユコントローラ13はこれを
確認して記憶装置10,10′に書き込みモード
への切り替え指令hを出力し、記憶値の書き換え
準備を行つたのち、切換装置15,15′を閉路
させる。したがつて、変位検出器3x,3yの検
出値はカウンタ9から出力する回転軸1の角位置
に対応してA/D変換器14,14′にそれぞれ
入力され、記憶データをそのときの回転状態に応
じて書き換える。1回転分のデータを書き換える
と、リフレツシユコントローラ13からの切り換
え指令hを消去して記憶装置10,10′を読み
出しモードへ復帰させ、同時に切換装置15,1
5′を開路する。またゲイン下げ信号jを切り、
位相制御装置のゲインを正規の運転状態に復帰さ
せる。
When setting the memory value at the beginning of operation, or when it becomes necessary to calibrate or change the memory value due to heat generated by axis operation or long-term operation, a refresh command g is sent to the refresh controller 13.
, the refresh controller 13 outputs a gain reduction signal j to the phase control devices 6, 6', lowering the gain of the phase control device to the lower limit, and the refresh controller 13 confirms this and outputs the gain reduction signal j to the storage devices 10, 6'. After outputting a command h for switching to the write mode to 10' and preparing to rewrite the stored value, the switching devices 15 and 15' are closed. Therefore, the detected values of the displacement detectors 3x and 3y are inputted to the A/D converters 14 and 14', respectively, corresponding to the angular position of the rotating shaft 1 output from the counter 9, and the stored data is converted into the rotation at that time. Rewrite according to the situation. When the data for one rotation is rewritten, the switching command h from the refresh controller 13 is erased to return the storage devices 10, 10' to the read mode, and at the same time, the switching devices 15, 1
5' is opened. Also, turn off the gain reduction signal j,
Return the gain of the phase control device to its normal operating state.

[本発明の効果] このように、本発明は、回転軸の角位置を検出
する角位置検出器をそなえ、各角位置区分ごとに
あらかじめ調整ゲインを低くして変位基準値と回
転軸自身の半径誤差との合計値を記憶させ、運転
時はゲインを高くして各角位置区分ごとに前記記
憶値と変位検出器の検出値とを比較させるように
してあるから、工作精度などによる修正を必要と
しない半径誤差によつて、励磁装置を不要に修正
することがなく、回転軸の真の変位による変位量
によつてのみ修正が行われ、過度の修正による振
動をなくすことができる。
[Effects of the Present Invention] As described above, the present invention includes an angular position detector that detects the angular position of the rotating shaft, and lowers the adjustment gain in advance for each angular position division to adjust the displacement reference value and the rotating shaft itself. The total value including the radius error is memorized, and the gain is set high during operation to compare the memorized value and the detected value of the displacement detector for each angular position division, so corrections due to machining accuracy etc. can be made. The excitation device is not unnecessarily corrected due to an unnecessary radius error, and correction is performed only by the amount of displacement due to the true displacement of the rotating shaft, and vibrations caused by excessive correction can be eliminated.

また、比較器出力は角位置検出器からのパルス
信号に応じて区分された範囲で、変位検出値と記
憶値との比較を行うので、ローパスフイルタの時
定数を短くできるとともに、出力信号の波高値が
低くなりローパスフイルタによる応答性のおくれ
を実用上無視でき、制御装置のゲインを高くする
ことが可能になり、制御性の向上と安定性を保つ
ことができ、記憶値の設定、修正も容易に行うこ
とができる。
In addition, since the comparator output compares the detected displacement value with the stored value in a range divided according to the pulse signal from the angular position detector, the time constant of the low-pass filter can be shortened, and the waveform of the output signal The high value is lowered, and the delay in response caused by the low-pass filter can be practically ignored, making it possible to increase the gain of the control device, improving controllability and maintaining stability, and making it possible to set and modify memorized values. It can be done easily.

なお、角位置区分を細分化すれば、さらに精度
を向上させることができ、回転軸の加工精度や材
料の不均一性を厳密に保持しなくても良好な軸受
保持ができるので、加工精度不良や材質欠陥など
で不良になる軸を減少させ、省資源面にも有効で
ある。
Furthermore, accuracy can be further improved by subdividing the angular position divisions, and good bearing retention can be achieved without strictly maintaining the machining accuracy of the rotating shaft or material non-uniformity, thereby preventing poor machining accuracy. It also reduces the number of defective shafts due to material defects, etc., and is also effective in terms of resource conservation.

この磁気軸受の制御装置はスラスト軸受にも適
用できることは明らかである。
It is clear that this magnetic bearing control device can also be applied to thrust bearings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロツク図、第
2図は各部の出力特性図、第3図は磁気軸受装置
における電磁石の配置図、第4図は従来の制御装
置の例を示すブロツク図、第5図はその各部の出
力特性図を示す。 1は回転軸、2a,2b,2c,2dは電磁
石、3x,3yは変位検出器、4は変位基準値設
定器、5,5′は比較器、6,6′は位相制御装
置、7a,7b,7c,7dは励磁装置、8は角
位置検出器、9はカウンタ、10,10′は記憶
装置、11,11′はD/A変換器、12,1
2′はローパスフイルタ、13はリフレツシユコ
ントローラ、14,14′はA/D変換器、15,
15′は切換装置である。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an output characteristic diagram of each part, Fig. 3 is a layout diagram of electromagnets in a magnetic bearing device, and Fig. 4 is a block diagram showing an example of a conventional control device. Figures 5 and 5 show output characteristic diagrams of each part. 1 is a rotating shaft, 2a, 2b, 2c, 2d are electromagnets, 3x, 3y are displacement detectors, 4 is a displacement reference value setter, 5, 5' are comparators, 6, 6' are phase control devices, 7a, 7b, 7c, 7d are excitation devices, 8 is an angular position detector, 9 is a counter, 10, 10' is a storage device, 11, 11' is a D/A converter, 12, 1
2' is a low-pass filter, 13 is a refresh controller, 14, 14' is an A/D converter, 15,
15' is a switching device.

