JPS6335772A - Production of thin film of calcia-stabilized zirconia - Google Patents

Production of thin film of calcia-stabilized zirconia

Info

Publication number
JPS6335772A
JPS6335772A JP61178542A JP17854286A JPS6335772A JP S6335772 A JPS6335772 A JP S6335772A JP 61178542 A JP61178542 A JP 61178542A JP 17854286 A JP17854286 A JP 17854286A JP S6335772 A JPS6335772 A JP S6335772A
Authority
JP
Japan
Prior art keywords
thin film
calcia
stabilized zirconia
calcium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61178542A
Other languages
Japanese (ja)
Inventor
Teruichiro Matsumura
松村 輝一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61178542A priority Critical patent/JPS6335772A/en
Publication of JPS6335772A publication Critical patent/JPS6335772A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film of calcia stabilized zirconia having industrial value by reacting aerosol of a soln. contg. a zirconium alkoxide and a calcium alkoxide with steam at a high temp. on substrate. CONSTITUTION:A zirconium alkoxide such as zirconium tetrabutoxide and a calcium such as calcium ethoxide are dissolved in a solvent prepd. by mixing ethanol with butanol in <9->1 volume ratio of ethanol to butanol and the resulting soln. is converted into aerosol by applying ultrasonic waves to the soln. or spraying the soln. The aerosol is mixed with a carrier gas such as hydrogen or nitrogen, introduced into a CVD reactor and reacted with steam at 300-2,000 deg.C on a substrate to form a thin film of calcia-stabilized zirconia contg. Ca by 0.5-10wt% of the amount of Zr on the substrate.

Description

【発明の詳細な説明】 酸素イオン導電性を示し、かつ殿械的強度の大きいカル
シア安定化ジルコニアは固体電解質撚ill電池の隔膜
、酸素センサ、酸素ポンプ等として可能性の高い素材で
おる。
DETAILED DESCRIPTION OF THE INVENTION Calcia-stabilized zirconia, which exhibits oxygen ion conductivity and has high mechanical strength, is a material with high potential as a diaphragm for solid electrolyte twisted-ill batteries, oxygen sensors, oxygen pumps, and the like.

〔従来の技術〕[Conventional technology]

カルシア安定化ジルコニアの厚膜または成型物はカルシ
ア安定化ジルコニアの粉末を成型することにより製造さ
れている。固体電解質燃料電池の隔膜、r!i素センサ
、酸素ポンプ等いずれの用途においても酸素イオンの移
動速度が重要であり、これを高めるためにはカルシア安
定化ジルコニアは1μもしくはこれ以下の厚さの薄膜で
あることが必要でおる。しかし、カルシア安定化ジルコ
ニア薄膜製造は困難でおり、(イ)プラズマスプレー法
か、もしくは(ロ)金属ジルコニウムと金属カルシウム
とを交互に数層蒸着した後これを酸素で酸化し、ついで
高温度で熱処理すると言う困難でかつ工業的には適して
いない方法が提供されているにすぎない。
Thick films or molded products of calcia-stabilized zirconia are produced by molding calcia-stabilized zirconia powder. Solid electrolyte fuel cell diaphragm, r! The movement speed of oxygen ions is important in any application such as an i-element sensor or an oxygen pump, and in order to increase this speed, the calcia-stabilized zirconia needs to be a thin film with a thickness of 1 μm or less. However, it is difficult to produce a calcia-stabilized zirconia thin film; either (a) a plasma spray method or (b) several layers of metallic zirconium and metallic calcium are deposited alternately and then oxidized with oxygen, followed by high-temperature deposition. Only a difficult and industrially unsuitable method of heat treatment has been proposed.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