Claims (1)

【特許請求の範囲】 1 回転軸を非接触に支持する複数個の電磁石
と、回転軸の外周に空〓を介して対向し回転軸外
周面との空〓変化を検出する変位検出器とをそな
え、変位検出器の検出値に応じて電磁石の励磁を
空〓変化をなくすように調整する磁気軸受装置に
おいて、回転軸の角位置検出器と、あらかじめ軸
の加工精度などによる回転軸の半径誤差を回転角
位置に関連して記憶する記憶装置とをそなえ、角
位置検出器によつて区分された角位置区分ごと
に、変位検出器の検出値と前記記憶装置の記憶値
との比較値により電磁石励磁を調整することを特
徴とする磁気軸受装置の制御装置。 2 前記記憶装置が、リフレツシユコントローラ
をそなえ、リフレツシユ指令により励磁調整のゲ
インを下げるとともに、変位検出器の検出値を
A/D変換器を介して入力させ、記憶装置の記憶
内容を更新するようにした特許請求の範囲第1項
記載の磁気軸受装置の制御装置。
[Claims] 1. A plurality of electromagnets that support a rotating shaft in a non-contact manner, and a displacement detector that faces the outer periphery of the rotating shaft with a space between them and detects changes in space between the outer circumferential surface of the rotating shaft and the outer circumferential surface of the rotating shaft. In addition, in a magnetic bearing device that adjusts the excitation of an electromagnet according to the detected value of a displacement detector so as to eliminate fluctuations, the angular position detector of the rotating shaft and the radius error of the rotating shaft due to the machining accuracy of the shaft in advance are detected. and a storage device that stores the rotational angular position in relation to the rotational angular position, and for each angular position division divided by the angular position detector, a comparison value between the detected value of the displacement detector and the stored value of the storage device is provided. A control device for a magnetic bearing device, characterized in that it adjusts electromagnet excitation. 2. The storage device includes a refresh controller, and lowers the gain of excitation adjustment by a refresh command, and inputs the detected value of the displacement detector via an A/D converter to update the stored contents of the storage device. A control device for a magnetic bearing device according to claim 1.
JP14737282A 1982-08-23 1982-08-23 Magnetic bearing control device Granted JPS5937322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14737282A JPS5937322A (en) 1982-08-23 1982-08-23 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14737282A JPS5937322A (en) 1982-08-23 1982-08-23 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPS5937322A JPS5937322A (en) 1984-02-29
JPS6335849B2 true JPS6335849B2 (en) 1988-07-18

Family

ID=15428738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14737282A Granted JPS5937322A (en) 1982-08-23 1982-08-23 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JPS5937322A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561730B1 (en) * 1984-03-26 1986-08-22 Europ Propulsion DEVICE FOR COMPENSATING FOR GEOMETRIC DEFECTS IN A ROTOR OF A MAGNETIC ROTOR ACTIVE MAGNETIC SUSPENSION DETECTOR
US4795927A (en) * 1986-05-02 1989-01-03 Mitsubishi Jukogyo Kabushiki Kaisha Control system for a magnetic type bearing
FR2606690B1 (en) * 1986-11-13 1994-06-03 Europ Propulsion WORKPIECE SPINDLE WITH MAGNETIC BEARINGS AND IMPLEMENTING DEVICES THEREOF FOR VERY HIGH PRECISION MACHINE TOOLS
US5013987A (en) * 1989-07-18 1991-05-07 Seiko Instruments Inc. Control system for magnetic bearing
JPH0510326A (en) * 1991-06-27 1993-01-19 Matsushita Electric Ind Co Ltd Control device for magnetic bearing

Also Published As

Publication number Publication date
JPS5937322A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
US5726879A (en) Control apparatus, a stage apparatus and a hard disk servo writer apparatus including a robust stabilizing compensator
Endo et al. Robust digital tracking controller design for high-speed positioning systems
US3998409A (en) Minimization of spacecraft attitude error due to wheel speed reversal
EP0209692B1 (en) A disk file servo control system with fast reduction of repeatable head position error
JP2700904B2 (en) Control unit for magnetic levitation
US5404255A (en) Disk apparatus and its control method
JPS6015872A (en) Track following servo device
KR100408288B1 (en) Disk servo system for eccentricity compensation and method thereof
JP2653933B2 (en) Offset detection method for magnetic disk drives
US6728061B2 (en) Head position control method, control device for disk device and disk device
US10734022B2 (en) Magnetic disk device and actuator control method
US6751046B1 (en) Writing servo data patterns on a data storage disk to account for repeatable and non-repeatable disturbances and thereby provide concentric data tracks
US5457587A (en) Method and system for correcting offset of head position signal
US5659438A (en) Head positioning control system using stored voice coil motor correction data
JPS6335849B2 (en)
JP3393170B2 (en) Motor speed control device
JP3021156B2 (en) Machining error correction method for non-circular processing machine
JPH05157114A (en) Spindle device
JPS60109015A (en) Automatic tracking system of magnetic recorder
JPS62109272A (en) Servo system for rotary recording medium
JPH1177487A (en) Displacement correcting device for main spindle
JP2618708B2 (en) Learning positioning control circuit
JPS63108575A (en) Eccentricity correction system for magnetic disk
JPH03168983A (en) Floppy disk device
JPH05164130A (en) Controller for magnetic bearing