上記(イ)の方法による厚膜ではカルシア安定化ジルコ
ニアが燃料電池隔膜として、または酸素ポンプ等として
作動する温度が高く、このため用途によっては種々の問
題が発生している。そのため作動温度の低下、したがっ
て薄膜化の要求が高い。また上記(ロ)の方法による薄
膜の製造はきわめて困難でおり高価なものとなり、工業
的な方法とは言えない。ジルコニアおよびカルシアは融
点が高く真空蒸着法、スパッタ法等でこれを薄膜化する
ことは不可能であり、またジルコニウムはともかく、カ
ルシウムは揮発性の化合物がなく、このため通常の化学
蒸着法(CVD)は採用できない。
In the thick film produced by the method (a) above, the temperature at which calcia-stabilized zirconia operates as a fuel cell membrane or an oxygen pump is high, which causes various problems depending on the application. Therefore, there is a strong demand for lower operating temperatures and therefore for thinner films. Furthermore, manufacturing a thin film by the method (b) above is extremely difficult and expensive, and cannot be called an industrial method. Zirconia and calcia have high melting points and cannot be made into thin films by vacuum evaporation, sputtering, etc. Also, apart from zirconium, calcium does not have any volatile compounds, so it cannot be made into thin films using the usual chemical vapor deposition method (CVD). ) cannot be adopted.

このようにカルシア安定化ジルコニア薄膜の工業的製造
方法はまだ提案されていない。本発明はかかる従来技術
の欠点に鑑み、工業的価値のめる安価なカルシア安定化
ジルコニア簿膜の安価な製造方法が提案される。
As described above, an industrial method for producing a calcia-stabilized zirconia thin film has not yet been proposed. In view of the drawbacks of the prior art, the present invention proposes an inexpensive method for producing a calcia-stabilized zirconia membrane that is industrially valuable.

(問題点を解決するための手段〕 本発明は、かかる従来技術の欠点を解消するために下記
の構成を有する。
(Means for Solving the Problems) The present invention has the following configuration in order to eliminate the drawbacks of the prior art.

すなはち、本発明は、基板上で、ジルコニウムアルコキ
シドおよびカルシウムアルコキシド有する溶液のエアロ
ゾルと、水蒸気とを加熱下で反応させることを特徴とす
るカルシア安定化ジルコニア薄膜の製造方法。に関する
Specifically, the present invention provides a method for producing a calcia-stabilized zirconia thin film, which comprises reacting an aerosol of a solution containing zirconium alkoxide and calcium alkoxide with water vapor on a substrate under heating. Regarding.

ここで、カルシアとは酸化カルシウムCaOをいい、ジ
ルコニアとは酸化ジルコニウムZ,02をいう。
Here, calcia refers to calcium oxide CaO, and zirconia refers to zirconium oxide Z,02.

ジルコニウムアルコキシドおよびカルシウムアルコキシ
ドとしては種々のものが可能であるが、工業的に安価に
得られること、通常の有機溶媒に溶【ブ易いことから、
ジルコニウムテトラブトキシドとカルシウムエトキシド
が好適である。
Various zirconium alkoxides and calcium alkoxides are possible, but because they can be obtained industrially at low cost and are easily soluble in ordinary organic solvents,
Zirconium tetrabutoxide and calcium ethoxide are preferred.

これらのジルコニウムアルコキシドおよびカルシウムア
ルコキシドの溶媒としてはこれらを溶解する能力を持つ
有機溶媒が一般に用いられるが、とくにアルコール、こ
のなかでもエチルアルコールとブチルアルコールとの混
合溶媒が、系の粘度およびアルコキシドの溶解度から判
断してより適している。エチルアルコールとブチルアル
コールとの割合は広い範囲において選択可能でおるが、
とくに、9〉エチルアルコール/ブチルアルコール(容
量比)〉1の範囲が好適に利用される。容量比が9以上
であると、アルコキシドの溶解度が低下し、逆に1以下
であると、系の粘度が高くなり、エアロゾルが生成しに
くくなるためである。
Organic solvents that have the ability to dissolve these zirconium alkoxides and calcium alkoxides are generally used, but alcohols, especially mixed solvents of ethyl alcohol and butyl alcohol, are used because of the viscosity of the system and the solubility of the alkoxides. Judging from this, it is more suitable. Although the ratio of ethyl alcohol to butyl alcohol can be selected within a wide range,
In particular, a range of 9>ethyl alcohol/butyl alcohol (volume ratio)>1 is preferably used. This is because if the volume ratio is 9 or more, the solubility of the alkoxide decreases, whereas if it is 1 or less, the viscosity of the system increases and it becomes difficult to generate an aerosol.

ジルコニウムアルコキシドとカルシウムアルコキシドと
の割合は製造するカルシア安定化ジルコニアに含有され
るこれら成分の割合により決定されるものであるが、通
常カルシウムがジルコニウムの0.5%(重量)から1
0%の範囲であるカルシア安定化ジルコニアが安定化お
よび強度の点から好ましく、本発明における原料溶液組
成も、この範囲が適当でおる。原料溶液におけるジルコ
ニウムアルコキシドの濃度も広い範囲において選択可能
であるが、通常ジルコニウムが0.1〜10重量%とな
る範囲で選択され、とくに好ましくはこの範囲は1〜5
%である。なぜなら、濃度が10重量%より大きい範囲
では、系が高粘性となるためCVDLにくくなり、0.
1重量%より小さい範囲では、CVD速度が低下するた
めである。
The ratio of zirconium alkoxide to calcium alkoxide is determined by the ratio of these components contained in the calcia-stabilized zirconia to be produced, but usually calcium is 0.5% (by weight) of zirconium.
Calcia-stabilized zirconia in the range of 0% is preferred from the viewpoint of stability and strength, and this range is also suitable for the raw material solution composition in the present invention. The concentration of zirconium alkoxide in the raw material solution can be selected within a wide range, but it is usually selected in a range where zirconium is 0.1 to 10% by weight, and particularly preferably this range is 1 to 5% by weight.
%. This is because when the concentration is greater than 10% by weight, the system becomes highly viscous, making CVDL difficult.
This is because in a range smaller than 1% by weight, the CVD rate decreases.

しかしこれに限定されるものではない。このようにして
得られる原料溶液は組成成分が均一に蒸発 ゛しないの
で、通常の減圧CVDによりCVDすることはできない
。この溶液は超音波または霧吹の原理等ににリエアロゾ
ル化することにより均一にCVD反応系に供給すること
ができることを見いだした。エアロゾルとしたのち、適
当量のキャリアガスと混合し、反応系に供給可能である
。キャリアガスとしては通常CVDで使用される水素、
窒素等が使用される。CVD反応系の中で適当量の水分
と高温で反応され、カルシア安定化ジルコニア薄膜とな
る。
However, it is not limited to this. Since the constituent components of the raw material solution obtained in this manner do not evaporate uniformly, it cannot be subjected to CVD using ordinary low pressure CVD. It has been found that this solution can be uniformly supplied to the CVD reaction system by re-aerosolizing it using ultrasound or atomizing principles. After being made into an aerosol, it can be mixed with an appropriate amount of carrier gas and supplied to the reaction system. Hydrogen, which is usually used in CVD, is used as a carrier gas.
Nitrogen etc. are used. It is reacted with an appropriate amount of moisture at high temperature in a CVD reaction system to form a calcia-stabilized zirconia thin film.

反応系に供給される水分の量は原料成分であるジルコニ
ウムアルコキシド、およびカルシウムアルコキシドを分
解するに足る量でも良いが、通常反応を促進するためこ
の量の数倍から数十倍程度以上の川がキャリアガスとと
もに系に供給される。反応温度は原料成分と水の反応を
促進するに足る温度であれば良いが、通常300〜20
00°C1好ましくは、500〜1000℃が適当であ
る。未反応のアルコール成分を分解するために空気およ
び酸素等を反応系に添加することも可能である。反応時
間は原料濃度、作製する薄膜の厚さ等により適宜選択さ
れる゛が、通常数分から数10分の範囲で充分でおる。
The amount of water supplied to the reaction system may be sufficient to decompose the raw material components zirconium alkoxide and calcium alkoxide, but it is usually several times to several tens of times this amount to accelerate the reaction. Supplied to the system along with carrier gas. The reaction temperature may be any temperature that is sufficient to promote the reaction between the raw material components and water, but is usually 300 to 20°C.
00°C1 Preferably, 500 to 1000°C is appropriate. It is also possible to add air, oxygen, etc. to the reaction system in order to decompose unreacted alcohol components. The reaction time is appropriately selected depending on the raw material concentration, the thickness of the thin film to be produced, etc., but a range of several minutes to several tens of minutes is usually sufficient.

CVDI、:あける基板の加熱は反応管の外から加熱す
るいわゆる外熱式でも良いが、これでは反応管の内壁が
加熱されここに薄膜が生成することになり、経済的では
ない。したがって、反応管内壁の加熱されにくい誘導加
熱方式がより適当である。
CVDI: The substrate to be opened may be heated by a so-called external heating method in which the substrate is heated from outside the reaction tube, but this method heats the inner wall of the reaction tube and forms a thin film there, which is not economical. Therefore, an induction heating method in which the inner wall of the reaction tube is less likely to be heated is more suitable.

本発明でいう基板とは、石英、アルミナ、ジルコニア、
ガラス等をいう。
The substrate referred to in the present invention includes quartz, alumina, zirconia,
Glass, etc.

本発明の方法により作製される薄膜の厚さは薄膜作製条
件により広く選択可能で市、たとえば数10人から数1
0μまで幅広く選択可能でおる。
The thickness of the thin film produced by the method of the present invention can be selected widely depending on the thin film production conditions.
It is possible to select from a wide range up to 0μ.

(実施例) 実施例1 Zr (BuO)4を80%含有するブチルアルコール
溶液10.4mlに、ブチルアルコール23m1、エチ
ルアルコール190m1、金属カルシウム0.098C
1を加え8時間還流し、やや黄色をおびた均一な溶液を
作製した。この溶液6m1を超音波発生器(50W>の
容器に入れ、窒素を150m1/分の流量で容器に流し
、発生したエアロゾルを随伴させCVD反応器(直径3
0mm、長さ500mmの石英反応管)に供給した。
(Example) Example 1 To 10.4 ml of a butyl alcohol solution containing 80% Zr (BuO)4, add 23 ml of butyl alcohol, 190 ml of ethyl alcohol, and 0.098 C of metallic calcium.
1 was added and refluxed for 8 hours to prepare a slightly yellow homogeneous solution. 6 ml of this solution was placed in a container with an ultrasonic generator (50 W), nitrogen was flowed into the container at a flow rate of 150 ml/min, the aerosol generated was entrained, and a CVD reactor (diameter 3
0 mm and a length of 500 mm).

CVD反応器には別のノズルから窄温で水を飽和させた
空気を1000m17分の流量で供給し、石英基板の直
前でこれらの二つのガスを混合し、反応させた。基板の
温度は外熱式により500℃に加熱した。23分反応を
継続した後、原料ガスの供給を停止し、さらに空気を供
給しながら1000′Cで60分焼成した。基板に強固
に付着した、干渉色のある綺麗な薄膜が生成していた。
Air saturated with water at a constricted temperature was supplied to the CVD reactor from another nozzle at a flow rate of 1000 ml/min, and these two gases were mixed and reacted just in front of the quartz substrate. The temperature of the substrate was heated to 500° C. using an external heating method. After continuing the reaction for 23 minutes, the supply of raw material gas was stopped, and the mixture was fired at 1000'C for 60 minutes while supplying air. A beautiful thin film with interference colors was formed that firmly adhered to the substrate.

このJ:うにして得た薄膜に含有されるジルコニアおよ
びカルシアをXPS (X−Rayphotoelec
tron  3pectro −s c o p ”y
 > ;I−3よびAES (AuqerElectr
on  5pectroscopV)の手法により分析
した結果、cao  12m0I%、ZrO2samo
1%の結果を得た。アルゴンで薄膜をエツチングしなが
ら測定した結果、表面から8000Aの位置で基板であ
る石英の分析値を得た。理学電気(株)のX線薄膜デフ
ラクトメータによりCuKαを線源とし、50kV、2
00mAの条件で得たチャートを第1図のA(仝体図)
3δよび第2図(拡大図〉に示す。2θ=31度のピー
クから結晶は立方晶もしくは正方品であると判断され、
カルシア安定化ジルコニアが生成していることが理解さ
れる。
The zirconia and calcia contained in the thin film obtained by this J:
tron 3pectro-s cop”y
>;I-3 and AES (AuqerElectr
As a result of analysis using the method of
A result of 1% was obtained. As a result of measurement while etching the thin film with argon, an analytical value of the quartz substrate was obtained at a position of 8000 A from the surface. Using an X-ray thin film defractometer from Rigaku Denki Co., Ltd., CuKα was used as the radiation source, 50 kV, 2
The chart obtained under the 00mA condition is A (body diagram) in Figure 1.
3δ and Figure 2 (enlarged view). From the peak at 2θ = 31 degrees, the crystal is judged to be cubic or tetragonal.
It is understood that calcia-stabilized zirconia is produced.

比較例1 カルシウムを添加しない原料溶液を用いて作製した薄膜
のX線チャートを第1図のBおよび第3図に示す。第3
図からカルシウムを添加しない原料を用いる場合には薄
膜の結晶は主として単斜品系であり、この場合はジルコ
ニアは安定化されていない。
Comparative Example 1 X-ray charts of a thin film produced using a raw material solution to which no calcium is added are shown in FIG. 1B and FIG. 3. Third
As can be seen from the figure, when a raw material to which no calcium is added is used, the crystals of the thin film are mainly monoclinic, and in this case the zirconia is not stabilized.

実施例2 Zr (BuO)4を80%含有するブチルアルコール
溶液20.2mlに、ブチルアルコール23m1、エチ
ルアルコ−シフ5m腰金属カルシウム0.55CIを加
え8時間還流し、やや黄色をおびた均一な溶液を作製し
た。この溶液を原料とし、実施例1と同じ方法で薄膜を
作製し分析した。
Example 2 To 20.2 ml of a butyl alcohol solution containing 80% Zr (BuO)4, 23 ml of butyl alcohol and 0.55 CI of ethyl alcohol Schiff 5m metal calcium were added and refluxed for 8 hours to form a slightly yellowish homogeneous solution. was created. Using this solution as a raw material, a thin film was prepared and analyzed in the same manner as in Example 1.

薄膜はCaOを26mo+%、ZrO2を74m01%
含有しており、X線分析の結果(第1図のCおよび第4
図〉結晶は立方または正方品系であリ、カルシア安定化
ジルコニアが生成していることが理解される。
The thin film contains 26mo+% CaO and 74m01% ZrO2.
The results of X-ray analysis (C and 4 in Figure 1)
Figure: The crystals are cubic or tetragonal, and it is understood that calcia-stabilized zirconia is produced.

実施例3 Zr (BuO)4を80%含有するブチルアルコール
溶液20.2mlに、ブチルアルコール90m1、エチ
ルアルコール60m−金属カルシウム0.55(jを加
え8時間還流し、やや黄色をおびた均一な溶液を作製し
た。この溶液を原料とし実施例1と同じ方法で石英基板
にCVDした。
Example 3 To 20.2 ml of a butyl alcohol solution containing 80% Zr (BuO)4 were added 90 ml of butyl alcohol, 60 m of ethyl alcohol, and 0.55 mL of metallic calcium, and refluxed for 8 hours to form a slightly yellowish homogeneous solution. A solution was prepared. Using this solution as a raw material, CVD was performed on a quartz substrate in the same manner as in Example 1.

しかし、この方法では薄膜は生成せず、粉状の生成物し
か得られなかった。
However, this method did not produce a thin film and only a powdery product was obtained.

実施例4 Zr(BuO)4を80%含有するブチルアルコール溶
)夜80.2mlに、ブチルアルコール40m1 、エ
チルアルコール60m腰金属カルシウム2.0CIを加
え8時間還流し、やや黄色をおびた均一な溶液を作製し
た。この溶液を原料とし実施例1と同じ方法で石英基板
にCVDした。しかし、この方法ではほとんどCVD生
成物は得られなかった。
Example 4 To 80.2 ml of a butyl alcohol solution containing 80% Zr(BuO)4, 40 ml of butyl alcohol, 60 ml of ethyl alcohol, and 2.0 CI of metallic calcium were added and refluxed for 8 hours to form a slightly yellowish homogeneous solution. A solution was prepared. Using this solution as a raw material, CVD was performed on a quartz substrate in the same manner as in Example 1. However, this method yielded very little CVD product.

〔発明の効果〕 本発明は、エアロゾル化することにJ:す、通常の化学
蒸着法の採用が可能となるため、安価でかつ膜厚が広く
選択可能なカルシア安定化ジルコニア薄膜の製造を可能
にするものである。
[Effects of the Invention] The present invention makes it possible to use a normal chemical vapor deposition method for aerosolization, making it possible to produce a calcia-stabilized zirconia thin film at low cost and with a wide selection of film thicknesses. It is something to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、X線薄膜デフラクトメータにより、得たX線
チャートを示す。本発明実施例1の化合物のチャートを
Aに、比較例1の化合物のチャートをBに、実施例2の
化合物のチャートをCにそれぞれ示す。 第2図は、第1図Aの拡大図でおる。 第3図は、第1図Bの拡大図である。 第4図は、第1図Cの拡大図である。 特許出願人  東 し 株 式 会 社」a I’ll叫
FIG. 1 shows an X-ray chart obtained by an X-ray thin film defractometer. A chart of the compound of Example 1 of the present invention is shown in A, a chart of the compound of Comparative Example 1 is shown in B, and a chart of the compound of Example 2 is shown in C. FIG. 2 is an enlarged view of FIG. 1A. FIG. 3 is an enlarged view of FIG. 1B. FIG. 4 is an enlarged view of FIG. 1C. Patent applicant: Toshi Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)基板上で、ジルコニウムアルコキシドおよびカル
シウムアルコキシドを含有する溶液のエアロゾルと、水
蒸気とを加熱下に反応させることを特徴とするカルシア
安定化ジルコニア薄膜の製造方法。
(1) A method for producing a calcia-stabilized zirconia thin film, which comprises reacting an aerosol of a solution containing zirconium alkoxide and calcium alkoxide with water vapor on a substrate under heating.
(2)ジルコニウムアルコキシドがジルコニウムテトラ
ブトキシドであり、かつカルシウムアルコキシドが、カ
ルシウムエトキシドであることを特徴とする特許請求の
範囲第(1)項記載のカルシア安定化ジルコニア薄膜の
製造方法。
(2) The method for producing a calcia-stabilized zirconia thin film according to claim (1), wherein the zirconium alkoxide is zirconium tetrabutoxide, and the calcium alkoxide is calcium ethoxide.
(3)溶液が、エチルアルコールとブチルアルコールと
を混合溶媒とすることを特徴とする特許請求の範囲第(
1)項または第(2)項記載のカルシア安定化ジルコニ
ア薄膜の製造方法。
(3) Claim No. 3, characterized in that the solution is a mixed solvent of ethyl alcohol and butyl alcohol.
A method for producing a calcia-stabilized zirconia thin film according to item 1) or item (2).
(4)カルシウムがジルコニウムの0.5%(重量)か
ら10%の範囲であることを特徴とする特許請求の範囲
第(1)項または第(2)項記載のカルシア安定化ジル
コニア薄膜の製造方法。
(4) Production of a calcia-stabilized zirconia thin film according to claim (1) or (2), characterized in that calcium is in the range of 0.5% (by weight) to 10% of zirconium. Method.
(5)エチルアルコールとブチルアルコールとの割合が
9>エチルアルコール/ブチルアルコール(容量比)>
1であることを特徴とする特許請求の範囲第(3)項ま
たは第(4)項記載のカルシア安定化ジルコニア薄膜の
製造方法。 (6〉加熱温度が、300〜2000℃であることを特
徴とする特許請求の範囲第(1)項記載のカルシア安定
化ジルコニア薄膜の製造方法。
(5) The ratio of ethyl alcohol and butyl alcohol is 9 > ethyl alcohol/butyl alcohol (volume ratio) >
1. A method for producing a calcia-stabilized zirconia thin film according to claim (3) or (4). (6) The method for producing a calcia-stabilized zirconia thin film according to claim (1), wherein the heating temperature is 300 to 2000°C.
JP61178542A 1986-07-29 1986-07-29 Production of thin film of calcia-stabilized zirconia Pending JPS6335772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178542A JPS6335772A (en) 1986-07-29 1986-07-29 Production of thin film of calcia-stabilized zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178542A JPS6335772A (en) 1986-07-29 1986-07-29 Production of thin film of calcia-stabilized zirconia

Publications (1)

Publication Number Publication Date
JPS6335772A true JPS6335772A (en) 1988-02-16

Family

ID=16050299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178542A Pending JPS6335772A (en) 1986-07-29 1986-07-29 Production of thin film of calcia-stabilized zirconia

Country Status (1)

Country Link
JP (1) JPS6335772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013181B4 (en) * 2007-03-20 2017-11-09 Evonik Degussa Gmbh Transparent, electrically conductive layer
JP2021014390A (en) * 2019-07-16 2021-02-12 日本特殊陶業株式会社 Method for producing ceramic sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013181B4 (en) * 2007-03-20 2017-11-09 Evonik Degussa Gmbh Transparent, electrically conductive layer
JP2021014390A (en) * 2019-07-16 2021-02-12 日本特殊陶業株式会社 Method for producing ceramic sintered body

Similar Documents

Publication Publication Date Title
US4632849A (en) Method for making a fine powder of a metal compound having ceramic coatings thereon
JPS6029541B2 (en) Method and apparatus for producing films from vapor using a confined plasma source
ATE110795T1 (en) PLASMA PROCESS FOR THE MANUFACTURE OF PLASMA DISCHARGE COATINGS AT LOW TEMPERATURE.
JPS643948B2 (en)
US6387446B1 (en) Method for depositing titanium oxide layers using soluble powders
JPS61158877A (en) Manufacture of ceramic porous membrane
Matsuzaki et al. Growth of yttria stabilized zirconia thin films by metallo-organic, ultrasonic spray pyrolysis
KR20080025301A (en) Metallic alkoxide compound, thin film-forming material and method for forming thin film
JPS59107905A (en) Manufacture of hyperfine particle of metallic oxide
JPS6335772A (en) Production of thin film of calcia-stabilized zirconia
JPH07138761A (en) Method and apparatus for producing thin film
JPH03138393A (en) Thin film of multi component oxide
Tu et al. High-speed deposition of yttria stabilized zirconia by MOCVD
US7429408B2 (en) Method for preparing calcium aluminate film containing oxygen radical and laminate
Choi et al. Effects of the reaction parameters on the deposition characteristics in ZrO 2 CVD
JPH02283603A (en) Production method of oxide ceramics superconductive substance on substrate
JP2000000444A (en) Alcohol vapor stop-off film in gas phase
JP3238459B2 (en) Manufacturing method of aluminum nitride thin film
JPS61136995A (en) Oxide thin film and its manufacture
JP2551860B2 (en) Metal complex for thin film formation
JP2002069027A (en) HAFNIUM ALKOXYTRIS(beta-DIKETONATE), METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING OXIDE FILM USING THE SAME
TW201807241A (en) HfN film manufacturing method and HfN film
JPS63121647A (en) Method for coating yttria-stabilized zirconia film
JP2002053960A (en) Cvd raw material composition for depositing zirconium and hafnium silicate film, its production method and method for depositing silicate film using the same
JPH01123074A (en) Method for supplying raw material for gaseous phase chemical reaction